Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a"

Transcript

1 Formula o grawal Fiber-Oti Communiation Sytem Chater (ntroution) 8 / max m M / E nh N h M m J e 9.6 / m log /mw SN / / /, NZ SN log / Z max N E Chater (Otial Fiber) Setion - (Geometrial Oti erition) SF/MMF: n in in n n i ninr N n n n n ini o n n / n N n ; n n GF/MMF: / n / n n / n n SF n n ; <a n( ) a n =n ; >a 8 / n int er, GF n / N( )=n a int er, SF n / n ( ) GF / Setion - (Wave roagation) k / / Ez / or / H K ( ) / ex ; m q q q q SMF E : z, H z z J m( )ex( m )ex( z); a CKm ( q)ex( m )ex( z); a J( ) / J( a) ex( z); a Ey Ex E K( q) / K( qa) ex( z); a V ka( N) ka n n ( / ) a n b V V V ( ) ( / ) ;.5.5 n n / k n / k ( n) n ( ) b n n b n n V / ; l arg e V 4 V / ; mall V GF M, M akn SF

2 Formula o grawal Fiber-Oti Communiation Sytem E ( )ex( / w )ex( z); x y x w a V V V 6 / ,..4 e w a x Ex ore a ex total w E m nx ny / m Setion - (ierion in Single-Moe Fiber) g / v n g / g ( / ) / g v / n nk n / / v n ( n) / n ( n / ) n ( n / ) g i i i / / / g n n M v g M n n g g W ng V ( V b) ng ( V b) n V V W M n( ) M ( Z / );.8 Z. i i i i 4 S S S ( ) G ( ) ( z) ( ) l ex( z / l ) z / l ( ) z ; z l ( ) l ; z l int er GV Setion -4 (ierion-nue imitation) ( ) n( ) / ( ) ( ) ( )... 6

3 Formula o grawal Fiber-Oti Communiation Sytem Gauian ule C t (, t) ex FWHM C (t) t.665 t / (, ) ex C C z t (, ) ex Qz ( ) C t Q( z) C / Q( z) ( C ) z / b C z z min C / zmin C / / C Non-Gauian ule b C V C V ; V S S V 8 V, C,, C, / 4 / 4 V, C / 4 / /4.4 V, C 4 / H( ) ex, / / ; V S

4 Formula o grawal Fiber-Oti Communiation Sytem ln.88 ;, Z Setion -5 (Fiber oe) out / z out in ex( ) (/ k m) log 4.4 in C / ;.7 C.9( / km) m 4 4 ex( / );. a / ( n n ).4 bening Setion -6 (Nonlinear Otial Eet) SS k / k k in / ; k k k k n / / n / g g z z g ( ) g ( ) g / th e th e e e [ ex( )] / SS gthe / e 6 6 w / th SM n / ( e ) XM n n n ( / );, g e z N in e i ; i N N e m / (M ) m Shröinger equation: z z z t 4

5 Formula o grawal Fiber-Oti Communiation Sytem Chater (Otial ranmitter) Setion - (Semionutor aer hyi) int rr nr nr nr rr N CN g ( N) ( N N ) nr g g ( N) g [ ln( N / N )] m n n g int mir av mir ln m m /n g g m Setion - (Single-Moe Semionutor aer) m( / n) Setion - (aer Charateriti) G t N N G G vggm GN( N N) th () ex( / ) t q C n G G v / V N g g N N V N N G vgav th ( N ) th qnth / q th ; th e ( gmir ) h q e h ext th h q E e h g total ext ext V qv qv e th int G G mir mir int N N N N ( G N N) t N ( ) in m b th t t ( t) in( t ) b m m b m m m mm N( t) N n in( t ) b m m m /4 GG Ω N N b N b GN m / q Ω m m / G b N b 5

6 Formula o grawal Fiber-Oti Communiation Sytem G / G th N N b Ω Ω Ω 4 4 Ω G G Ω Ω GG, G / N b N N b b th 4 4 q N N G FN t G S F t GN N N F t t q t t N( ) C ( )ex( ) / / {( N ) GN [ GN ( N / ) N ]} [( ) ][( ) ] / S ( ) ( ) N N, e N i N hv N SNN ; SN b ( ) ( b) [o( ) e o( )] o b /, tan ( / ) ( ) / (4 ) Setion -4 (Otial Signal Generation) ( t) GN ( N N) t 4 Setion -5 (ight-emitting ioe) h q int int / e ext int ext 4 in 4 / n n n / E ext tot ext h qv / extint / ex h q int on h Eg h Eg k.8k v FWHM h 6

7 Formula o grawal Fiber-Oti Communiation Sytem ex ex t t N t N N t b m m b m m b/ q Nb b / q, Nm( m) m H E Nmm E N m m Setion -6 (ranmitter eign) n N 7

8 Formula o grawal Fiber-Oti Communiation Sytem Setion 4- (ai Conet) Chater 4 = in / q h in / q h q [ ex( W )] hv.4 ab in tr in ab / ex( W ) V out (t) V[ ex( t / C)], (ln 9) C. in (ln 9)( ) r tr C =[ ( )] Setion 4- (Common hotoetetor) ie tr W / v C ( S ) C x i / x ( ) i e e h e h M M ( q / h ) Setion 4- (eeiver eign) tr C - ih eie hih eie hih ie( x) ih( x) x k M ex[ ( k ) ] k e r k / h e / e em C e M ( ) M [ ( M ) ] C C, C C C S ' ' ' Vout Z V (t) z ( t t ) ( t ) t out ( ) ( ) ( ) Z ( ) G ( ) G ( ) H ( ) / Y ( ) H ( ) H ( ) H ( ) H ( ) Z ( ) Z () F in out H in( t) hout (t) t ( t) [ o( / )], out ( ), H ( ) H ( ) / H () out H ( ) ( / )ot( / ) NZ Setion 4-4 (eeiver Noie) (t) i (t) i ( t) i ( t ) S ( )ex( ) i ( t) S ( ) q S ( ) = q H S ( ) k / q( ) i i i ( t) S ( ) (4 k / ) ( ) q( ) (4 k / ) F S n (t) (t) (t) (4 / ) n k F 8

9 Formula o grawal Fiber-Oti Communiation Sytem SN in ( in ) 4( / ) n q k F in SN 4k F SN n in in q h / / in 4kF n h 4kF n NE q M in in qm F ( ) in F ( M ) k M ( k )( / M ) SN qm F k F ( M in ) S ( in ) 4( / ) n SN in in qf hf SN ( / 4 k F ) M n in 4kFn km ot ( k) M ot q ( ) in M ot 4kF n kq ( in ) / Setion 4-5 (Coherent etetion) E ex ( t ) E ex[ ( t )] S S S O O O O ( t) o( t ) O S O F O,, S S O O F O (t) ( ) (t) o( ) S O Hom S O O ( t) S ( t) O ( t) ( ) o( t ) Het S O S O F O a () t, q( ), (4 k / ) F S t n SN ; Het O S a O q( O ) O / (q ). S S SN ; Hom O S q h SN 4 N SN Hom Het 9

10 Formula o grawal Fiber-Oti Communiation Sytem ESK hom er N /EFSKhetyn E h er N E er N E SK hom ESK het ayn N ex / SK et yn ex / 4 E h er N h N EFSK hetayn N SK et ayn ex / 4 /4 SK et yn Setion 4-6 (eeiver Senitivity) E () ( ) () ( ) E [( ) ( )] () () / ( ) ( ) ex er er x ( ) ex( y ) x y ( ) ( ) ex er E er 4 er ( ) ( ) ln Q ( ) / ( ) / Q ex( Q / ) E er( ) Q Q M M re ( ), = / qm F ( ) S re (4 k / ) F n M re Q / ( ) re Q qfq M ( ) Q / re min / M ot k k Qq kqq ( re ) ( q / ) Q ( km ot k) / / ( ) ( q / ) qq re ieal m m ex( N ) N / m! E ex( N ) / re Nh / N h E er ( N / )

11 Formula o grawal Fiber-Oti Communiation Sytem Setion 4-7 (Senitivity egraation) r / ex r ex re Q rex re rex Q ( rex ) rex ex log ( r ) log r re ex ex re () rex / ( in ) inr r N( ) Q re / ( ) S / S (4 q re ), r re re ( r ) Q ( ) Q q r Q log [ re ( r ) / re ()] log [ r Q ] i Q ( ) / i [ h () h ( t)], out out i ( i ) ex( ) bi b i ( / 4)( t) b t ( t) ex (4 / 8)( ) i b b /, / re Q b / ( b) b b Q ( / ) / S log ( b ) log b / () ( / ) / re re b b Q

12 Formula o grawal Fiber-Oti Communiation Sytem Setion 5- (Sytem rhiteture) Chater 5 (ightwave Sytem) [( )( C)] N N log N bu N ( / N)( ) tar C Setion 5- (eign Guieline) r tr log re.c C M C on lie Vout (t) V[ ex( t / C)] tr re S H ( ) ( C) r.5 /.5 /.7 / r Z r NZ r tr iber re iber mo al GV ( n / ) mo al SF ( n / 8 ) moal GF GV Setion 5- (ong-haul Sytem): Shroinger equation (age 4) Setion 5-4 (Soure o ower enalty) k / 5log ( Qr ) mn mn n n r N( ) (N) e b / [ ( / ) ] / re i i r Q log ( e ) re r N / (MS) log b rmn ( k / ){ ex[ ( ) ]} 5log [( (8 C / ) (8 / ) ] 5log [ (4 / ) ] 5log [ (8 / ) ] C, V eye eye oening ater tranmiion log. eye oening beore tranmiion Setion 5-5 (Forwar-Error Corretion) G log ( Q / Q) E er( Q / ), E er( Q / )

Formulas of Agrawal s Fiber-Optic Communication Systems. Section 2-1 (Geometrical Optics Description) NA n 2 ; n n. NA( )=n1 a

Formulas of Agrawal s Fiber-Optic Communication Systems. Section 2-1 (Geometrical Optics Description) NA n 2 ; n n. NA( )=n1 a Formula o grawal Fier-Oti Commuiatio Sytem Chater (troutio 8 max m M E h h M m 4 6.66. J e.6 9 m log mw S, Chater (Otial Fier SFMMF: i i ir Z Setio - (Geometrial Oti eritio i Z S log i h max E ii o ; GFMMF:

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x 2 + 1 = 0 N = {1, 2, 3....}, Z Q a, b a, b N c, d c, d N a + b = c, a b = d. a a N 1 a = a 1 = a. < > P n P (n) P (1) n = 1 P (n) P (n + 1) n n + 1 P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + 1)

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z) Ω f: Ω C l C z Ω f f(w) f(z) z a w z = h 0,h C f(z + h) f(z) h = l. z f l = f (z) Ω f Ω f Ω H(Ω) n N C f(z) = z n h h 0 h z + h z h = h h C f(z) = z f (z) = f( z) f f: Ω C Ω = { z; z Ω} z, a Ω f (z) f

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА

ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА Верзија 1.0 децембар 2009. године На основу члана 107. Закона о енергетици (''Службени гласник Републике Србије'' број 84/04) и чл. 32. ст. 1. т. 9. Одлуке о измени

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

VOTANTI Definitivi ore con ELETTORI PERCENTUALI. Parziali variazioni. Parziali Ore 23 Definitivi ore 23.00

VOTANTI Definitivi ore con ELETTORI PERCENTUALI. Parziali variazioni. Parziali Ore 23 Definitivi ore 23.00 efinitivi ore 23.00 con arziali variazioni arziali re 23 efinitivi ore 23.00 re 12 re 19 re 12 re 19 1 222 228 450 67 150 112 85 197 14,89 33,33 43,78 112 85 197 2 563 597 1160 125 430 322 307 629 10,78

Διαβάστε περισσότερα

ITU-R P ITU-R P (ITU-R 204/3 ( )

ITU-R P ITU-R P (ITU-R 204/3 ( ) 1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55

Διαβάστε περισσότερα

ITU-R P (2012/02) khz 150

ITU-R P (2012/02) khz 150 (0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)

Διαβάστε περισσότερα

2 μ Gauss 1. Equation Chapter 1 Section 1 GAUSS GAUSS

2 μ Gauss 1. Equation Chapter 1 Section 1 GAUSS GAUSS 2 μ Gauss 1 Equation Chapter 1 Section 1 2 GAUSS GAUSS 2 2 μ Gauss μ μ μ μ μ μ μ. μ μ μ μ. μ μ μ μ Coulomb μ. μ 1: μ μ μ μ μ, μ. μ μ. μ μ. μ μ μ μ μμ. μμ μ μ μ. μ μ μμ μ. μ μ μ. μ μ μ μ μ. μ μ μ μ μ μ

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός Ι Ενότητα 2: Ακολουθίες - Σειρές Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός Ι 1 / 83 Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Assessment of otoacoustic emission probe fit at the workfloor

Assessment of otoacoustic emission probe fit at the workfloor Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2 SKEMA PERCUBAAN SPM 07 MATEMATIK TAMBAHAN KERTAS SOALAN. a) y k ( ) k 8 k py y () p( ) ()( ) p y 90 0 0., y,, Luas PQRS 8y 8 y Perimeter STR y 8 7 7 y66 8 6 6 6 6 8 0 0, y, y . a).. h( h) h h h h h h 0

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Θέμα Α ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις παρακάτω ερωτήσεις πολλαπλής επιλογής Α-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

<< 3; -. ; ; ; C? 1 1 B C 4 4 C?. B B; ;? 9= 2 C? 1 1 C 4 4 C?. B

<< 3; -. ; ; ; C? 1 1 B C 4 4 C?. B B; ;? 9= 2 C? 1 1 C 4 4 C?. B ! "! #! $ % & ' (# # ) " * +, (! + $ % % # #! -.! # # # / 0 + 1 12 3. 4 5 2 677 8 9 -: ; < = 49 => ==: 4? @9 : 4? ; A 4 B 4 C? =

Διαβάστε περισσότερα

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* ! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

ΥΤΙΚΕ ΔΙΕΡΓΑΙΕ ΜΕΣΑΥΟΡΑ ΜΑΖΑ. - Απορρόφηση - Απόσταξη - Εκχύλιση - Κρυστάλλωση - Ξήρανση

ΥΤΙΚΕ ΔΙΕΡΓΑΙΕ ΜΕΣΑΥΟΡΑ ΜΑΖΑ. - Απορρόφηση - Απόσταξη - Εκχύλιση - Κρυστάλλωση - Ξήρανση ΥΤΙΚΕ ΔΙΕΡΓΑΙΕ ΜΕΣΑΥΟΡΑ ΜΑΖΑ - Απορρόφηση - Απόσταξη - Εκχύλιση - Κρυστάλλωση - Ξήρανση Εκχύλιση : εκχύλιση υγρών εκχύλιση στερεών διαχωρισμός αναμίξιμων υγρών παραπλήσια σ.ζ. ή α ΑΒ =1 έκπλυση ή διαλυτοποίηση

Διαβάστε περισσότερα

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 (   .ITU-R SF. 1 (008-003) * (ITU-R 54/4 ITU-R 6/9 ). 1. 4. 3. GHz 14,5-14,0 1,.90 (WRC-03) ( 4.4 ( - ) MHz 6 45-5 95 GHz 14,5-14 ( 4.4 " " ( ( ( ( ITU-R SF.1585 ( ( (ATPC) ( (.ITU-R SF.1650-1 " " * ITU-R SM.1448 / (

Διαβάστε περισσότερα

Electronic Analysis of CMOS Logic Gates

Electronic Analysis of CMOS Logic Gates Electronic Analysis of CMOS Logic Gates Dae Hyun Kim EECS Washington State University References John P. Uyemura, Introduction to VLSI Circuits and Systems, 2002. Chapter 7 Goal Understand how to perform

Διαβάστε περισσότερα

MOSFETs. MOSFETs. High Voltage MOSFET (THD Type) Max. Ratings R DS(ON) ( ) Q g (nc) Outline (Unit: mm) Type No.

MOSFETs. MOSFETs. High Voltage MOSFET (THD Type)   Max. Ratings R DS(ON) ( ) Q g (nc) Outline (Unit: mm) Type No. MOFETs High age MOFET (TH Type) Ratings R (ON) ( ) Q g (nc) BV I P (W) V I V KMB050N60P 60 50 1 0.018 0.022 10 25 32 10 KMB075N75P 75 75 190 0.013 0.017 10 37.5 85 10 KHB95NP 0 9.5 72 0.29 0.36 10 4.75

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

Na/K (mole) A/CNK

Na/K (mole) A/CNK Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical

Διαβάστε περισσότερα

A hybrid PSTD/DG method to solve the linearized Euler equations

A hybrid PSTD/DG method to solve the linearized Euler equations A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t

Διαβάστε περισσότερα

χ (1) χ (3) χ (1) χ (3) L x, L y, L z ( ) ħ2 2 2m x + 2 2 y + 2 ψ (x, y, z) = E 2 z 2 x,y,z ψ (x, y, z) E x,y,z E x E y E z ħ2 2m 2 x 2ψ (x) = E xψ (x) ħ2 2m 2 y 2ψ (y) = E yψ (y) ħ2 2m 2 z 2ψ (z)

Διαβάστε περισσότερα

EE434 ASIC & Digital Systems Arithmetic Circuits

EE434 ASIC & Digital Systems Arithmetic Circuits EE434 ASIC & Digital Systems Arithmetic Circuits Spring 25 Dae Hyun Kim daehyun@eecs.wsu.edu Arithmetic Circuits What we will learn Adders Basic High-speed 2 Adder -bit adder SSSSSS = AA BB CCCC CCCC =

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

!! # $ % & ' ( !  # '' # $ # #  %( *++* !"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"

Διαβάστε περισσότερα

ITU-R SM (2011/01)

ITU-R SM (2011/01) (2011/01) SM ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) ( ) BO BR BS BT F M P RA RS S SA SF SM SNG TF V 2011 :.ITU-R 1 ITU

Διαβάστε περισσότερα

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( ((( ? / / / o/ / / / o/ / / / 1 1 1., D 1 1 1 D 1, E F 1 D 1. = a, D = b, 1 = c. a, b, c : #$ #$ #$ 1) 1 ; : 1)!" ) D 1 ; ) F ; = D, )!" D 1 = D + DD 1, % ) F = D + DD 1 + D 1 F, % 4) EF. 1 = 1, 1 = a + b

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε. ΑΣΚΗΣΗ 1 ΟΜΑ Α 2 Στην ακόλουθη άσκηση σας δίνονται τα έξοδα ανά µαθητή και οι ετήσιοι µισθοί (κατά µέσο όρο) των δασκάλων για 51 πολιτείες της Αµερικής. Τα δεδοµένα είναι για τη χρονιά 1985. Οι µεταβλητές

Διαβάστε περισσότερα

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Θερμικοί αισθητήρες 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Συγκεντρωτικά Εφαρμογές

Διαβάστε περισσότερα

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics apter - Heat Engines, Entropy, and te Seond Law o ermodynamis.1 (a).0 J e 0.069 4 or 6.94% 60 J (b) 60 J.0 J J. e eat to melt 1.0 g o Hg is 4 ml 1 10 kg 1.18 10 J kg 177 J e energy absorbed to reeze 1.00

Διαβάστε περισσότερα

A/m

A/m G anada Ltd. MTERI ROSS REFERENE Ferronics V G FTF T G FKF G F82F G G FF1G J G F52J K G F01H P G F21 Units Initial Permeability (µi) 15,000 15,000 10,000 10,000 5,000 5,000 1,500 1,500 850 850 125 125

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Έλεγχος Αποθεμάτων υπό Σταθερή Ζήτηση

Έλεγχος Αποθεμάτων υπό Σταθερή Ζήτηση Έλεγχος Αποθεμάτων υπό Σταθερή Ζήτηση Γιώργος Λυμπερόπουλος 1 Οικονομική Ποσότητα Παραγγελίας (ΟΠΠ): βασικό μοντέλο 1 2 3 4 απόθεμα λ λ Σταθερός ρυθμός ζήτησης λ λ λ 2 ΟΠΠ: Βασικό πρότυπο Υποθέσεις Σταθερός

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη 5 Εκτίμηση φάσματος ισχύος Συνάφεια Παραδείγματα Στοχαστικά Διανύσματα Autoregressive model with exogenous inputs (ARX y( t + a y( t +... + a y( t n = bu( t +...

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó L09 cloj=klk=tsvjmosopa jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó 4 16 27 38 49 60 71 82 93 P Éå Ñê ÇÉ áí dbq=ql=hklt=vlro=^mmif^k`b mo pbkq^qflk=ab=slqob=^mm^obfi ibokbk=pfb=feo=dboûq=hbkkbk

Διαβάστε περισσότερα

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field L 0 Tuto Rfcton of pn wvs Wv mpdnc of th tot fd Rfcton of M wvs Rfcton tks pc whn n M wv hts on bound. Pt of th wv gts fctd, nd pt of t gts tnsmttd. Popgton dctons nd mptuds of th fctd nd tnsmttd wvs dpnd

Διαβάστε περισσότερα

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)

Διαβάστε περισσότερα

Li % % % % % % % % % % 3d 4s V V V V d V V V n O V V V O V n O V n O % % X X % % % 10 10 cm Li Li Li LiMO 2 Li 1 x MO 2 + xl + 1 + xe C + xl + 1 + xe Li x C LiMO 2 +C Li x C + Li 1 x MO 2

Διαβάστε περισσότερα

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison

Διαβάστε περισσότερα

`c-w-iqsw Bsc-bmWv `b- p- Xv?

`c-w-iqsw Bsc-bmWv `b- p- Xv? ]{Xm-[n-]- p-dn v `c-w-iqsw Bsc-bmWv `b- p- Xv? 2014 Un-kw-_ 22 A - -cm-{xn-bn tic-fobøns Hm^o-kn-ep- mb AIm-c-W-amb t]meokv sdbvuns\ XpS v Fgp-Xp- Xv. 2014 Un-kw-_ 22 A - -cm-{xn-bn km-bp-[ t]meo-kn-\m

Διαβάστε περισσότερα

ˆ œ ˆ ˆ ˆ Šˆ Œ ˆ ˆ Š ˆ Ÿ Œˆ ˆ Œˆ ŒŠ Œ ˆ Ÿ

ˆ œ ˆ ˆ ˆ Šˆ Œ ˆ ˆ Š ˆ Ÿ Œˆ ˆ Œˆ ŒŠ Œ ˆ Ÿ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2009.. 40.. 6 ˆ œ ˆ ˆ ˆ Šˆ Œ ˆ ˆ Š ˆ Ÿ Œˆ ˆ Œˆ ŒŠ Œ ˆ Ÿ ˆ Œ.. Ê μ, ƒ. ƒ. ³Ö,.. Éμ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 1603 ˆ ˆ ˆŸ ˆ ˆ œ Š Œ ˆ Ÿ 1614 Î μ μ Ö É ²Ó μ μ μ É É±. 1614 μöé μ ÉÓ μ μ Ö

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Θέματα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Θέματα Θέματα Θέμα Α Στις παρακάτω ερωτήσεις πολλαπλής επιλογής Α-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α. Ακίνητο σημειακό φορτίο Q δημιουργεί

Διαβάστε περισσότερα

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region Chapter 3 Exercise Solutios EX3. TN, 3, S 4.5 S 4.5 > S ( sat TN 3 Trasistor biased i the saturatio regio TN 0.8 3 0. / K K K ma (a, S 4.5 Saturatio regio: 0. 0. ma (b 3, S Nosaturatio regio: ( 0. ( 3

Διαβάστε περισσότερα

ITU-R BT.1908 (2012/01) !" # $ %& '( ) * +, - ( )

ITU-R BT.1908 (2012/01) ! # $ %& '( ) * +, - ( ) (2012/01)!" # $ %& '( ) * +, - 0 1 "'./ ( ) BT ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA RS S SA

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v BÀ. tdmj³ Xn-cp-h-\- -]p-cw kz-tz-in. 2004 ap-xâ [-\-Im-cy ]-{X-{]-hÀ- -\cw-k v. XpS- w Zo-]n-I- Zn-\- -{X- nâ. C-t mä am-xr-`q-an Zn-\- -{X- n-sâ {]-Xnhmc _n-kn\-kv t]pm-b "[-\-Im-cy-' n-sâbpw ssz-\w-zn-\

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΤ' Εξάμηνο. 1ος ΤΡΟΠΟΣ ΛΥΣΗΣ

ΑΣΚΗΣΕΙΣ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΤ' Εξάμηνο. 1ος ΤΡΟΠΟΣ ΛΥΣΗΣ ΑΣΚΗΣΕΙΣ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΤ' Εξάμηνο Άσκηση-1 (ΔΙΑΣΠΟΡΑ) Δίνεται πολύτροπη ίνα με συντελεστή διασποράς δ(λ)=-15 ps/nmkm και δείκτες διάθλασης n 1 =1,48 και n =1,47. Να βρεθεί το μέγιστο μήκος ζεύξης

Διαβάστε περισσότερα

Approximate System Reliability Evaluation

Approximate System Reliability Evaluation Appoximate Sytem Reliability Evaluation Up MTTF Down 0 MTBF MTTR () Time Fo many engineeing ytem component, MTTF MTBF i.e. failue ate, failue fequency, f Fequency, Duation and Pobability Indice: failue

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

!! " # $%&'() * & +(&( 2010

!!  # $%&'() * & +(&( 2010 !!" #$%&'() *& (&( 00 !! VISNIK OF HE VOLODYMYR DAL EAS UKRAINIAN NAIONAL UNIVERSIY 8 (50) 00 8 (50) 00 HE SCIENIFIC JOURNAL " 996 WAS FOUNDED IN 996 " - - " I IS ISSUED WELVE IMES A YEAR "#$% Founder

Διαβάστε περισσότερα

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1 VOLTERR ERE EXO O LER OE RTE EQUTO The i ler diode eutio re: [ ][ ] V The exio of eutio i: [ ] ddig eutio d V V The iut urret i ooed of the u of,. ooet, Î, tie vryig ooet. We thu let 6 The Volterr exio

Διαβάστε περισσότερα