ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)"

Transcript

1 ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

2 Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez njega. Nakon hlađenja i skrućivanja materijala dijelovi ostaju spojeni. lice šava 1 = zona taljenja (šav), 2 = zona utjecaja topline, 3 = zona nepromijenjenoga osnovnog metala korijen šava Međusobno se zavarivati mogu: - metali: čelik do 0,3% C (iznad toga uz određene uvjete), bakar, mjed, aluminij - plastomeri (ABS, PA, POM ). Zavarivanje je gotovo u potpunosti istisnulo zakovične spojeve u strojarstvu i građevinarstvu. Zakivanje se zadržalo kod spajanja aluminijskih limova kod trupova aviona i kabina žičara.

3 Zavar = materijal nanesen na mjestu spajanja zavarivanjem u jednom prolazu. Šav = materijal nanesen zavarivanjem na mjestu spajanja; može se sastojati od jednog ili više zavara. Zavareni spoj = spoj dobiven zavarivanjem. Zavareni dio = više pojedinačnih dijelova međusobno povezanih zavarivanjem (sa ili bez dodatnog materijala) Zavareni sklop = više zavarenih dijelova međusobno povezanih zavarivanjem

4 Ležaj Šav Kotač Poluga Vijak zavaren za pločicu

5 Automobilska karoserija (Mazda) Brodsko kormilo ( Uljanik ) Brodski trup

6 Nosači krova bazena na Kantridi Kabine skijaških žičara

7 Zavareni spojevi su prikladni za: - prijenos sila, momenata savijanja i momenata uvijanja - jeftino povezivanje elemenata konstrukcija, naročito za mali broj izradaka - upotrebu na visokim temperaturama - izradu nepropusnih spojeva. Prednosti zavarenih konstrukcija u odnosu na odljevke: - težina manja i do 50% jer stjenke mogu biti tanje - nisu potrebni modeli ili kalupi - veća krutost jer sivi lijev ima oko 2 puta manji E - koriste se jeftini poluproizvodi: limovi, profili i cijevi. [Rollof/Matek: Maschinenelemente, Vieweg, 2003]

8 Prednosti zavarenih spojeva u odnosu na vijčane i zakovične: - manja težina jer nema preklapanja limova - manja težina jer nema glava vijaka ili zakovica i matica - struktura se ne oslabljuje rupama - lakše čišćenje zbog glatkih površina. Nedostaci spajanja zavarivanjem: - uglavnom za iste/slične materijale - nije pogodno za vrlo složene oblike - taljenje na mjestu zavarivanja dovodi do promjene strukture i povećanja krhkosti - zaostala naprezanja i/ili deformacije konstrukcije - kvaliteta ovisi o vještini zavarivača - zavarivanje na gradilištu je često teže nego spajanje vijcima ili zakovicama.

9 Zaostale deformacije nakon zavarivanja: Najčešći postupci zavarivanja: 1. Zavarivanje taljenjem: - Elektrolučno zavarivanje

10 - Plinsko (autogeno) zavarivanje

11 2. Zavarivanje pod tlakom: - Točkasto zavarivanje a) obostrano, b) jednostrano - Bradavičasto zavarivanje

12 Najčešći oblici zavarenih spojeva: Vrste šavova prema DIN 1912: Nije var nego šav, nije tupi nego čelni.

13 OSNOVE OBLIKOVANJA ZAVARENIH KONSTRUKCIJA 1. Izbjegavati koncentraciju naprezanja (zarezno djelovanje): loš spoj osnovnog i dodatnog materijala može prouzročiti veliku koncentraciju naprezanja u korijenu šava, pa se kod dinamičkih opterećenja posebno zavaruje korijen (ili se izvodi dvostrani šav). Nejednolično ili valovito vučeni zavari isto djeluju kao zarezi, kao i krateri na početku i kraju zavara. V-šav, loše provaren korijen šava V-šav, dobro provaren korijen šava V-šav, pročišćen i zavaren korijen Dvostrani V-šav [Decker: El. str., Golden Marketing + Teh. knjiga, 2006]

14 2. Izbjegavati skretanje toka sila u zoni zavarivanja: skretanje u zoni šava uzrokuje lokalnu koncentraciju (porast) naprezanja pa se kod dinamičkih opterećenja smanjuje dinamička čvrstoća. Bolje čelni nego preklopni spoj Bolje udubljeni nego izbočeni kutni šav Loše Dobro

15 3. Izbjegavati vlačna naprezanja u korijenu šava: izdržljivost materijala kod vlačnog opterećenja je najčešće manja nego kod tlačnog, a korijen šava je posebno osjetljiv zbog mogućih nepravilnosti (koncentracija naprezanja) pa ga po mogućnosti treba staviti u zonu tlačnih opterećenja: korijen šava

16 4. Izbjegavati gomilanje zavara: Lokalno zagrijavanje kod zavarivanja i zatim hlađenje dovode do deformacija. Što se veći broj zavara sastaje u jednoj točki i što su zavari deblji, to je i vitoperenje jače. Izvitoperene zavarene dijelove treba izravnati zagrijavanjem i kovanjem. dobro

17 5. Dati prednost poluproizvodima: poluproizvodi su relativno jeftini pa se prednost daje plosnatim i profilnim čelicima, cijevima, limovima itd.

18 6. Izbjegavati skupe pripremne radove jer poskupljuju konstrukciju: valja izbjegavati tokarena smanjenja promjera, kose ili okrugle rubove itd. Savijanjem limova često se mogu uštedjeti zavareni šavovi: Zavareni zupčanik Mnogo dijelova i šavova Savinut lim malo dijelova i šavova Tokareni vijenac i glavina; rebro kompliciranog oblika Vijenac, glavina i rebra jednostavnog oblika

19 7. Paziti na pristupačnost šavova: šav mora biti pristupačan alatu za zavarivanje! Korijen šava je nepristupačan Dobro

20 PRORAČUN ZAVARENIH SPOJEVA Preporuke za proračun i konstrukciju dijele se na sljedeća područja: 1. Strojogradnja: kućišta, postolja, poluge, zupčanici, remenice i sl. 2. Tlačne posude, kotlovi, cijevi 3. Čelične konstrukcije: visokogradnja, mostogradnja, dizalice Zavarene konstrukcije podliježu i posebnim propisima. Brodogradnja ima posebne propise klasifikacijskih društava (Hrvatski registar brodova, Lloyd s Register of Shipping, Det Norske Veritas ).

21 STROJOGRADNJA ZAVARENI SPOJEVI DOBIVENI TALJENJEM Računska debljina šava a) Čelni šav, b) ravni kutni šav, c) izbočeni kutni šav, d) udubljeni kutni šav, e) nejednoliki kutni šav Kod kutnih šavova a mora biti najmanje 3 mm. Općenito debljina šava ne treba biti veća od 0,7 t (t = debljina najtanjeg dijela); veća debljina šava znači veliko zagrijavanje koje mijenja strukturu materijala i oslabljuje ga. Računska duljina šava Budući da su krajevi šavova nepravilni (krateri, koncentracija naprezanja), kod kratkih šavova čija je duljina manja od 15 a, poželjno je (ali se ne mora) računati s malo manjom računskom duljinom šava l = stvarna duljina šava - 2 a

22 Normalno naprezanje pri vlaku ili tlaku - okomito na šav σ v,t Čelni šav Kutni šav l = (d+a). π Kod ovakvog vlačnog opterećenja se naprezanje izračunava kao omjer sile i površine presjeka šava. Ukupna računska površina presjeka opterećenih šavova koja preuzima opterećenje A w = Σ(a l) Općenito će i za vlak i za tlak naprezanje biti σ v,t = F ( a l) Oznake: = okomito na šav = paralelno sa šavom

23 Čelni šav: Kutni šav: presjek se zarotira

24 Normalno naprezanje pri vlaku ili tlaku - paralelno sa šavom σ II v, t Sila F može djelovati i uzduž šava i onda opterećuje zavarene dijelove kao cjelinu. U tom je slučaju normalno naprezanje paralelno sa šavom i jednako normalnom naprezanju u poprečnom presjeku A zavarenih dijelova, pri čemu se površina poprečnog presjeka šava zanemaruje: σ F A IIv, t = A = A1 + A2 A 2 A 1 A 2 Ova se naprezanja u praksi ne kontroliraju! A 1

25 Normalno naprezanje pri savijanju - paralelno sa šavom (šavovi idu uzduž savinutog nosača) σ II s M s U poprečnom presjeku šavova se u tom slučaju javlja naprezanje jednako onome u međusobno zavarenim dijelovima: σ IIs M I = s y = udaljenost od neutralne linije do korijena šava I = moment tromosti poprečnog presjeka zavarenog dijela pri proračunu koristiti Steinerovo pravilo (vidi primjer u knjizi) Niti ova naprezanja se u praksi ne kontroliraju! y

26 Normalno naprezanje pri savijanju - okomito na šav (šavovi se nalaze u poprečnom presjeku nosača) Nosač koji se sastoji od međusobno zavarenih limova opterećen je momentom savijanja M s. nosač (greda) σ s M s σ s - Najprije treba odrediti položaj težišta T svih šavova (Steinerovo pravilo knjiga primjer str. 201). - Radi pojednostavljenja, umjesto do težišta šavova, udaljenosti y 2 i y 3 se računaju do korijena šavova. - Računa se ukupni moment tromosti I x uk = suma momenata tromosti pojedinih šavova, uzimajući u obzir Steinerovo pravilo.

27 uk y l a a l y l a a l y a l a l I x = M s Dva donja vertikalna šava Dva gornja kratka šava Gornji dugi šav Zanemaruju se izrazi u kojima se pojavljuju male veličine a 2 3 i a 33 : uk y l a y l a y a l a l I x = σ s

28 Najveće vlačno naprezanje M s σ s Naprezanje je jednako σ s = M I s x uk y Najveće naprezanje σ s1 javit će se na donjem kraju vertikalnih šavova jer su ta mjesta najudaljenija od osi x-x koja prolazi kroz težište. Naravno, uputno je provjeriti i najveće vlačno naprezanje σ s3. Najveće naprezanje

29 Tangencijalno naprezanje pri smicanju (sila djeluje u ravnini u kojoj su šavovi) τ Ukupna duljina šavova (a. l) = a (2 l 1 +l 2 ) F Sila F djeluje: - paralelno sa šavovima duljine l 1 u kojima izaziva tangencijalno naprezanje τ II - okomito na šav duljine l 2 u kojemu izaziva tangencijalno naprezanje τ. Budući da su τ II i τ zapravo međusobno paralelni, može ih se aritmetički zbrojiti pa je ukupno tangencijalno naprezanje: τ = F ( a l) Ako bi na jedan šav djelovale dvije međusobno okomite sile koje bi izazivale τ II i τ, ova bi naprezanja trebalo zbrojiti vektorski, tj. bilo bi 2 2 τ = τ + τ II F

30 U nekim slučajevima se tangencijalna naprezanja τ II ili τ mogu javiti i u čelnim šavovima: F F τ II τ τ = F ( a l)

31 Tangencijalno naprezanje pri torziji paralelno sa šavom τ II (a. l) = 2. a. (d+a). π Moment torzije T se može zamisliti kao djelovanje obodne sile F na polumjeru r pa će sila koja djeluje uzduž šava biti F = Naprezanje: τ II = T r F ( a l)

32 Tangencijalno naprezanje pri savijanju nosača τ II (normalno naprezanje ne treba računati već objašnjeno) U uzdužnom smjeru nosača opterećenog na savijanje poprečnom silom Fq nastaju u šavu i posmična naprezanja; pojasni limovi se međusobno žele pomaknuti u uzdužnom smjeru: τ II = F q I S a S = statički moment površina presjeka pojasnih limova: S (mm 3 ) = A 0. y 0 I = moment tromosti čitavog presjeka konstrukcijskog dijela (mm 4 ) a ukupna debljina svih zavarenih šavova (mm); na slici je a = 2 a 1

33 Istodobno djelovanje normalnog i tangencijalnog naprezanja M s Na zavareni spoj vratila i glavine djeluju moment savijanja M s i moment torzije T. Normalno naprezanje u šavu uslijed savijanja jednako je naprezanju na površini vratila: σ s = M W s = M s 3 d π 32 Tangencijalno naprezanje τ II izazvano torzijom već je izračunato. Ukupno djelovanje naprezanja σ i τ s II izražava se ekvivalentnim naprezanjem: σ e 2 = σ s + 2 τ 2 II 2 U nekom općem slučaju je σ e = σ + 2 τ gdje σ može biti i zbroj normalnih naprezanja izazvanih vlakom i savijanjem, a τ može biti τ II ili τ. 2

34 Kriterij čvrstoće Mora biti ispunjeno: σ σ dop τ τ dop σ e σ dop Orijentacijski podaci za dopuštena naprezanja σ dop i τ dop u zavarenim šavovima dani su u tablici.

35 Orijentacijski podaci za dopuštena naprezanja σ dop i τ dop u N/mm 2 u zavarenim šavovima Opterećenje Šav Naprezanje Kvaliteta zavara Statičko Ishodišno dinamičko Materijal spojenih dijelova Izmjenično dinamičko S235 (Č0361) S355 (Č0561) S235 (Č0361) S355 (Č0561) S235 (Č0361) S355 (Č0561) Čelni sa zavarenim korijenom Vlak, tlak, savijanje, ekvivalentno naprezanje Smicanje I II III I II III Čelni bez zavarenog korijena Vlak, tlak, savijanje, ekvivalentno naprezanje I II III Kutni ravni Svako I II III Kutni udubljeni Svako I II III Dvostruki kutni ravni Svako I II III

36 Kvalitete zavara:

37 STROJOGRADNJA ZAVARENI SPOJEVI DOBIVENI ZAVARIVANJEM POD TLAKOM Točkasto i bradavičasto zavareni spojevi Posebnost točkasto i bradavičasto zavarenih spojeva je ta da se točka zavara pri proračunu čvrstoće zamišlja kao posmično opterećeni zatik za koji se onda vrši proračun. Specifični pritisak σ 1 u zamišljenom provrtu jednoreznog spoja Specifični pritisak σ 1 u zamišljenom provrtu dvoreznog spoja Jednorezni spoj Dvorezni spoj Broj rezova m = 1 m = 2 d = promjer točke zavara

38 n broj točaka zavara s = debljina lima n = 3 zavara m = 1 rez Površina presjeka zavara: A = d 2 Posmično naprezanje u točki zavara: 4 π τ = F n m Budući da se koristi analogija sa zatikom, treba proračunati i specifični pritisak na stjenke zamišljenog provrta u limu: σ l = A F n d s

39 Iako je možda promjer točke zavara veći, najveća vrijednost promjera d s kojom se smije kontrolirati naprezanje je d = 5 s min (mm) gdje je s min (mm) debljina najtanjeg lima u spoju. Smjernice za točkasto zavarene spojeve: Debljina lima (mm) 0, ,5 1, Promjer točkastog zavara d (mm) Razmak točkastih zavara (3...6) d

40 Kriterij čvrstoće za točkasto zavarene spojeve Treba biti: τ τ dop σ 1 σ l dop Jednorezan spoj Dvorezan spoj τ dop σ l dop σ l dop Vlačna čvrstoća R m (N/mm 2 ) Statičko opterećenje Ishodišno dinamičko optereć. Izmjenično dinamičko optereć. Statičko opterećenje Ishodišno dinamičko optereć. Izmjenično dinamičko optereć. Statičko opterećenje Ishodišno dinamičko optereć. Izmjenično dinamičko optereć

41 TLAČNE POSUDE, KOTLOVI, CIJEVI ZAVARENI SPOJEVI DOBIVENI TALJENJEM Ova vrsta spojeva je detaljno obrađena na konstrukcijskim vježbama o tlačnim spremnicima. Ovdje se samo ponovno ističu najvažnije postavke. - Spojevi moraju biti nepropusni i vrlo čvrsti - Veći otvori se pojačavaju - Valja izbjegavati gomilanje šavova.

42 Najmanja potrebna debljina stjenke s e1 za cilindrične plašteve tlačnih posuda pod unutarnjim pretlakom pri D v /D u 1,2 u v s e1 + c1 + c2 + c3 = + c1 + c2 + 2 D K S p ν p D p c3 K 2 ν + p S s e1 = najmanja potrebna debljina stjenke (mm) D u, D v = unutarnji i vanjski promjer plašta (mm) p = najviši dopušteni pogonski tlak (N/mm 2 ) K = proračunska čvrstoća (N/mm 2 ) - iz tablice prema debljini s e1 i temperaturi S = faktor sigurnosti (σ dop = K/S) - iz tablice ν = faktor oslabljenja zbog zavara (0,8... 1) c 1, c 2, c 3 (mm) = dodaci na debljinu stijenke zbog odstupanja stvarne debljine lima (c 1 ), korozije (c 2 ) i obzidavanja tj. težina zida (c 3 ).

43 Proračunska čvrstoća K (N/mm 2 ) čelika stijenki tlačnih posuda i parnih kotlova: Faktor sigurnosti S za tlačne posude i parne kotlove

44 Najmanja potrebna debljina stjenke s e2 bombiranih dna: D v s e p β K ν S c c c c c 5 β = faktor oblika dna tlačnih posuda - iz tablice c 4, c 5 (mm) dodatak na debljinu stijenke zbog vanjskog tlaka (mogućeg splošnjavanja ili utisnuća) (c 4 ) odnosno konstrukcijski dodatak (c 5 ). Plašteve i dna izložena vanjskom tlaku treba računati prema gornjim izrazima uz ν = 1.

45

46 Tlačni spremnici se ispituju pod ispitnim tlakom p max = 1,3 p i pri tome faktori sigurnosti plašta i dna S moraju biti veći od 1,1. Sigurnost plašta: S 2 K Du pmax s c c 20 C = > e1 Sigurnost dna: S 1 2 v + 4 K C v pmax β + p c c p max 20 = > Du max se ,1 1,1

47 Najmanja potrebna debljina stjenke s za cijevi pod unutarnjim ili vanjskim pretlakom pri D v 200 mm i D v /D u 1,7 u s + c1 + 2 d K S p ν p s = najmanja potrebna debljina stjenke (mm) d u = unutarnji promjer cijevi (mm) p = najviši dopušteni pogonski tlak (N/mm 2 ) c 2 K = proračunska čvrstoća cijevi (N/mm 2 ) - iz tablice prema s i temperaturi S = faktor sigurnosti (σ dop = K/S) - iz tablice ν = faktor oslabljenja zbog zavara (0,8... 1) c 1, c 2 (mm) = dodaci na debljinu stjenke zbog odstupanja stvarne debljine lima (c 1 ) i korozije (c 2 ).

48 Proračunska čvrstoća K (N/mm 2 ) bešavnih čeličnih cijevi:

49 Priključci: izmjere šavova moraju zadovoljiti sljedeće uvjete: d u p 1000 N/mm d u p 1000 N/mm

NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA

NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA Zavareni spojevi - I. dio 1 ZAVARENI SPOJEVI Nerastavljivi spojevi Upotrebljavaju se prije svega za spajanje nosivih mehatroničkih dijelova i konstrukcija 2 ŠTO

Διαβάστε περισσότερα

ZAVARENI SPOJEVI. Definicija (DIN 1910 HRN C.T3001): zavarenih dijelova: zavareni sklop.

ZAVARENI SPOJEVI. Definicija (DIN 1910 HRN C.T3001): zavarenih dijelova: zavareni sklop. Nastavna jedinica: ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Definicija (DIN 1910 HRN C.T001): Zavareni spoj: spoj komponenata pomoću zavara. Više elemenata međusobno povezanih zavarivanjem:

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

NERASTAVLJIVE VEZE I SPOJEVI. Zakovični spojevi

NERASTAVLJIVE VEZE I SPOJEVI. Zakovični spojevi NERASTAVLJIVE VEZE I SPOJEVI Zakovični spojevi Zakovice s poluokruglom glavom - za čelične konstrukcije (HRN M.B3.0-984), (lijevi dio slike) - za kotlove pod tlakom (desni dio slike) Nazivni promjer (sirove)

Διαβάστε περισσότερα

PRORAČUN GLAVNOG KROVNOG NOSAČA

PRORAČUN GLAVNOG KROVNOG NOSAČA PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2

BETONSKE KONSTRUKCIJE 2 BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja

Διαβάστε περισσότερα

VIJČANI SPOJ VIJCI HRN M.E2.257 PRIRUBNICA HRN M.E2.258 BRTVA

VIJČANI SPOJ VIJCI HRN M.E2.257 PRIRUBNICA HRN M.E2.258 BRTVA VIJČANI SPOJ PRIRUBNICA HRN M.E2.258 VIJCI HRN M.E2.257 BRTVA http://de.wikipedia.org http://de.wikipedia.org Prirubnički spoj cjevovoda na parnom stroju Prirubnički spoj cjevovoda http://de.wikipedia.org

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

ZAKOVIČNI SPOJEVI su nerastavljivi spojevi dvaju ili više strojnih dijelova ostvareni pomoću zakovica. Zakovice su normirani elementi.

ZAKOVIČNI SPOJEVI su nerastavljivi spojevi dvaju ili više strojnih dijelova ostvareni pomoću zakovica. Zakovice su normirani elementi. ZAKOVIČNI SPOJEVI su nerastavljivi spojevi dvaju ili više strojnih dijelova ostvareni pomoću zakovica. Zakovice su normirani elementi. Zakovične spojeve su u strojogradnji, brodogradnji i drugim čeličnim

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD Osijek, 15. rujan 2017. Ivan Kovačević SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

PRORAČUN ČVRSTOĆE POSUDE POD TLAKOM. Marina MALINOVEC PUČEK

PRORAČUN ČVRSTOĆE POSUDE POD TLAKOM. Marina MALINOVEC PUČEK PRORAČUN ČVRSTOĆE POSUDE POD TLAKOM Marina MALINOVEC PUČEK PRORAČUN ČVRSTOĆE roisan za POSUDE POD TLAKOM definiranje oterećenja NORME rezultat roračuna AD Merkblatt HRN DIN EN 13445-3 1) DIN EN 12952-3

Διαβάστε περισσότερα

METALNE KONSTRUKCIJE ZGRADA

METALNE KONSTRUKCIJE ZGRADA METALNE KONSTRUKCIJE ZGRADA 1 Skr. predmeta i red. br. teme Dodatne napomene objašnjenja uputstva RASPORED SADRŽAJA NA SLAJDOVIMA NASLOV TEME PODNASLOVI Osnovni sadržaj. Važniji pojmovi i sadržaji su štampani

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

OTPORNOST MATERIJALA 1

OTPORNOST MATERIJALA 1 OTPORNOST MATERIJALA 1 10. PREDAVANJE: ČISTO SMICANJE. PRORAČUN VAROVA, VIJAKA I ZAKOVICA. 2. svibnja 2017. Prošli tjedan smo naučili... da osim ANALITIČKE METODE za proračun progiba i zaokreta na grednim

Διαβάστε περισσότερα

Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ )

Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ ) Posmična čvrstoća tla Posmična se čvrstoća se često prikazuje Mohr-Coulombovim kriterijem čvrstoće u - σ dijagramu c + σ n tanφ Kriterij čvrstoće C-kohezija φ -kut trenja c + σ n tan φ φ c σ n Posmična

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA

σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA OSNOVE NAUKE O ČVRSTOĆI Nauka o čvrstoći proučava ravnotežu između vanjskih i unutarnjih sila i deformacije čvrstih tijela uzrokovanih vanjskim silama. Na

Διαβάστε περισσότερα

Poglavlje

Poglavlje Poglavlje Ključni pojmovi zavar vijak zatik glavina osovina vratilo ležaj spojka zupčanik puž tarenica remenica zupčaste remenice navojno vreteno periferni prijenos zaporni element 9 Elementi Ciljevi strojeva

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2011./12. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12. Nositelj kolegija: Prof. dr. sc. Božidar Križan - 1 - OSOVINE I VRATILA Funkcija, opterećenja,

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Za torziju: b1 τ 0,575 b1 + 0,425 = σ Utjecaj veličine konstrukcijskog elementa b 2 : Veći elementi imaju manji faktor b 2, tj. manje opušteno napreza

Za torziju: b1 τ 0,575 b1 + 0,425 = σ Utjecaj veličine konstrukcijskog elementa b 2 : Veći elementi imaju manji faktor b 2, tj. manje opušteno napreza DOPUŠTENA NAPREZANJA PRI DINAMIČKOM OPTEREĆENJU Prethoni (približni) proračun: R σ op ( τ op) = ν R : iz Smithovih ijagrama ili tablica; ν = 3... 4 (10). Konačni (kontrolni) proračun: ν = 1,2 2 ( τ ) =

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 Napomene: Pitanja služe kao priprema za izradu testova iz Otpornosti Materijala I, koji se polažu parcijalno i integralno. Testovi su koncipirani kao

Διαβάστε περισσότερα

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2010./11. SPOJEVI S GLAVINOM Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 010./11. Nositelji kolegija: Prof. dr. sc. Božidar Križan Prof. dr. sc. Saša Zelenika - 1 - SPOJEVI S GLAVINOM

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN

GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit Modul za konstrukcije 16.06.009. NOVI NASTAVNI PLAN p 1 8 /m p 1 8 /m 1-1 POS 3 POS S1 40/d? POS 1 d p 16 cm 0/60 d? p 8 /m POS 5 POS d p 16 cm 0/60 3.0 m

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2010./11. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11. Nositelji kolegija: Prof. dr. sc. Božidar Križan Prof. dr. sc. Saša Zelenika - 1 - OSOVINE I VRATILA

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

Krute veze sa čeonom pločom

Krute veze sa čeonom pločom Krute veze sa čeonom pločom Metalne konstrukcije 2 P6-1 Polje primene krutih veza sa čeonom pločom Najčešće se koriste za : Veze greda sa stubovima kod okvirnih nosača; Montažne nastavke nosača; Kontinuiranje

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija,

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija, 1. Osnove čvrstoće 1.1. Pojam i vrste opterećenja Nauka o čvrstoći proučava utjecaj vanjskih sila i momenata na ponašanje čvrstih (realnih) tijela. Djelovanje vanjskih sila i momenata na tijelo naziva

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

STATIČKI ODREĐENI SUSTAVI

STATIČKI ODREĐENI SUSTAVI STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 5. VJEŽBE DIMENZIONIRANJE - GSN Dominik Skokandić, mag.ing.aedif. GRANIČNO STANJE NOSIVOSTI DIMENZIONIRANJE - GSN 1. Sila prednapinjanja 2. Provjera

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Vedran Grzelj. Zagreb, 2011.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Vedran Grzelj. Zagreb, 2011. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Vedran Grzelj Zagreb, 011. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentori: Prof. dr. sc. Milan Opalić,

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBG 4. STTIČKI PRORČUN STUBIŠT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 9 6 5 5 SVEUČILIŠTE U ZGREBU JBG 4. Statiči proračun stubišta 4.. Stubišni ra 4... naliza opterećenja 5 5 4 6 8 0 Slia 4..

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 017. Ime i prezime 50 60 (h) 16 (h0) () () 600 (B) 600 (B) 500 () 500 () SDRŽJ 1. Tehnički opis.... Proračun ploče POZ 01-01... 3.1. naliza opterećenja ploče POZ 01-01...

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15.07.2015 Marko Srdanović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI

Διαβάστε περισσότερα

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07.

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2006./07. SPOJEVI S GLAVINOM Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07. Nositelji kolegija: Prof. dr. sc. Božidar Križan Doc. dr. sc. Saša Zelenika - 1 - SPOJEVI S GLAVINOM

Διαβάστε περισσότερα

Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE

Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE Glodanje je postupak obrade odvajanjem čestica (rezanjem) obradnih površina proizvoljnih oblika. Izvodi se na alatnim strojevima, glodalicama, pri čemu je glavno (rezno) gibanje kružno kontinuirano i pridruženo

Διαβάστε περισσότερα

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

SRĐAN PODRUG ELEMENTI STROJEVA

SRĐAN PODRUG ELEMENTI STROJEVA S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE U SPLITU SRĐAN PODRUG ELEMENTI STROJEVA Predavanja za stručni i preddiplomski studij BRODOGRADNJE za školsku godinu

Διαβάστε περισσότερα