PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PREDNAPETI BETON Primjer nadvožnjaka preko autoceste"

Transcript

1 PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 5. VJEŽBE DIMENZIONIRANJE - GSN Dominik Skokandić, mag.ing.aedif.

2 GRANIČNO STANJE NOSIVOSTI DIMENZIONIRANJE - GSN 1. Sila prednapinjanja 2. Provjera nosivosti za otkazivanje bez najave 3. Dimenzioniranje presjeka u polju savijanje s uzdužnom silom 4. Dokaz predstlačenog vlačnog područja 5. Dokaz nosivosti na poprečne sile Rok predaje Auditorne vježbe

3 GSN Sila prednapinjanja SILA PREDNAPINJANJA Utjecaj prednapinjanja promatramo kao reznu silu Parcijalni koeficijent sigurnosti za prednapinjanje: γ p =1.0 Za dokaze nosivosti uzima se sila prednapinjanja u trenutku t= Vrijednost sile prednapinjanja u sredini raspona u (t= ) : P P P 2089,54 142, ,95 kn pm,,1 pm,1 p,c sr P P P 2094,99 142, ,40 kn pm,,2 pm,2 p,c sr P P P 2091,54 142, ,95 kn pm,,3 pm,3 p,c sr Proračunska vrijednost sile prednapinjanja za dokaz savijanja s uzdužnom silom: P P 1,0 1946, ,95kN Ed,1 pm,,1 P P P 1,0 1952, ,40kN Ed,2 pm,,2 P P P 1,0 1948, ,95kN Ed,3 pm,,3 P 3 5. Auditorne vježbe

4 GSN Sila prednapinjanja SILA PREDNAPINJANJA Vrijednost sile prednapinjanja za dokaz na poprečnu silu uzimamo na osloncu (aktivno sidro) u trenutku t= uz pretpostavku da su vremenski gubici jednaki kao i na sredini raspona: P (x 0,0m) 2032,48 142, ,89kN pm,,1 P (x 26,7m) 2067,43 142, ,84kN pm,,2 P (x 0,0m) 2002,05 142, ,46 kn pm,,3 natega 1 natega 2 natega 3 l sl,i [m] [m] [m] σ pm (A) N/mm N/mm N/mm 2 σ pm (B) N/mm N/mm N/mm 2 σ p0 (A) N/mm N/mm N/mm 2 Δl sl,calc [mm] 1.97 [mm] 1.97 [mm] P pm (A) [kn] [kn] [kn] P pm (B) [kn] [kn] [kn] P p0 (A) [kn] [kn] [kn] 4 5. Auditorne vježbe

5 GSN Sila prednapinjanja SILA PREDNAPINJANJA Komponente reznih sila za dokaz poprečnih sila dobivamo iz nagiba tangenti u osi ležaja (iz tablice): Natega 1 tan 0,0310 1, Natega 2 tan 0,0821 4, Natega 3 tan 0,1083 6, Pretpostavka iznos sile prednapinjanja je približno jednak na čelu nosača i nad osloncem. (Pm,x=0 Pm,x=0,35) Vođenje natega Rezultati os ležaja x [m] ξ=x/l tot z 1 [m] z 2 [m] z 3 [m] Kut nagiba tangente tgα tgα Udaljenost težišne linije natege do donjeg ruba Udaljenost težišne linije natege do težišta p tgα Z dr1 [m] Z dr2 [m] Z dr3 [m] z cp1 [m] z cp2 [m] z cp3 [m] P m,i [kn] α i [ ] N p [kn] V p [kn] Natega Natega Natega Auditorne vježbe

6 PROVJERA NOSIVOSTI NA OTKAZIVANJE BEZ NAJAVE Ugradnja najmanje potrebne armature zadovoljava provjeru nosivosti za otkazivanje bez najave u slučaju otkazivanja natega armatura osigurava pojavu pukotina koje najavljuju otkazivanje konstrukcije. Armatura se ugrađuje sa promjerom d s 10 mm. Dimenzionira se na vrijednost momenta pojave pukotina (uz pretpostavku da je prednapinjanje skroz otkazalo), sa donjom vrijednošću vlačne čvrstoće betona f ctk,0.05 (da bismo bili na strani sigurnosti). Mr,rep fctk,0.05 WC moment pojave pukotina Armaturu za otkazivanje bez najave određujemo u polju i na ležaju: A s,polje min A f sd M f W f z f z r,rep ctk,0.05 C,i yk s yk s W fctk,0.05 W i,d ; As,ležaj f z f z ctk,0.05 yk s yk s i,g 6 5. Auditorne vježbe

7 PROVJERA NOSIVOSTI NA OTKAZIVANJE BEZ NAJAVE - POLJE U polju predviđamo armaturu (pretpostavka Φ=20mm) za otkazivanje bez najave koju ugrađujemo u donji dio hrpta (i mora se prevesti preko oslonca): f ctk,0.05 = 2,9 N/mm 2 - za beton C50/60 (tablica 6 u prilogu) f yk = 500 N/mm 2 c nom = 55 mm, vilice Φ=10 mm c spona = c nom Φ spona = = 45 mm Statička visina nenapete armature : d=145-4,5-1 -2/2=138,5 cm Krak sile pretpostavljamo kao 0,9 d z s =0,9 138,5=124,65 cm Momenti otpora (idealan presjek): W ig =467560,81 cm 3 W id =265055,54 cm 3 mina sd f W 2, ,54 12,33 cm f z ,64 ctk,0.05 i,d 2 yk s 7 5. Auditorne vježbe

8 PROVJERA NOSIVOSTI NA OTKAZIVANJE BEZ NAJAVE POLJE U polju predviđamo armaturu (pretpostavka Φ=20mm) za otkazivanje bez najave koju ugrađujemo u donji dio hrpta (i mora se prevesti preko oslonca): mina Odabrano: 4Φ20 -> A s,od =12,57 cm 2 sd f W 2, ,54 12,33 cm f z ,64 ctk,0.05 i,d 2 PROVJERA NOSIVOSTI NA OTKAZIVANJE BEZ NAJAVE LEŽAJ Nad osloncem izvodimo kontinuitetnu ploču u nju je potrebno ugraditi najmanju armaturu za otkazivanje bez najave: min A sd Odabrano: Φ20/14 cm -> A s,od =21,99 cm 2 yk s f W 2, ,81 21,75 cm f z ,64 ctk,0.05 i,g 2 yk s 8 5. Auditorne vježbe

9 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Sila prednapinjanja se promatra kao uzdužna sila koja djeluje u osi natege. Dimenzioniranje se provodi za najnepovoljniji presjek (L/2) Statička visina presjeka d (udaljenost težišta napete i nenapete armature do gornjeg ruba nosača): A 6,5 A 19,92 12,57 6, ,92 s p d huk ,61 cm As A p 12,57 54 Za presjek u L/2 tlačna zona nalazi se na u gornjem dijelu idealnog poprečnog presjeka, te je potrebno je odrediti položaj neutralne osi od moguća tri slučaja: neutralna os se nalazi u pojasnici idealnog poprečnog presjeka neutralna os se nalazi točno na spoju hrpta s pojasnicom idealnog poprečnog presjeka neutralna os se nalazi u hrptu idealnog poprečnog presjeka Auditorne vježbe

10 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Ako je udaljenost neutralne osi od tlačnog ruba presjeka x u veća od debljine pojasnice D f tada presjek promatramo kao presjek s pojasnicom. Poprečni presjek Dijagram naprezanja Dijagram naprezanja Ako je udaljenost neutralne osi od tlačnog ruba presjeka x u manja od debljine pojasnice D f tada presjek promatramo kao pravokutni presjek Auditorne vježbe

11 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Pretpostavljamo da se neutralna os nalazi na spoju hrpta s pojasnicom idealnog poprečnog presjeka pa je visina tlačne zone x: x d d 45,5 cm pojasnica Ako se neutralna os nalazi unutar područja pojasnice tada idealni poprečni presjek možemo promatrati kao pojednostavljeni pravokutni presjek računamo težište tlačne zone presjeka: z s Izmjere pojednostavljenog pravokutnog poprečnog presjeka: b i /h/d=191,37/145/127,61 (d udaljenost težišta do gornjeg ruba presjeka) ploca , ,75 22,67 cm ,5 190 h 2 z 2 22,67 45,34 cm i s ,5 190 bi 191,37cm 45, Auditorne vježbe

12 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Izmjere pojednostavljenog pravokutnog poprečnog presjeka: b i /h/d=191,37/145/127,61 (d udaljenost težišta armature do gornjeg ruba presjeka) Auditorne vježbe

13 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Moment savijanja od pojedinih natega u odnosu na težište ukupne armature: MEd,p PEd,1 ys1 PEd,2 ys2 PEd,3 ys3 Ed,p M 1946,95 (14,25 17,39) 1952,40 14,25 17, ,95 (31,25 17,39) 147,68 knm Računski moment savijanja u L/2: Ed,s gk1 gk2 gk3 Ed,p q Q Ed,s 1,5 884, , ,25 knm M 1,35 M M M M 1,5 M M M 1, ,09 787,50 625,0 147,68 Bezdimenzionalni moment savijanja: M ,078 b d f 191,37 127,61 3,33 Ed,s Ed,s 2 2 i cd Auditorne vježbe

14 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Bezdimenzionalni moment savijanja: M ,078 b d f 191,37 127,61 3,33 Ed,s Ed,s 2 2 i cd Iz tablica (sa betonskih konstrukcija) za μ Rd =0,082 očitamo: ε s1 =0.020 ε c2 = ζ=0.955 z d 0, ,61 121,87 cm ξ=0.115 x d 0, ,61 14, 67 cm (pretpostavka, da je nul linija u pojasnici je ispravna) Ed,s Ravnoteža unutarnjih i vanjskih sila: A A N, gdje je: M s sd p pd Ed z Sila prednapinjanja kao normalna sila NEd Ap p Prirast sile prednapinjanja od dodatnog izduljenja Proračunska vrijednost naprezanja čelika za prednapinjanje: pd p pd N A Rd,p p pd Auditorne vježbe

15 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Iz ravnoteže sila potrebna armatura u polju: A s,req M z Ed,s A sd p pd Auditorne vježbe

16 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Iz ravnoteže sila potrebna armatura u polju: A s,req M z Ed,s Naprezanja čelika ovise o njihovim deformacijama (izduljenjima) ε : Naprezanje čelika za armiranje pri ε=0,020: A Kao mjerodavno naprezanje uzimamo računsku čvrstoću čelika: Naprezanje čelika za prednapinjanje: Ed,i izduljenje od sile prednapinjanja pi dodatno izduljenje od vanjskih djelovanja za GSN p maksimalno dopušteno izduljenje sd p E 0, N / mm f 2 sd s s yd A N p,i pd f 435 N / mm sd yd f f E ili ako je 0,025 p0,1,k p,k pi pi pi p p s s E p p 0, Auditorne vježbe

17 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Određivanje dodatnog izduljenja JEDNADŽBE KOMPATIBILNOSTI. 2,6 p,1 2, , , , ,6 p,2 2, , , , ,6 p,3 2, , , , p c p c p c h y x d c p ( c (h y d)) x u u Auditorne vježbe

18 DIMENZIONIRANJE PRESJEKA U POLJU SAVIJANJE S UZDUŽNOM SILOM Natega 1: NEd, Izduljenje od prednapinjanja: Dodatno izduljenje: Naprezanje čelika za prednapinjanje: Auditorne vježbe p1 A E p,1 p p,1 0, ,025 E 0, , ,62 N / mm p1 p,1 p,1 p f 1570 f 1365 N / mm 1365 N / mm 1,15 p0,1,k 2 2 p1 p,d p1 s Natega 2 i 3: Potrebna armatura u polju je: sd p,2 p, N / mm Odabrana armatura (4Ф20) iz provjere na otkazivanje bez najave zadovoljava i GSN. Ukoliko ne zadovolji potrebno je odabrati novu armaturu. 2 0, MEd,s Ap pd z 1218,7 As,req 1606mm A 12,57 cm s,od,min

19 GSN predstlačeno vlačno područje DOKAZ PREDSTLAČENOG VLAČNOG PODRUČJA Za fazu građenja potrebno je provesti dokaz nosivosti vlačnog područja (gornja zona) za kombinaciju djelovanja vlastite težine i prednapinjanja: Dokaz se provodi dimenzioniranjem poprečnog presjeka u polju za savijanje s uzdužnom silom u trenutku t=0. Gubitak sile prednapinjanja zbog skraćenja betona se zanemaruje. Parcijalni koef. sigurnosti: povoljno djelovanje vlastite težine: γ G =1.0 prednapinjanje: γ P = Auditorne vježbe

20 GSN predstlačeno vlačno područje DOKAZ PREDSTLAČENOG VLAČNOG PODRUČJA Proračunski moment u polju od g k1 : M Ed,gk1 =1996,09 knm Proračunska vrijednost sile prednapinjanja (max iznos sile prednapinjanja u t=0, prije vremenskih gubitaka): P 2089, , , ,07 kn pm,0 N P 6276,07 kn tlačna sila Ed pm,0 Krak sila prednapinjanja (osnovni presjek): 10 yp,i h cnom zdr,i 2 y ,25 104,75 cm p,1 y ,25 104,75 cm p,2 y ,25 87,75 cm p,3 Srednja vrijednost kraka sile: ypm 99,08 cm Auditorne vježbe

21 GSN predstlačeno vlačno područje DOKAZ PREDSTLAČENOG VLAČNOG PODRUČJA Moment savijanja od vl. težine i prednapinjanja: M 1996, ,07 0, ,15 knm vlačni moment u gornjoj zoni Eds Proračunski poprečni presjek (vlačno područje gore): 10 d h cnom cmb w / h / d 0.54 / 1.25 / Bezdimenzionalni moment savijanja: MEds ,165 b d f ,33 Eds 2 2 i cd 0,906 z d 0, , 81 cm Potrebna površina armature: M N ,07 Ed,s Ed 107,81 2 A z s,req 5,435cm 0 fyd 4,35 Predznak minus jer je sila prednapinjanja tlačna. Ako je krajnje naprezanje tlačno nije potrebna dodatna armatura. Zbog utjecaja uzdužne tlačne sile ne javljaju se vlačna naprezanja na gornjem rubu presjeka, te prema ovom dokazu nije potrebna armatura na gornjem rubu Auditorne vježbe

22 GSN provjera na poprečne sile DOKAZ NOSIVOSTI NA POPREČNE SILE Proračunska vrijednost djelujuće poprečne sile uz uzimanje u obzir nagnutog vođenja natega za prednapinjanje: VEd VEd,0 VPd V Ed,0 =osnovna proračunska vrijednost poprečne sile na presjeku: VEd,0 1,35 Vgk1 Vgk2 Vgk3 1,5 Vq VQ VEd,0 1,35 319, ,5 141,5 222, ,83 kn V Pd =komponenta poprečne sile nagnute natege (os ležaja->x=0): VPd 58,37 157,38 200,18 415,93 kn Proračunska vrijednost sile: VEd 1282,83 415,93 866,90 kn Proračunska nosivost na poprečnu silu elementa bez poprečne 1/3 armature: V (C k (100 f ) 0,15 ) b d C 0,18 / 0,12 Rd,c Rd,c 1 ck cp w k / d(mm) / ,38 2,0 k 1,37 As 12,57 1 0, ,02 b d Rd,c cp w c N 1888, , , ,408 kn / cm 4,08 N / mm i A 13850, c p,i Auditorne vježbe

23 GSN provjera na poprečne sile DOKAZ NOSIVOSTI NA POPREČNE SILE Provjeravamo da li je potrebna poprečna armatura: 1/3 V (0,12 1,37 (100 0, ) 0,15 4,08) / ,71 kn V POTREBNA! Rd,c Najmanja potrebna poprečna armatura Asw,min w sw bw sin Min. koeficijent armiranja za beton C50/60 w 0,0013 Dozvoljeni razmaci vilica kod prednapetih mostova: s w,min =10, s w,max =25 cm Odabiremo vertikalne spone α=90 ->sin(α)=1 Najmanja potrebna poprečna armatura: sw,min 2 Nosivost armature na poprečne sile: Nagib tlačnih štapova: A s w 0, ,0702 7,02 cm / m' 1,0 ctg ctg 2 2,5 A VRd,s fywd z ctg s Ne preporuča se strmiji nagib jer se na taj način smanjuje duljina sidrenja i iskoristivost tlačnih štapova. sw w Ed Auditorne vježbe

24 GSN provjera na poprečne sile DOKAZ NOSIVOSTI NA POPREČNE SILE Potrebna poprečna armatura iz uvjeta V Rd,s =V Ed : Asw VEd VEd s f z ctg f 0,9 dctg w ywd ywd Asw 866,90 2 A 7,96 cm / m' s 43,5 0,9 1,39 2 s w Odabiremo vilice Ф10, reznost m=2 (dvorezne) Poprečna armatura na ležaju Ф10 (m=2) / 18cm ->a swyd =8,72 cm 2 /m' Poprečna armatura u polju Ф 10 (m=2) / 25cm ->a swyd =6.28 cm 2 /m' Dokaz čvrstoće tlačnih štapova betona: V Rd,max f bw z ctg tan 1 cd cw Ako je promjer zaštitne cijevi natege O.D. veći od 1/8 širine hrpta potrebno je reducirati nosivost poprečnog presjeka. sw,min fck ,6 1 0,6 1 0, w Auditorne vježbe

25 GSN provjera na poprečne sile DOKAZ NOSIVOSTI NA POPREČNE SILE Ako je promjer zaštitne cijevi natege O.D. veći od 1/8 širine hrpta potrebno je reducirati nosivost poprečnog presjeka, i to: b b 0,5 0,54 0,5 0,08 0,50 m w,nom w cijev cp Za cp 4,08 MPa 0,25 fcd 8,33 MPa cw 1 1,14 f 0, ,5 0,9 1,39 1,14 VRd,max 4559,08 kn V 2 0,5 cd Ed Auditorne vježbe

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

PRORAČUN GLAVNOG KROVNOG NOSAČA

PRORAČUN GLAVNOG KROVNOG NOSAČA PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 017. Ime i prezime 50 60 (h) 16 (h0) () () 600 (B) 600 (B) 500 () 500 () SDRŽJ 1. Tehnički opis.... Proračun ploče POZ 01-01... 3.1. naliza opterećenja ploče POZ 01-01...

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

7. Proračun nosača naprezanih poprečnim silama

7. Proračun nosača naprezanih poprečnim silama 5. ožujka 2018. 7. Proračun nosača naprezanih poprečnim silama Primjer sloma zbog djelovanja poprečne sile SLIKA 1. T- nosač slomljen djelovanjem poprečne sile Do sloma armirano-betonske grede uslijed

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBG 4. STTIČKI PRORČUN STUBIŠT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 9 6 5 5 SVEUČILIŠTE U ZGREBU JBG 4. Statiči proračun stubišta 4.. Stubišni ra 4... naliza opterećenja 5 5 4 6 8 0 Slia 4..

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Materijal: Beton: C25/30 C f ck /f ck,cube valjak/kocka f ck 25 N/mm 2 karakteristična tlačna čvrstoća fcd proračunska tlačna

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN

GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit Modul za konstrukcije 16.06.009. NOVI NASTAVNI PLAN p 1 8 /m p 1 8 /m 1-1 POS 3 POS S1 40/d? POS 1 d p 16 cm 0/60 d? p 8 /m POS 5 POS d p 16 cm 0/60 3.0 m

Διαβάστε περισσότερα

Betonske konstrukcije

Betonske konstrukcije SEUČILIŠTE U SPLITU FAKULTET GRAĐEINARSTA, ARHITEKTURE I GEODEZIJE Betonske konstrukcije Završni rad Antonia Pleština Split, 06 SEUČILIŠTE U SPLITU FAKULTET GRAĐEINARSTA,ARHITEKTURE I GEODEZIJE PROJEKT

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 1 -

Betonske konstrukcije 1 - vežbe 1 - Betonske konstrukcije 1 - vežbe 1 - Savijanje pravougaoni presek Sadržaj vežbi: Osnove proračuna Primer 1 vezano dimenzionisanje Primer 2 slobodno dimenzionisanje 1 SLOŽENO savijanje ε cu2 =3.5ä β2x G

Διαβάστε περισσότερα

GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ

GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ 1 FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA... 2 1.1 Beton... 2 1.1.1 Računska čvrstoća betona... 6 1.1.2 Višeosno stanje naprezanja... 6 1.1.3 Razred

Διαβάστε περισσότερα

2η Εφαρμογή. 45kN / m και το κινητό της φορτίο είναι qk. 40kN / m.

2η Εφαρμογή. 45kN / m και το κινητό της φορτίο είναι qk. 40kN / m. Κεφάλαιο ο ΔΟΚΟΙ η Εφαρμογή Δίδεται συνεχής δοκός δύο ίσων ανοιγμάτων. Η διατομή της δοκού είναι αμφίπλευρη πλακοδοκός, όπως φαίνεται στο κατωτέρω σχήμα. Οι ποιότητες των υλικών είναι: Χάλυβας B500c και

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Osijek, 14. rujna 2017. Marijan Mikec SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Izrada projektno-tehničke dokumentacije armiranobetonske

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

Metalne konstrukcije I Proračun otpornosti elementa s nesimetričnim poprečnim presjekom klase 4 izloženog savijanju i tlačnoj sili

Metalne konstrukcije I Proračun otpornosti elementa s nesimetričnim poprečnim presjekom klase 4 izloženog savijanju i tlačnoj sili Sadržaj 1. Uvod... 1 2. Potrebni dokazi nosivosti za elemente izložene tlaku i savijanju prema EN 1993 za poprečne presjeke klase 4... 2 2.1. Klasifikacija poprečnog presjeka... 2 2.2 Djelotvorna širina

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD Osijek, 15. rujan 2017. Ivan Kovačević SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

1 Ulazni parametri programa Tutorial programa Primjeri riješeni programom... 58

1 Ulazni parametri programa Tutorial programa Primjeri riješeni programom... 58 SADRŽAJ: 1 Ulazni parametri programa... 1 1.1. Dimenzioniranje prema HRN EN 1992-1-1... 1 1.1.1. Dimenzioniranje pravokutnog presjeka na čisto savijanje... 1 1.1.2. Dvostruko armirani presjek opterećen

Διαβάστε περισσότερα

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

METALNE KONSTRUKCIJE I

METALNE KONSTRUKCIJE I METALE KOSTRUKCIJE I MOTAŽI ASTAVCI mr.sc. Jurko Zovkić ZADATAK : obraditi problematiku konstruiranja, proračuna, i izrade montažnih nastavaka čeličnih konstrukcijskih elemenata obuhvatiti primjere najčešće

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek 25. rujan 2015. Siniša Ivković SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK

Διαβάστε περισσότερα

Prethodno napregnute konstrukcije

Prethodno napregnute konstrukcije Prethodno napregnute konstrukcije Predavanje VI 2017/2018 Prof. dr Radmila Sinđić-Grebović Dimenzionisanje prethodno napregnutih konstrukcija II Proračun prema graničnim stanjima nosivosti 2 Dijagram:

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE

FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE SVUČILIŠT U SPLITU FKULTT GRĐVINRSTV, RHITKTUR I GODZIJ ZVRŠNI RD arin Barišić Split, 03. SVUČILIŠT U SPLITU FKULTT GRĐVINRSTV, RHITKTUR I GODZIJ PRORČUN KOPOZITNOG NOSČ ZVRŠNI RD Split, 03. SVUČILIŠT

Διαβάστε περισσότερα

ZIDANE KONSTRUKCIJE STRUČNI STUDIJ GRAĐEVINARSTVA

ZIDANE KONSTRUKCIJE STRUČNI STUDIJ GRAĐEVINARSTVA SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE BRANIMIR PAVIĆ ZIDANE KONSTRUKCIJE STRUČNI STUDIJ GRAĐEVINARSTVA ZAVRŠNI RAD PRORAČUN NOSIVE KONSTRUKCIJE ZIDANE GRAĐEVINE SPLIT, 2017.

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

εν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c

εν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c Χ. Κααγιάννης, Πολιτικός Μηχ. ΕΜΠ,. Μηχ. ΚΑΘΗΓΗΤΗΣ Κατασκευών Ωπλισµένου Σκυοδέµατος και Αντισεισµικού Σχεδιασµού ΠΡΟΕ ΡΟΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΘ Συνοπτική Παουσίαση Σχεδιασµού έναντι ιάτµησης

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA 1 PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - "T" PRESEK Na skici dole su prikazane sve potrene geometrijske veličine, dijagrami dilatacija i napona,

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2

BETONSKE KONSTRUKCIJE 2 BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

11 NAPREZANJA OD POPREČNE SILE

11 NAPREZANJA OD POPREČNE SILE 11 NAPREZANJA OD POPREČNE SILE 11.1 Uvod U poglavlju o ponašanju PB nosača pod rastućim opterećenjem razmotrili smo i djelovanje poprečne sile. Prisjetimo se da smo utvrdili kako pod djelovanjem poprečne

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

STATIČKI ODREĐENI SUSTAVI

STATIČKI ODREĐENI SUSTAVI STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Građevinski fakultet Modul konstrukcije pismeni ispit 22. jun 2015.

Građevinski fakultet Modul konstrukcije pismeni ispit 22. jun 2015. Univerzitet u Beogradu Prethodno napregnuti beton Građevinski fakultet grupa A Modul konstrukcije pismeni ispit 22. jun 2015. 0. Pročitati uputstvo na kraju teksta 1. Projektovati prema dopuštenim naponima

Διαβάστε περισσότερα

ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων Καθηγητής Γιάννακας Νικόλαος Δρ. Πολιτικός Μηχανικός

ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων Καθηγητής Γιάννακας Νικόλαος Δρ. Πολιτικός Μηχανικός ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Διδάσκων Καθηγητής Γιάννακας Νικόλαος Δρ. Πολιτικός Μηχανικός Κεφαλαιο 1 Παθολογια και τεκμηριωση Στατική συμπεριφορά Στατική συμπεριφορά Στατική συμπεριφορά Στατική

Διαβάστε περισσότερα

Tablice za dimenzioniranje armiranobetonskih presjeka

Tablice za dimenzioniranje armiranobetonskih presjeka UDK 64.043+64.01.45:69.009.18 Primljeno 1. 3. 010. Tablie za dimenzioniranje armiranobetonskih presjeka Tomislav Kišiček, Zorislav Sorić, Josip Galić Ključne riječi armiranobetonski presjek, razred betona,

Διαβάστε περισσότερα

NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA

NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA Zavareni spojevi - I. dio 1 ZAVARENI SPOJEVI Nerastavljivi spojevi Upotrebljavaju se prije svega za spajanje nosivih mehatroničkih dijelova i konstrukcija 2 ŠTO

Διαβάστε περισσότερα

3. REBRASTI GREDNI MOSTOVI

3. REBRASTI GREDNI MOSTOVI Građevinski fakultet Sveučilišta u Zagrebu predmet: MASIVNI MOSTOVI Skripte uz predavanja 3. REBRASTI GREDNI MOSTOVI SADRŽAJ: 3. REBRASTI GREDNI MOSTOVI... 0 3.1. OPĆENITO... 1 3.2. PRORAČUN PLOČE KOLNIKA

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου

Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου Υποστύλωμα διαστάσεων 0.50*0.50m θεμελιώνεται σε πλάκα γενικής κοιτόστρωσης πάχους h=0.70m. Η πλάκα είναι οπλισμένη με διπλή

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Q (promjenjivo) P (stalno) c uk=50 (kn/m ) =17 (kn/m ) =20 (kn/m ) 2k=0 (kn/m ) N 60=21 d=0.9 (m)

Q (promjenjivo) P (stalno) c uk=50 (kn/m ) =17 (kn/m ) =20 (kn/m ) 2k=0 (kn/m ) N 60=21 d=0.9 (m) L = L 14.1. ZADATAK Zadan je pilot kružnog poprečnog presjeka, postavljen kroz dva sloja tla. Svojstva tla i dimenzije pilota su zadane na skici. a) Odrediti graničnu nosivost pilota u vertikalnom smjeru.

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Krute veze sa čeonom pločom

Krute veze sa čeonom pločom Krute veze sa čeonom pločom Metalne konstrukcije 2 P6-1 Polje primene krutih veza sa čeonom pločom Najčešće se koriste za : Veze greda sa stubovima kod okvirnih nosača; Montažne nastavke nosača; Kontinuiranje

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09 Prof. dr. sc. Vedrana Koulić EHNČK EHNK Predavanja kad. god. 008/09 OPORNOS ERJL Otpornost materijala je grana tehničke mehanike koja proučava probleme čvrstoće, krutosti i stabilnosti pojedinih dijelova

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD TONI BLAGAIĆ

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD TONI BLAGAIĆ SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVIARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠI RAD TOI BLAGAIĆ Split, 05. SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVIARSTVA, ARHITEKTURE I GEODEZIJE TOI BLAGAIĆ Proračun čelične

Διαβάστε περισσότερα

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM Autor: Ivan Volarić, struč. spec. ing. aedif. Zagreb, Siječanj 2017. TEHNIČKI OPIS KONSTRUKCIJE OPIS PROJEKTNOG ZADATKA Projektni zadatak prema kojem je

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

BUŠENJE I Fo F r o m r ul u e l

BUŠENJE I Fo F r o m r ul u e l BUŠENJE I Formule Površina prstenastog presjeka NIZ BUŠAĆIH ALATKI A = π (D 2 4 d 2 ) A površina prstenastog presjeka (m 2 ) D vanjski promjer prstenastog presjeka (m) d unutarnji promjer prstenastog presjeka

Διαβάστε περισσότερα

4. ANALIZA OPTEREĆENJA

4. ANALIZA OPTEREĆENJA 4. 11 4.1. OPĆENITO Opterećenja na građevinu međusobno se razlikuju s obzirom na niz gledišta usmjerenih na svojstva njihovih djelovanja i očitovanja tih djelovanja na konstrukciju. S obzirom na uobičajenu

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα