Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα"

Transcript

1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής

2 Περίληψη Ευστάθεια Συστημάτων Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας Ενέργεια και Ισχύς Σήματος ΠεριοδικάΣήματαΣυνεχούςΧρόνου Ασκήσεις

3 Ευστάθεια Συστημάτων Ηέννοιατηςευστάθειαςενόςσυστήματοςείναικεντρικήςσημασίαςστη Θεωρία Συστημάτων. Στην ουσία, η απαίτησή μας για ευστάθεια ενός συστήματος ταυτίζεται με την απαίτηση, τα εμπλεκόμενα σήματα να παραμένουν πεπερασμένα σε πλάτος. Υπάρχουν περισσότεροι του ενός ορισμοί της ευστάθειας. Στο παρόν κεφάλαιο θα ορίσουμε την λεγόμενη ευστάθεια φραγμένης εισόδου φραγμένης εξόδου (ΦΕΦΕ) (bounded input bounded output (BIBO)).

4 x(t) h(t) y(t) Ικανή και αναγκαία συνθήκη Δηλαδή, η κρουστική του απόκριση να είναι απόλυτα ολοκληρώσιμη.

5 Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας Έστω ένα ΓΧΑ σύστημα με κρουστική απόκριση h(t). Το ζητούμενο στο παρόν εδάφιο είναι ο υπολογισμός του σήματος εξόδου όταν η είσοδος του συστήματος είναι το μιγαδικό εκθετικό σήμα απλής συχνότητας: xt () = j 0t Ae Ω Ηέξοδοςδίνεταιαπότην () = ( ) ( ) y t h τ x t τ dτ = Α = Α ( τ ) ( τ ) ( t τ ) jω0 h e d jω t j τ 0 Ω0τ e h e d τ

6 Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας ή j 0 ( ) = ( Ω ) y t AH e Ω 0 t όπου H(Ω 0 ) η ανεξάρτητη του χρόνου (μιγαδική) ποσότητα jω0 ( ) ( τ ) H h e τ dτ Ω0 (1.46) Με άλλα λόγια, το σήμα στην έξοδο είναι το περιοδικό σήμα διαφορετικό πλάτος και φάση. Πράγματι η μιγαδική ποσότητα Η(Ω 0 ) γράφεται ως ( Ω ) = ( Ω ) ( ) j H 0 H 0 e ϕ Ω 0 j 0t e Ω αλλά με όπου Η(Ω 0 ) το μέτρο και φ(ω 0 ) η φάση, που εξαρτώνται προφανώς από τη συχνότητα Ω 0 του σήματος εισόδου. Άρα () = ( Ω ) y t A H e 0 ( ) j Ω t+ ϕ Ω 0 0 (1.47)

7 Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας Το πλάτος, δηλαδή, της εξόδου είναι Α Η(Ω 0 ) και η φάση του είναι μετατοπισμένη κατά φ(ω 0 ) σε σχέση μ αυτή του σήματος εισόδου. Όπως θα δούμε στο επόμενο κεφάλαιο, ηη(ω 0 ) δεν είναι τίποτε άλλο από ένα μαθηματικό μετασχηματισμό (που δρα πάνω στη συνάρτηση h(t) και δίνει μία άλλη συνάρτηση Η(Ω 0 ) ) υπολογισμένο στην τιμή Ω=Ω 0. y t = A H Ω e () ( ) 0 ( ) j Ω t+ ϕ Ω 0 0

8 Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας Η ιδιαιτερότητα αυτή των ΓΧΑ συστημάτων καθιστά τα μαθηματικά εργαλεία που θ αναπτύξουμε στα επόμενα κεφάλαια ιδιαίτερα εύχρηστα για μελέτη τέτοιων συστημάτων. Συγκεκριμένα, θα μελετήσουμε τρόπους περιγραφής ενός σήματος ως υπέρθεση σημάτων απλών συχνοτήτων. Έτσι η έξοδος του ΓΧΑ συστήματος θα είναι η υπέρθεση των ίδιων αυτών σημάτων, έχοντας βέβαια υποστεί την αλλαγή που επιβάλει το σύστημα στο πλάτος και φάση του κάθε σήματος χωριστά, ανάλογα με τη συχνότητά του.

9 Ενέργεια και Ισχύς Σήματος Υποθέτουμε ότι υ(t) είναι η τάση στα άκρα μίας αντίστασης, η οποία έχει τιμή R=1Ω. Είναι γνωστό ότι η στιγμιαία ισχύς Ρ(t) που καταναλώνεται στην (ωμική) αντίσταση R είναι: ( t) υ P() t t P t R = = υ = t () () υ (), αφού R=1Ω. Ητάσηυ(t) στα άκρα της αντίστασης αυτής είναι, γενικά, χρονικά μεταβαλλόμενη, δηλαδή είναι ένα σήμα συνεχούς χρόνου x(t). Με βάση την περίπτωση αυτή, ορίζεται η στιγμιαία ισχύς P x (t) του σήματος x(t) από τη σχέση: () = () = () () = () P t x t x t P t x t

10 Ενέργεια και Ισχύς Σήματος Θεωρούμε ότι το σήμα εισόδου είναι ένα περιοδικό σήμα με περίοδο Τ. Η ενέργεια του σήματος στο χρονικό διάστημα Ε τ = () x t dt t είναι: Ex, 1 καιημέσηισχύςστοίδιοδιάστημαείναι: P = P x() t dt = Σε γενικευμένη μορφή έχουμε: Η ολική ενέργεια του σήματος είναι: E = lim x() t dt 1 και η αντίστοιχη μέση ισχύς: P = lim x() t dt

11 Ενέργεια και Ισχύς Σήματος Αν η ολική ενέργεια Ε του σήματος είναι πεπερασμένη και μη μηδενική, τότε το σήμα αυτό είναι ένα ενεργειακό σήμα. Αν η μέση ισχύς P του σήματος είναι πεπερασμένη και μη μηδενική, τότε το σήμα αυτό είναι ένα σήμα ισχύος. Σημειώνουμε εδώ ότι ένα σήμα ισχύος έχει άπειρη ενέργεια, ενώ ένα ενεργειακό σήμα έχει μηδενική ισχύ.

12 Ενέργεια και Ισχύς Σήματος Σύμφωνα με τα παραπάνω, για να διαπιστώσουμε αν ένα σήμα είναι ενεργειακό ή είναι σήμα ισχύος, ακολουθούμε την παρακάτω διαδικασία: I. Υπολογίζουμε το ολοκλήρωμα: II. Υπολογίζουμε το όριο: lim () x t () x t dt dt Αν το όριο αυτό υπάρχει, είναι πεπερασμένο και διάφορο του μηδενός, τότε το σήμα x(t) είναι ενεργειακό. Αν το όριο αυτό δεν υπάρχει ή είναι ίσο με +, τότε:

13 Ενέργεια και Ισχύς Σήματος III. Υπολογίζουμε το όριο: lim 1 () x t dt Αν το όριο αυτό υπάρχει, είναι πεπερασμένο και διάφορο του μηδενός, τότε το σήμα x(t) είναι σήμα ισχύος. Φυσικά, αν δεν ισχύει τίποτα από τα παραπάνω, το σήμα x(t) δεν είναι σήμα ενέργειας, αλλά ούτε σήμα ισχύος.

14 ΠεριοδικάΣήματαΣυνεχούςΧρόνου Ένασήμασυνεχούςχρόνουx(t) θα ονομάζεται περιοδικό, όταν υπάρχει σταθερή Τ τέτοια ώστε για κάθε t να ισχύει: x(t+)=x(t) (1) Ο ελάχιστος θετικός αριθμός Τ για τον οποίο ισχύει η σχέση αυτή ονομάζεται περίοδος του περιοδικού σήματος x(t). Η γραφική παράσταση του περιοδικού σήματος x(t) περιόδου Τ, αποτελείται από τμήματα τα οποία επαναλαμβάνονται ανά χρονικά διαστήματα Τ. X(t) t

15 ΠεριοδικάΣήματαΣυνεχούςΧρόνου Παράδειγμα: Το σήμα x(t) =Α cos(ωt+φ), όπου Α, ω, φ είναι σταθερές, είναι περιοδικό με περίοδο: π ω = () Πράγματι είναι: x(t+) = Acos[ω(t+)+φ] = Αcos(ωt+ωΤ+φ) και επειδή σύμφωνα με τη σχέση () είναι ωτ=π, παίρνουμε: x(t+) = Αcos(ωt+π+φ) = Αcos(ωt+φ+π) = Αcos(ωt+φ) => x(t+) = x(t) αφού ισχύει: cos(α+π) = cosα

16 Ασκήσεις

17 Άσκηση 1 Να σχεδιαστεί η βασική περίοδος για καθένα από τα παρακάτω περιοδικά j0.5πt α) x t = e σήματα: 1 ( ) β) x () t = cos( 0.πt) γ ) x () t = cos( 0.1πt) + sin ( 0.πt) Λύση: () 3 π j t 8 α) Είναι x1 t = e άρα η βασική του περίοδος είναι Τ=8 π β) Η βασική περίοδος του x () t = cos( 0.πt) = cos t είναι Τ= π γ) Η βασική περίοδος του cos( 0.1πt ) είναι 0 ενώ 0.1π = π αυτή του sin( 0.πt ) είναι 10 0.π = Επειδή το 0 είναι ακέραιο πολλαπλάσιο το 10, είναι και περίοδος του sin(0.πt). Άρα, η βασική περίοδος του x 3 (t) είναι 0.

18 Άσκηση Θεωρήστε ένα χρονικά αμετάβλητο σύστημα F( ) με είσοδο x(t) και έξοδο y(t). Δείξτε ότι εάν το x(t) είναι περιοδικό με περίοδο Τ, το ίδιο ισχύει και για το y(t). Δώστε ένα παράδειγμα γραμμικού χρονικά μεταβαλλόμενου συστήματος και μιας περιοδικής εισόδου στο σύστημα αυτό για την οποία η αντίστοιχη έξοδος δεν είναι περιοδική. Λύση: Έχουμε y(t)=f[x(t)]. Εφόσον το σύστημα είναι χρονικά αμετάβλητο, θα ισχύει και y(t+)=f[x(t+)]. Λόγω περιοδικότητας του x(t) με περίοδο Τ, x(t+)=x(t). Επομένως ( + ) = ( + ) = ( ) = ( ) y t F x t F x t y t Που σημαίνει ότι και έξοδος y(t) είναι περιοδική με περίοδο Τ.

19 Άσκηση (συνέχεια) Για να δούμε ότι το παραπάνω δεν ισχύει, γενικά, για χρονικά μεταβαλλόμενα συστήματα, ας θεωρήσουμε το σύστημα y(t) = G[x(t)] x(t ), που είναι γραμμικό και χρονικά μεταβαλλόμενο. Έστω η είσοδος x(t)=cos(πt), που είναι περιοδική με περίοδο Τ=1. Είναισαφέςότιηέξοδος y() t = cos ( πt ) δεν είναι περιοδική αφού δεν υπάρχει αριθμός Τ τέτοιος ώστε ( ) cos πt = cos π( t+ ) = cos πt + π( t + ) Κάτι τέτοιο θα απαιτούσε η ποσότητα Τ t+ να είναι ακέραιος για κάθε t.

20 Άσκηση 3 Να εξετάσετε αν καθένα από τα παρακάτω σήματα είναι περιοδικό ή απεριοδικό. Στην περίπτωση που είναι περιοδικό να βρεθεί η περίοδος Τ. (i) cos ωt (ii) e -t sint (iii) 3sint+cos6t

21 Άσκηση 3 (i) cos ωt Λύση Το σήμα αυτό, σύμφωνα με τον γνωστό τριγωνομετρικό τύπο 1+ cosϕ cos ϕ = γράφεται: ( ωt) 1+ cos 1 x() t = cos ωt = x() t = [ 1+ cos( ωt) ] () 1 Για να είναι το σήμα αυτό περιοδικό πρέπει να υπάρχει θετικός αριθμός Τ έτσι ώστε να ισχύει για κάθε t: 1 ( ) ( ) { ( ) } 1 x t+ = x t 1+ cos ω t+ = [ 1+ cos( ωt) ] cos( ωt+ ω) = cos( ωt) nπ Η σχέση αυτή ισχύει όταν: ω = nπ = ω όπου n=1,,3, αφού είναι Τ>0. Η ελάχιστη τιμή του Τ που προκύπτει για n=1 και είναι Τ=π/ω. Άρα το σήμα είναι περιοδικό με περίοδο Τ=π/ω.

22 (ii) e -t sint Άσκηση 3 Λύση Ελέγχουμε αν υπάρχει Τ>0 έτσι ώστε να ισχύει για κάθε t: x( t + ) = e e t e x( t) e sin(t + ) ( t+ ) = e sin(t + ) = sin t sin ( t t sin t + ) = e t sin t Ησχέσηαυτή, δενμπορείναισχύειγιακάθεt, οποιαδήποτε και αν είναι η τιμή της θετικής σταθερής Τ. t xt () = e sin t Άρα το σήμα: είναι απεριοδικό.

23 Άσκηση 3 (iii) 3sint+cos6t Λύση Ελέγχουμε αν υπάρχει θετική σταθερή Τ, έτσι ώστε να ισχύει: ( + ) = ( ) ( ) ( ) ( ) xt xt 3sin t+ + cos6 t+ = 3sint+ cos6t 3sin(t+ ) + cos 6t+ 6 = 3sin t+ cos 6t Ένας τρόπος να ισχύει αυτή για κάθε t είναι να ισχύουν συγχρόνως οι σχέσεις: = n π, 6 = m π Τ= nπ, Τ= { } mπ 3 όπου n, m είναι θετικοί ακέραιοι. Η ελάχιστη τιμή του Τ προκύπτει για τις μικρότερες τιμές των n, m για τις οποίες οι σχέσεις αυτές ισχύουν συγχρόνως. Αυτό ισχύει για n=1, m=3 οπότε Τ=π. Άρα το σήμα είναι περιοδικό με περίοδο ίση με π.

24 Άσκηση 4 Για καθένα από τα παρακάτω σήματα να εξετασθεί αν πρόκειται για σήμα ισχύος ή για σήμα ενέργειας: ( i) x( t) = Acos( ωt) ( ii) x( t) = Aexp( λ t ) ( iii) x( t) 0, t < 0 = λt Ae, t > 0 όπου Α, ω, λ είναι θετικές σταθερές.

25 ( i) x( t) = Acos( ωt) Άσκηση 4 Λύση (i) Υπολογίζουμε το ολοκλήρωμα: () cos ( ω ) cos ( ω ) E = x t dt = A t dt = A t dt f t cos Παρατηρούμε εδώ, ότι η ολοκληρωτέα συνάρτηση ( ) είναι άρτια, αφού, προφανώς, είναι f ( t) = f ( t) και ότι τα άκρα ολοκλήρωσης είναι αντίθετα. = ωt Άρα έχουμε: 0 ( ω ) E = A cos t dt (1)

26 Με βάση τη γνωστή τριγωνομετρική σχέση ϕ = ( + ϕ) η προηγούμενη σχέση (1) δίνει: ( ωt) ( ω) cos 1 cos 1+ cos A t = E 1 cos( ) sin( ) = A dt = A ωt dt A t ωt + = + ω 0 0 t = 0 E ( i) x( t) Acos( ωt) A A = + sin ω Άσκηση 4 (συνέχεια) = Λύση () Είναι όμως γνωστό ότι δεν υπάρχουν τα όρια των τριγωνομετρικών συναρτήσεων sinx, cosx για x +. ΆραδενυπάρχειτοόριοτηςΕ Τ για Τ +. Άρα το σήμα αυτό δεν μπορεί να είναι σήμα ενέργειας.

27 ( i) x( t) Acos( ωt) Θεωρούμε το όριο: Άσκηση 4(συνέχεια) = Λύση 1 1 A A A A lim E = lim sin ( ) lim sin ( ) + ω ω ω = + ω = A A sin ( ω ) = + lim ω Όμως ισχύει: ( ω) 1 sin ( ω) sin lim = 0 αφού για + το 1 0. Άρατελικάείναι: lim 1 E A A = S = και, επομένως, το σήμα x(t) είναι σήμα ισχύος.

28 ( ii) x( t) = Aexp( λ t ) Άσκηση 4 (ii) Λύση (ii) Έχουμε: λt λt () E = x t dt = A e dt = A e dt αφού είναι expu=e u. Όμως στο τελευταίο ολοκλήρωμα η ολοκληρωτέα συνάρτηση είναι άρτια και τα άκρα ολοκλήρωσης είναι αντίθετα. Άρα έχουμε: λ t λt A λt A λt E = A e dt = A e dt = e d( λt) = e λ λ 0 E A = λ λτ ( 1 e ) Επειδή είναι λ>0, για + έχουμε e λ 0. Άρα είναι: A λτ A A lim E = lim ( 1 e ) = ( 1 0) lim E = λ λ λ Άρα το σήμα αυτό είναι ενεργειακό.

29 ( iii) x( t) 0, t < 0 = λt Ae, t > 0 Άσκηση 4 (iii) Λύση (iii) Έχουμε: 0 λt λt () E = x t dt = 0 dt+ Ae dt = A e dt λ ( 1 e ) ( λ ) 0 0 λt A λt E = A e d t = e λ 0 E 0 A = λ Επειδή είναι λ>0, για + έχουμε e λ 0. Άρα : lim E = A λ Άρα το σήμα αυτό είναι προφανώς ενεργειακό.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/14 Πρόβλημα 1 (βιβλίο σελίδα 27) Να υπολογιστεί η βασική

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 3: Εισαγωγή στα Συστήματα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Συστήματα 1. Ορισμός και Κατηγορίες Συστημάτων Συστήματα Συνεχούς Χρόνου Συστήματα Διακριτού

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής . Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος 2 Γραφικός

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει. Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 1: Σήματα και Συστήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μέρος 1: Σήματα Συνεχούς Χρόνου 2 Σήματα Συνεχούς Χρόνου 1. Κατηγορίες Σημάτων

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6 ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Διάλεξη 6 5 Σεπτεμβρίου, 0 Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα θέματά μας σήμερα Χρονικά

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σήματα και Συστήματα Το εκπαιδευτικό υλικό που παρουσιάζεται βασίζεται

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 6: Απόκριση Συχνότητας Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Η έννοια της Απόκρισης Συχνότητας Ιδιότητες της Απόκρισης

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Η Κρουστική Απόκριση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ . ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 1: Σήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Σήματα Διακριτού Χρόνου Εισαγωγή Διαφορές Αναλογικής Ψηφιακής Επεξεργασίας Παραγωγή Ψηφιακών

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 2: Ανάλυση Fourier και Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μέρος 1: Ανάλυση Fourier 2 Ανάλυση Fourier 1. Ορισμός του Μετασχηματισμού Fourier

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

Μάθημα: Θεωρία Δικτύων

Μάθημα: Θεωρία Δικτύων Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #3 Ιδιάζοντα σήματα Βασικές κατηγορίες συστημάτων Διασυνδέσεις συστημάτων Ιδιάζοντα σήματα (singular signals) Τα ιδιάζοντα σήματα είναι σήματα τα οποία είναι ιδεατά

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Συστήματα Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας Συστήματα Επικοινωνιών Ι Τηλεπικοινωνιακά Σήματα και Συστήματα + Περιεχόμενα 2 n Εισαγωγή n Εφαρμογές συστημάτων επικοινωνίας n Μοντέλο τηλεπικοινωνιακού συστήματος n Σήματα

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =

Διαβάστε περισσότερα

Δομή της παρουσίασης

Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη η Τα Σήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.

Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Παραδείγµατα: Σήµα οµιλίας Πίεση P() Σήµα εικόνας y I

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε

Διαβάστε περισσότερα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα

Διαβάστε περισσότερα

x[n] = x a (nt s ), n Z (11.1)

x[n] = x a (nt s ), n Z (11.1) Κεφάλαιο 11 Σήματα και Συστήματα Διακριτού Χρόνου Ως τώρα, τα σήματα που μελετήσαμε ήταν ολα συνεχούς χρόνου. Σε αυτό το κεφάλαιο, ξεκινάμε τη μελέτη μας σχετικά με την επεξεργασία σημάτων διακριτού χρόνου

Διαβάστε περισσότερα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα 3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 1: Εισαγωγή. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 1: Εισαγωγή. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 1: Εισαγωγή Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Καθηγητής Τσιριγώτης Γεώργιος

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Καθηγητής Τσιριγώτης Γεώργιος ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Καθηγητής Τσιριγώτης Γεώργιος Τα κεφάλαια του μαθήματος 1 ο κεφάλαιο: Σήματα & Συστήματα 2 ο κεφάλαιο: Ανάλυση Fourier 3 ο κεφάλαιο: Απόκριση κατά συχνότητα 4 ο κεφάλαιο: Δειγματοληψία

Διαβάστε περισσότερα

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Σειρές Fourier. Σειρές Fourier. Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Μία συνάρτηση f() είναι περιοδική με περίοδο όταν ισχύει f(+)=f(). Η ελάχιστη δυνατή περίοδος λέγεται και θεμελιώδης

Διαβάστε περισσότερα

Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ. xt A t A t A t t

Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ. xt A t A t A t t Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ Θεωρήστε ένα σήµα συνεχούς χρόνου το οποίο είναι άθροισµα συνηµιτονικών όρων της µορφής () = cos( ω + ϕ ) + cos

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Περιγραφή Σηµάτων Διακριτού Χρόνου Η Ακολουθία

Διαβάστε περισσότερα

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εκθετική Ορισμοί & Ιδιότητες Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης Δ. Δημογιαννόπουλος,

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών

Διαβάστε περισσότερα

ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ. 1. Το περιεχόμενο του μαύρου κουτιού. 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση. (απλά ηλεκτρικά στοιχεία)

ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ. 1. Το περιεχόμενο του μαύρου κουτιού. 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση. (απλά ηλεκτρικά στοιχεία) ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία) 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση 2019Κ1-1 ΚΥΜΑΤΟΜΟΡΦΕΣ 2019Κ1-2 ΤΙ

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Aνάλυση Σήματος 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο του Χρόνου Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

3. Κεφάλαιο Μετασχηματισμός Fourier

3. Κεφάλαιο Μετασχηματισμός Fourier 3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια

Διαβάστε περισσότερα

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα» Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν

Διαβάστε περισσότερα

Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα

Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου Εισαγωγή Τι είναι σήμα; Είναι μεταβολές ενός φυσικού μεγέθους που αναπαριστούν ή μεταφέρουν

Διαβάστε περισσότερα

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Να σχεδιάσετε το

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης Δυναμική Μηχανών I 5 5 Χρονική Απόκριση Συστημάτων 2 ης Τάξης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σήματα- συμβολισμοί. x(n)={x(n)}={,x(-1),x(0), x(1),.} x(n)={0,-2,-3, -1, 0, 1, 2, 3, 4,0 }

Σήματα- συμβολισμοί. x(n)={x(n)}={,x(-1),x(0), x(1),.} x(n)={0,-2,-3, -1, 0, 1, 2, 3, 4,0 } ΚΕΦΑΛΑΙΟ 2 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 1 1-1 -4-3 -2-1 1 2 3 4 5-1 1 2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-1),x(), x(1),. x()={,-2,-3,-1,, 1, 2, 3, 4, } x()={x()}={,x(-1),x(), x(1),.} x()={,-2,-3, -1,,

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Συναρτήσεις συσχέτισης/αυτοσυσχέτισης Φίλτρα Μετασχηματισμός Hilbert + Περιεχόμενα n Συνάρτηση αυτοσυσχέτισης n Συνάρτηση

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 7: Διαμόρφωση Γωνίας (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση γωνίας Ορισμοί Η έννοια της Στιγμιαίας Συχνότητας Διαμόρφωση Φάσης (Phase

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Αναπαράσταση Σημάτων και Συστημάτων στο πεδίο της συχνότητας + Περιεχόμενα n Εισαγωγή n Ανάλυση Fourier n Μετασχηματισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/60 Πληροφορίας

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/60 Πληροφορίας ΚΕΦΑΛΑΙΟ 2 /6 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 - -4-3 -2-2 3 4 5-2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-),x(), x(),. x()={,-2,-3,-,,, 2, 3, 4, } x()={x()}={,x(-),x(), x(),.} x()={,-2,-3, -,,, 2, 3, 4, } 2/6

Διαβάστε περισσότερα