ECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D
|
|
- Ευδοκία Δουμπιώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ANALIZA NUMERICA ECUATII NELINIARE PE R ( ECUATII NELINIARE PE R. INTRODUCERE e D R D R : s sstemul: ( x x x ) ( x x x ) D () Daca se cosdera aplcata : D R astel ca: ( x x x ) ( ( x x x ) ( x x x ) ( x x x )) () sstemul () poate scrs s sub orma ecuate vectorale: ( ) D (3) ude este elemetul ul al spatulu R. I cotuare se vor prezeta tre metode de aproxmare a solutlor ue ecuat elare pe R.. Metoda aproxmatlor succesve (Metoda de puct x) e ma ta sstemul de ecuat elare scrs sub orma: x ϕ ( x x x ) ( x x x ) D (4) ude ϕ : D R sut uct cotue pe D s astel ct petru orce puct ( x x x ) D sa avem ( ϕ ( x x x ) ϕ ( x x x ) ϕ ( x x x )) D sau sub orma vectorala: Φ( ) D (5) x x Φ ϕ ϕ.. ude s x ϕ I coormtate cu metoda aproxmatlor succesve plecd de la o valoare de porre () ( se geereaza srul ) ude: ( + ) ( +) Φ (6) Daca srul (6) este coverget adca metoda Φ este covergeta s D este lmta lu atuc este solute a ecuate (5). Itr-adevar trecd la lmta (6) s avd vedere cotutatea ucte Φ se obte: ( + ) lm Φ lm (7) adca Φ( ).
2 ANALIZA NUMERICA ECUATII NELINIARE PE R ( Rame de studat problema covergete metode Φ. I acest scop poate olosta teorema Pccard-Baach s aume: Daca Φ : R R verca codta de cotracte: Φ ( ) Φ( Y) α Y Y R (8) cu < α < atuc exsta u elemet uc R solute a ecuate (5) s care este lmta srulu (6) eroarea comsa aproxmarea d evaluata pr: α () (9) α Observat: () Dupa cum s-a vazut s cazul ecuatlor R o codte suceta petru ca o aplcate Φ cotua s cu dervate partale de ordul I cote pe u domeu D R sa e cotracte este ca Φ q < pe D ude pr orma lu Φ se telege orma matrce Jacoba: ϕ Φ x () De exemplu: ϕ Φ max max () x D () Metoda aproxmatlor succesve poate aplcata s cazul ecuatlor de orma (3) ude este o ucte deta s cotua tr-o vecatate a vectorulu solute. Itr-adevar ecuata (3) poate scrsa sub orma: + M ( ) () ude M este o matrce patratca de dmesu x esgulara. Notd: + M ( ) Φ( ) (3) ecuata (3) deve Φ() orma sub care poate aplcata metoda aproxmatlor succesve. Urmeaza sa determam matrcea M astel ct metoda Φ sa covearga. I acest scop olosm codta Φ q < s observata evdeta ca procesul teratv coverge cu att ma rapd cu ct Φ este ma mca. D (3) se obte: ( ) I + M ( ) Φ (4) Coorm celor de ma sus determam matrcea M astel ct petru valoarea de porre sa avem Φ. Obtem: de ude poteza Daca ( ) I + M (5) ( ) rezulta ca: ( ) M (6). se alege o alta valoare de porre
3 ANALIZA NUMERICA ECUATII NELINIARE PE R ( 3. Metoda Newto Se cosdera d ou ecuata (). e D o solute a aceste ecuat ar o aproxmate a lu. Notam pr eroarea de aproxmare a lu pr : + (7) Avem dec: ( ) p + p (8) Presupud ca ucta este dervabla tr-u domeu covex ce cote pe s membrul ta al relate (7) poate aproxmat pr prm do terme d dezvoltarea sere Taylor a ucte vecatatea puctulu adca: ( + ) + ( ) (9) Astel relata (7) se aproxmeaza pr relata: ( ) + ( ) () care scrsa sub orma dezvoltata e coduce la sstemul lar algebrc ecuoscutele compoetele scalare ale vectorulu corecte : ( p ) ( ( p ) ( p ) ( p ) ) ( p ) x x x ( x ( p x x x ) x ( p ) x ( p ) ) ( p ) ( x x x ) Itroducd otata: J( ) ( ) poteza ca matrcea J este esgulara se obte: ( ) ( ) J Se obte dec o valoare petru vectorul corecte ( p ) obtuta aplcd lu ( p+) corecta ( p ) () () (3) ( p+). Notd pr aproxmata sutem codus la metoda teratva: ( p+ ) ( ) ( ) p J (4) Rezulta usor pr trecerea la lmta (4) ca daca srul p este coverget s este lmta lu atuc este solute a ecuate cosderate. Prvd covergeta acestu sr avem urmatoarea teorema. 3
4 ANALIZA NUMERICA ECUATII NELINIARE PE R ( Teorema: e o aplcate cotua s cu dervabla pe u domeu D s S ( r) r { } D Daca sut deplta urmatoarele codt: (a) Exsta matrcea (b) M Atuc petru valoare de porre este solute a ecuate date s M J ( ) ( ) B / r (c) ( ) C S (d) η A B r R a.. s M A procesul teratv (4) este coverget vectorul: lm (5) p k k η B k (5) Drept crteru de covergeta a procedeulu teratv Newto se oloseste ua d urmatoarele codt sau amdoua: (a) δ ude: (b) δ x δ ( x ( k ) ( k ) ( k ) x ( k ) ( k ) ( k ) ( k ) x x ) / x ( k ) ( ) x > 4. Metoda paslor descedet (Metoda gradetulu) Sstemul () () este ormat d egalarea cu zero a uctlor elare ( x x x ) cotue s dervable domeul de dete. Se cosdera ucta: U ( ( x x x )) (6) Soluta sstemulu () este o solute a ecuate U(). De asemeea soluta ecuate U() auleaza uctle. I elul acesta problema rezolvar sstemulu () se reduce la determarea mmulu absolut al ucte U() spatul -dmesoal. e prma aproxmate a solute sstemulu. Pr se traseaza supraata de vel U U. Petru determarea urmatoare aproxmat (ma bua) a a ucte solute sstemulu se parcurge ormala la supraata ( ) U U pa se tersecteaza 4
5 ANALIZA NUMERICA ECUATII NELINIARE PE R ( ( ) U U ude se ala puctul de coordoate (). I cotuare pord de la puctul () de-a lugul ormale la supraata U U se auge puctul de coordoate s.a.m.d. (v. g. ). Deoarece () o alta supraata de vel de ecuate U () ( ) > U ( ) > > U ( ) ucte rezulta evdet aproperea de puctul care valoarea U este cea ma mca. M () M () O () M U( () ) U( () ) g. Metoda gradetulu Gradetul ucte U ( ) este: U U U U ( ) (7) D trughul OM M (g.) rezulta: () λ ( ) (8) Petru calculul actorulu λ se cosdera ucta scalara: Φ ( λ ) ( ( U λ )) (9) care exprma varata velulu ucte U de-a lugul ormale la supraata de vel puctul. actorul λ trebue ales astel ct ucta Φ ( λ ) sa e mma: Φ U ( λ ( )) (3) λ λ Cea ma mca solute poztva a aceste ecuat este λ. Petru rezolvarea ecuate se poate presupue ca actorul λ are o valoare relatv mca raport cu utatea s se pot egla puterle. Cum: ( ( )) ( λ ) λ s pr dezvoltarea sere Taylor a ucte se obte: T Φ (3) 5
6 ANALIZA NUMERICA ECUATII NELINIARE PE R ( ( ) Φ ( λ ) λ (3) ude (33) Codta de mm a ucte Φ ( λ ) este dec: Φ ( ) ( ) λ ( ) (34) λ de ude rezulta medat: ( ) ( ) λ ( ) (35) I cotuare se poate scre: U ( ) ( ) ( ) Pr urmare expresa ala a actorul λ poate scrsa astel: s () T (36) T ( ) ( ) ( ) J ( ) ( ) T ( ) J( ) J ( ) ( ) T T J( ) J ( ) ( ) J( ) J ( ) ( ) ( ) T (37) λ (38) λ J sau ma geeral: ( k ) ( k ) T ( k ) ( k ) ( ) ( ) λ k J (39) ( k ) Se cosdera ca valorle reprezta soltle sstemulu daca: ( k ) ( ) < (4) Observate: I relata (38) s-a otat cu x y produsul scalar al vectorlor x s y: y ude ( x x x ); y ( y y ) x. y x x y (4) 6
2. Sisteme de ecuaţii neliniare
Ssteme de ecuaţ elare 9 Ssteme de ecuaţ elare Î acest catol abordăm roblema reolvăr umerce a sstemelor de ecuaţ alebrce elare Cosderăm următorul sstem de ecuaţ î care cel uţ ua d ucţle u este lară Sub
Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
CURS 2 METODE NUMERICE PENTRU SISTEME DE ECUAŢII NELINIARE
CURS METODE NUMERICE PENTRU SISTEME DE ECUAŢII NELINIARE ------------------------------------------------------------------------------------------------------------ 0 Prelmar: Norma uu vector s orma ue
CURS 2 METODE NUMERICE PENTRU SISTEME DE ECUAȚII NELINIARE. 0 Norma unui vector şi norma unei matrici. n n cu elemente scalare (reale, complexe).
CURS METODE NUMERICE PENTRU SISTEME DE ECUAȚII NEINIARE ------------------------------------------------------------------------------------------------------------ 0 Prelmar: Norma uu vector s orma ue
2. Metoda celor mai mici pătrate
Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo
Curs 3. Spaţii vectoriale
Lector uv dr Crsta Nartea Curs Spaţ vectorale Defţa Dacă este u îtreg, ş x, x,, x sut umere reale, x, x,, x este u vector -dmesoal Mulţmea acestor vector se otează cu U spaţu vectoral mplcă patru elemete:
T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,,
Cursul 1 Î cele ce urmează vom prezeta o ouă structură algebrcă, structura de spaţu vectoral (spaţu lar) utlzâd structurle algebrce cuoscute: mood, grup, el, corp. Petru îceput să reamtm oţuea de corp:
Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale.
Modulul 4 APLICAŢII CONTINUE Subecte :. Cotutatea fucţlor defte pe spaţ metrce.. Uform cotutatate. 3. Lmte. Dscotutăţ lmte parţale lmte terate petru fucţ de ma multe varable reale. Evaluare :. Cotutatea
Pentru această problemă se consideră funcţia Lagrange asociată:
etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru
Sub formă matriceală sistemul de restricţii poate fi scris ca:
Metoda gradetulu proectat (metoda Rose) Î cazul problemelor de optmzare covee ale căror restrcţ sut lare se poate folos metoda gradetulu proectat. Î prcpu, această metodă poate f folostă ş petru cazul
Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. =
Xt () Procese stocastce (2) Fe u proces stocastc de parametru cotuu s avad spatul starlor dscret. Cu spatul starlor S = {,,, N} sau S = {,, } Defta : Procesul X() t este u proces Markov daca: PXt { ( )
CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.
CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte
a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
METODE DE ESTIMARE A PARAMETRILOR UNEI REPARTIŢII. METODA VEROSIMILITĂŢII MAXIME. METODA MOMENTELOR.
Curs 6 OI ETOE E ETIARE A ARAETRILOR UNEI REARTIŢII. ETOA VEROIILITĂŢII AIE. ETOA OENTELOR.. Noţu troductve Î legătură cu evaluarea ş optzarea proceselor oraţoale apar ueroase problee de estare cu sut:
Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori)
Ssteme cu partajare - cotut Recaptulare: modelul smplu de trafc M / M / PS ( umar de utlzator, server, umar de pozt petru utlzator) M / M / PS ( umar de utlzator, servere, umar de pozt petru utlzator)
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
PROBLEME (toate problemele se pot rezolva cu ajutorul teoriei din sinteze)
Uverstte Spru Hret Fcultte de Stte Jurdce Ecoome s Admstrtve Crov Progrmul de lcet Cotbltte ş Iormtcă de Gestue Dscpl Mtemtc Aplcte î Ecoome tulr dscplă Co uv dr Lur Ugureu SUBIECE ote subectele se regsesc
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală
aşteptării pot fi înţelese cu ajutorul noţiunilor de bază culese din acest volum. În multe cazuri hazardul, întâmplarea îşi pun amprenta pe
Cuprs Prefaţă... 5 I. ELEMENTE DE ALGEBRĂ LINIARĂ... 7 Matrc... 8 Matrc partculare... 9 Iversa ue matrc... Ssteme de ecuaţ lare... 5 Problema compatbltăţ sstemelor... 7 Problema determăr sstemelor... 8
FUNDAMENTE DE MATEMATICĂ
Proect cofaţat d Fodul Socal Europea pr Programul Operaţoal Sectoral Dezvoltarea Resurselor Umae 7-3 Ivesteşte î oame! Formarea profesoală a cadrelor ddactce d îvăţămâtul preuverstar petru o oportutăţ
ELEMENTE DE TEORIA PROBABILITĂŢILOR
CAPITOLUL ELEMENTE DE TEORIA PROAILITĂŢILOR Câmp de evemete U feome îtâmplător se poate observa, de regulă, de ma multe or Faptul că este îtâmplător se mafestă pr aceea că u ştm date care este rezultatul
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL
9. CRCE ELECRCE N REGM NESNSODAL 9.. DESCOMPNEREA ARMONCA Ateror am studat regmul perodc susodal al retelelor electrce, adca regmul permaet stablt retele lare sub actuea uor t.e.m. susodale s de aceeas
2. Functii de mai multe variabile reale
. Fuct de m multe vrble rele.. Elemete de topologe R Fe u sptu lr (XK. Det. Se umeste produs sclr plct < > < < λ > λ < v < > < > ; XX K cu omele: > ( X < > ( X ( λ K >< > < > ( X ( Xs < > ; dc s um dc
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1.
5. STRUCTURI D FILTR UMRIC 5. Realzarea ltrelor cu răspuns nt la mpuls (RFI) Fltrul caracterzat prn: ( z ) = - a z = 5.. Forma drectă - - yn= axn ( ) = Un ltru cu o asemenea structură este uneor numt ltru
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât
Cp 2 INTEGRALA RIEMANN 9 CAPITOLUL 2 INTEGRALA RIEMANN 2 SUME DARBOUX CRITERIUL DE INTEGRABILITATE DARBOUX Defţ 2 Se umeşte dvzue tervlulu [, ] orce sumulţme,, K,, K, [, ] stfel îcât = { } = < < K< <
Sondajul statistic- II
08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere
ELEMENTE DE ANALIZA MATEMATICA SI MATEMATICI SPECIALE
Uverstatea OVIDIUS Costaţa Departametul ID-IFR Facultatea Matematca-Iformatca ELEMENTE DE ANALIZA MATEMATICA SI MATEMATICI SPECIALE Caet de Studu Idvdual Specalzarea IEDM Aul de stud I Semestrul I Ttular
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Numere complexe. a numerelor complexe z b b arg z.
Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea
Analiza matematica Specializarea Matematica vara 2010/ iarna 2011
Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila
Formula lui Taylor. 25 februarie 2017
Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =
ANALIZĂ MATEMATICĂ REPROGRAFIA UNIVERSITĂŢII "TRANSILVANIA" DIN BRAŞOV
Gheorghe ATANASIU oa TOFAN ANALIZĂ MATEMATICĂ REPROGRAFIA UNIVERSITĂŢII "TRANSILVANIA" IN BRAŞOV 8 Materall de aţă apare pr băvoţa l Provdr Ncolae Tţa ş a e Covdr oa Toa care c o deosebtă amabltate colegală
Laborator 4 Interpolare numerica. Polinoame ortogonale
Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode
CAPITOLUL I. PRELIMINARII Elemente de teoria mulţimilor
CAPITOLUL I. PRELIMINARII.. Elemete de teora mulţmlor. Mulţm Pr mulţme vom îţelege o colecţe (set, asamblu) de obecte (elemetele mulţm), be determate ş cosderate ca o ettate. Se subâţelege fatul că elemetele
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
4. Interpolarea funcţiilor
Iterpolre ucţlor 7 Iterpolre ucţlor Fe : [] R ş e pucte dstcte d tervlul [] umte odur Prolem terpolăr ucţe î odurle costă î determre ue ucţ g : [] R dtro clsă de ucţ cuoscută cu proprette g Pusă su cestă
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
LUCRARE DE LABORATOR NR. 1 MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA
LUCRARE DE LABORATOR NR. MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA. OBIECTIVELE LUCRARII Isusrea uor otu refertoare la: - eror
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Analiza bivariata a datelor
Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele
Formula lui Taylor Extremele funcţiilor de mai multe variabile Serii de numere cu termeni oarecare Serii cu termeni pozitivi. Criterii de convergenţă
Uverstatea Spru Haret Facultatea de Stte Jurdce, Ecoome s Admstratve, Craova Programul de lceta: Cotabltate ş Iformatcă de Gestue Dscpla Matematc Ecoomce Ttular dscplă Cof uv dr Laura Ugureau SUBIECTE
CURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate
Y CURS 0 Regresa lară - aproxmarea ue fuct tabelate cu o fucte aaltca de gradul, pr metoda celor ma mc patrate 30 300 90 80 70 60 50 40 30 0 y = -78.545x + 33.4 R² = 0.983 0 0. 0.4 0.6 0.8. X Fe o fucţe:
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
4. FUNCŢII DIFERENŢIABILE. EXTREME LOCALE Diferenţiabilitatea funcţiilor reale de o variabilă reală.
4. FUNCŢII DIFERENŢIABILE. EXTREME LOCALE. 4.. Noţun teoretce ş rezultate fundamentale. 4... Dferenţabltatea funcţlor reale de o varablă reală. Multe robleme concrete conduc la evaluarea aromatvă a creşter
BILANT DE MATERIALE legii conservarii masei Gin = Gout consum specific Randamentul de produse finite pierderi de materiale Gin = Gout + Gp
BILANT DE MATERIALE Este o exrese a leg coservar mase sstemele chmce: greutatea G a materalelor care tra roces trebue sa e egala cu greutatea G a materalelor care es d roces: G = G Este ecesar etru a determa:
Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica
Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport
CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică
Capitolul II: Serii de umere reale Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC CURS III, IV Capitolul
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
def def punctul ( x, y )0R 2 de coordonate x = b a
Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă
Mădălina Roxana Buneci. Optimizări
Mădălna Roxana Bunec Optmzăr Edtura Academca Brâncuş Târgu-Ju, 8 Mădălna Roxana Bunec ISBN 978-973-44-87- Optmzăr CUPRINS Prefaţă...5 I. Modelul matematc al problemelor de optmzare...7 II. Optmzăr pe mulţm
Tema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Elemente de teoria probabilitatilor
Elemete de teora probabltatlor CONCEPTE DE BAZA VARIABILE ALEATOARE DISCRETE DISTRIBUTII DISCRETE VARIABILE ALEATOARE CONTINUE DISTRIBUTII CONTINUE ALTE VARIABILE ALEATOARE Spatul esatoaelor, pucte esato,
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
METODE NUMERICE APLICAŢII
MARILENA POPA ROMULUS MILITARU METODE NUMERICE APLICAŢII 7 . Metod Guss cu pvotre prţlă l ecre etpă petru rezolvre sstemelor de ecuţ lre Prezetre proleme Se cosderă sstemul lr: () A t ude: A R mtrce sstemulu
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
3. Serii de puteri. Serii Taylor. Aplicaţii.
Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă
COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi
OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete
NICOLAE PERIDE MIHAELA-GRETI CHIŢU CURS DE MECANICĂ PENTRU INGINERI
NICLAE PERIDE MIHAELA-GRETI CHIŢU CURS DE MECANICĂ PENTRU INGINERI N R' T R T M [P] [S] R N R VLUMUL I STATICA Refereţ ştţfc: Prof. uv. dr. doc. g. RADU P. VINEA Preşedtele Academe Româe de Ştţe Tehce
5.1. ŞIRURI DE FUNCŢII
Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.
1. ŞIRURI ŞI SERII DE NUMERE REALE
ŞIRURI ŞI SERII DE NUMERE REALE Noţiui teoretice şi rezultate fudametale Şiruri de umere reale Presupuem cuoscute oţiuile de bază despre mulţimea N a umerelor aturale, mulţimea Z a umerelor îtregi, mulţimea
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea
sistemelor de algebrice liniarel
Uivesitatea Tehică a Moldovei Facultatea de Eergetică Catedra Electroeergetica Soluţioarea sistemelor de ecuaţii algebrice liiarel lect.uiv. Victor Gropa «Programarea si Utilizarea Calculatoarelor I» Cupris
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Capitolul 4 Amplificatoare elementare
Captolul 4 mplfcatoare elementare 4.. Etaje de amplfcare cu un tranzstor 4... Etajul sursa comuna L g m ( GS GS L // r ds ) m ( r ) g // L ds // r o L ds 4... Etajul drena comuna g g s m s m s m o g //
Sisteme cu asteptare - continut. Modelul simplu de trafic
Ssteme cu asteptare - cotut Recaptulare: modelul smplu de trafc Dscpla cadrul cozlor de asteptate M / M / Modelul ( server, pozt de asteptare ) Aplcat modelarea trafculu de date la vel de pachete M / M
METODE NUMERICE Obiective curs Conţinut curs
ETODE NUERICE Obectve curs Crearea, aalza ş mplemetarea de algortm petru rezolvarea problemelor d matematca cotuă Aalza complextăţ, aalza ş propagarea erorlor, codţoarea problemelor ş stabltatea umercă
INTEGRAREA ȘI DERIVAREA NUMERCĂ A FUNCȚIILOR REALE
Metode Numerce Lucrre r. 7 NTEGRAREA Ș DERVAREA NUMERCĂ A FUNCȚLOR REALE Modelul mtemtc ș metodele umerce utlzte Cudrtur este o procedură umercă pr cre vlore ue tegrle dete ( este promtă olosd ormț despre
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy
Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,
1. Modelul de regresie
. Modelul de regrese.. Câteva cosderete de ord geeral La fel ca ş î multe alte dome, î domeul ecoomc ş î partcular î cel al afacerlor se îtâlesc deseor stuaţ care presupu luarea uor decz, care ecestă progoze
ECUATII NELINIARE PE R
ANALIZA NUMERICA-ECUATII NELINIARE PE R. http://bavaria.utcluj.ro/~ccosmi ECUATII NELINIARE PE R. CONSIDERATII GENERALE Se vor studia urmatoarele probleme:. Radaciile uei ecuatii eliiare de orma. Radaciile
METODE NUMERICE DE REZOLVARE A ECUAŢIILOR ȘI SISTEMELOR DE ECUAȚII DIFERENŢIALE. Autor: Dénes CSALA
METODE NUMERICE DE REZOLVARE A ECUAŢIILOR ȘI SISTEMELOR DE ECUAȚII DIFERENŢIALE Auor: Dénes CSALA Crcuul R-L sere în regm ranzoru Se conseră un crcu orma nr-un rezsor e rezsenţă R ş o bobnă e nucvae L
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
6. VARIABILE ALEATOARE
6. VARIABILE ALEATOARE 6.. Vrble letore. Reprtţ de probbltte. Fucţ de reprtţe O vrblă letore este o cttte măsurtă î legătură cu u expermet letor, de exemplu, umărul de produse cu defecţu î producţ zlcă
III. TERMODINAMICA. 1. Sisteme termodinamice
- 80 - III. ERMODINMI. steme termodamce.. tăr ş procese termodamce. rcpul geeral ermodamca studază procesele zce care au loc î ssteme cu u umăr oarte mare de partcule, î care terv ş eomee termce. sstem
CURS 4 METODE NUMERICE PENTRU PROBLEMA DE VALORI PROPRII. Partea I
CURS 4 MEODE NUMERICE PENRU PROBLEM DE VLORI PROPRII ------------------------------------------------------------------------------------------------------------ Prte I. Defț, propretăț.. Metod puter ş
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
UNIVERSITATEA AL.I.CUZA IAŞI FACULTATEA de INFORMATICĂ CALCUL NUMERIC. Anca Ignat
UNIVERSIAEA AL.I.CUZA IAŞI FACULAEA de INFORMAICĂ CALCUL NUMERIC Aca Igat CUPRINS Prelmar 3 Calcul matrcal 5 pur de matrc 8 Norme 9 Norme matrcale 0 Valor ş vector propr 4 Surse de eror î calculule umerce
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
METODE DE OPTIMIZARE. Lucrarea 8 1. SCOPUL LUCRĂRII 2. PREZENTAREA TEORETICĂ 2.1. METODA CELOR MAI MICI PĂTRATE 2.2. COEFICIENTUL DE CORELAŢIE
Lucrarea 8 METODE DE OPTIMIZARE. SCOPUL LUCRĂRII Prezetarea uor algort de optzare, pleetarea acestora îtr-u lbaj de vel îalt î partcular, C ş folosrea lor î rezolvarea uor problee de electrocă.. PREZENTAREA
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța