CURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate
|
|
- Ματθίας Βέργας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Y CURS 0 Regresa lară - aproxmarea ue fuct tabelate cu o fucte aaltca de gradul, pr metoda celor ma mc patrate y = x R² = X
2 Fe o fucţe: f:[a,b], [a,b] petru care este cuoscut u umăr dscret de valor y îtr-u umăr de pucte de reţea x [a,b]: Y x f(x )=y,, I geeral, valorle y sut afectate de eror de măsură sau de eror de calcul y Cum alegem fucta model? X Ce vrem? Aproxmarea aceste fucţ tabelate f cu o fucţe "model": α j - parametr a fucţe model De ce? F(x ; α j ) - permte cuoasterea valor orce puct x x - poate f dervata, tegrata sau folosta alte calcule F trebue să fe determată de feomeul fzc modelat F se va alege dtr-o clasă coveablă de fucţ care să ofere smpltate ş efceţă î prelucrăr ulteroare
3 α j => F Cum determam parametr fucţe model? Se defeşte o fucţoală care să reflecte gradul î care fucţa F aproxmează fucţa tabelată f. Dstaţa dtre fucţa tabelată ş fucţa model: Cazur: Iterpolare: grafcul fucte F trece pr toate puctele (x,y ) Ftare: grafcul fucte F u trece eaparat pr puctele (x,y )
4 Ftare - se mmzează suma abaterlor pătratce ale fucţe model faţă de fucţa tabelată: j S y F(x ; ) Codţle de obţere a parametrlor α j : S j 0; j, k = regrese (ajustare) pr metoda celor ma mc pătrate
5 Regresa lară Fucţa model = fucţe de gradul : F=ax+b F=F(x, α j ) j= Fucţoala S: S y (ax b) Codţle de obţere a parametrlor α j (a ş b): S a S b 0 0 y (ax b) ( x ) 0 y (ax b) 0 xy ax bx 0 y ax b 0 Notăm: x y Sxy x Sxx x Sx y Sy Tem cot că: b b
6 Sstemul de ecuaţ deve: Sxy asxx bsx 0 Sy asx b 0 Îmulţd prma ecuaţe cu ş a doua cu (-S x ) ş aduâdu-le se obţe: a S S S x y xy b Sy asx (S x ) Sxx Semfcata parametrlor de ft: a - pata drepte de regrese a=tg(α) α - ughul făcut de grafcul fucţe F cu axa abscselor b - valoarea la care grafcul fucţe tersectează axa ordoatelor (terceptor) U b =E-rI F=ax+b E=b r= tg() Valorle estmate de dreapta de regrese (y calc ) sut terpretate ca med ale valorlor y asocate cu o aumtă valoare x.
7 Cum se procedează atuc câd fucţa model u este o fucţe de gradul? Exemplu U set de măsurător de radoactvtate t(ore) Λ(mC) C = Bq (t) t 0e
8 t(ore) Λ(mC) l(λ)) l( (t)) l( 0) t l(λ 0 (t))=y y'=a-bt ude a=l(λ 0 ) ş b=λ Λ 0 =exp(6.9565)= l( 0 )
9 Coefcetul de corelare R - dă caltatea ue drepte de regrese R = => fucţa model explcă îtreaga varabltate a lu y R = 0 => u exstă c o relaţe lară ître varabla răspus ş varabla x (ître y ş x) R = 0.5 => aproxmatv 50% d varaţa varable răspus poate f explcată de către varabla depedetă
10 //regresa lara #clude <stdo.h> #clude <coo.h> #clude <graphcs.h> #clude<stdlb.h> #clude<math.h> t ma() { FILE *f; t,,xpm,xpmax,ypm,ypmax,xr,yr; float x,y,xd[0],yd[0],xdm,xdmax,ydm,ydmax; float Sx,Sy,Sxx,Sxy,a,b; float ymed, s,s,r; float ax,bx,ay,by; t xp[50],yp[50]; char f[0],stra[5], strb[5]; prtf("numele fserulu de trare: "); gets(f); f=fope(f,"r"); f(!f) { prtf("\fser exstet!"); getch(); ext(); } =0; Sx=Sy=Sxx=Sxy=0; whle(!feof(f)) { f(fscaf(f,"%f%f",&x,&y)==) { xd[]=x; yd[]=y; ++; Sx+=x; Sy+=y; Sxx+=x*x; Sxy+=x*y; } } =; a=(*sxy-sx*sy)/(*sxx-sx*sx); b=(sy-a*sx)/; fclose(f);
11 f=fope(f,"r"); s=s=0; ymed=sy/; whle(!feof(f)) { } R=-s/s; f(fscaf(f,"%f %f",&x,&y)==) { s+=(a*x+b-y)*(a*x+b-y); s+=(ymed-y)*(ymed-y); } prtf("===================================================\"); prtf("= %d",); for(=0;<;++) prtf("\%0.f\t%0.f",xd[],yd[]); prtf("\\parametr de ft sut:\a= %7.3f\tb= %7.3f\",a,b); prtf("\coefcetul de corelare: R= %g\",r); prtf("===================================================\"); fclose(f); xdm=xdmax=xd[0]; ydm=ydmax=yd[0]; for(=0;<;++) { f(xd[]>xdmax) xdmax=xd[]; else f(xd[]<xdm) xdm=xd[]; f(yd[]>ydmax) ydmax=yd[]; else f(yd[]<ydm) ydm=yd[]; }
12 //Dmesule ferestre de afsare s coefcet de scalare xpm=60;xpmax=440; ypm=85;ypmax=365; ax=(xpmax-xpm)/(xdmax-xdm); bx=xpm-ax*xdm; ay=(ypmax-ypm)/(ydm-ydmax); by=ypmax-ay*ydm; for(=0;<;++) { xp[]=(t)(ax*xd[]+bx); yp[]=(t)(ay*yd[]+by); } twdow(800,500,"regresa lara",5,5); xpmax=getmaxx(); ypmax=getmaxy(); setcolor(green); xr=4;yr=4; for(=-;<=;++) rectagle(50+,75+,450-,375-); for(=0;<;++) { fllellpse(xp[], yp[], xr, yr); delay(500); } setcolor(yellow); setlestyle(0,0,); //Trasarea drepte de regrese le(xp[0],(t)(ay*(xd[0]*a+b)+by),xp[-],(t)(ay*(xd[-]*a+b)+by)); delay(000); //Tparrea formatlor pe grafc settextstyle(4,horiz_dir,); outtextxy(70,390,"i (ma)"); settextstyle(,horiz_dir,3);
13 outtextxy(50,0,"regresa lara"); settextstyle(6,horiz_dir,); outtextxy(50,40,"exemplu: potetometrul compesator"); settextstyle(4,vert_dir,); outtextxy(0,70,"u (V)"); settextstyle(8,horiz_dir,); outtextxy(460,00,"fucta de ft:"); outtextxy(460,30,"f(x) = "); gcvt(a,5,stra); gcvt(b,7,strb); outtextxy(530,30,stra); outtextxy(60,30,"x +"); outtextxy(650,30,strb); gcvt(r,5,stra); outtextxy(460,60,"r^ = "); outtextxy(530,60,stra); outtextxy(460,30,"e = "); outtextxy(500,30,strb); outtextxy(570,30," V"); outtextxy(460,350,"r = "); gcvt(-a,5,stra); outtextxy(500,350,stra); outtextxy(580,350," ohm"); setcolor(red); rectagle(455,30,650,376); whle(!_kbht()); closegraph(); retur 0; }
14 Devaţa stadard (abaterea stadard) = dstaţa mede dtre meda valorlor uu set de date ş datele setulu respectv - măsoară împrăşterea datelor dtr-u set (dspersa faţă de mede) valor, meda = 5 0 valor, meda =
15 Formula X X Numtorul: - - dacă datele X repreztă u eşato - dacă datele X repreztă îtreaga populaţe (petru -mare, -) Semfcate
16
17 _ x x S a er _ S xx S x S a er _ x x x S b er _ x xx xx S S S S b er y b x a S ude: Eroarea estmar parametrlor de ft Sut ecesare mm tre pucte petru aputea folos regresa lara!
18 Exemplu Presupuem că s-au obţut ma multe valor petru E ş petru r, d măsurător repetate. Rezultatul fal se raportează ca ş valoarea mede +/- devaţa stadard.
19 Aalza rezduurlor y = x R² = y = 9.776x x R² = y = 049.9e -0.5x R² = Ft lar Ft expoetal Ft parabolc
20 Dstrbuţa ormală (Gaussaă) Fucţa destăţ de probabltate (destatea ue varable aleatoare cotue) este o fucţe care descre probabltatea relatvă petru ca respectva varablă sa abă o aumtă valoare. Probabltatea ca varabla aleatoare să abă valor îtr-u aumt terval este dată de tegrala destăţ varable respectve pe tervalul dat. Fucţa destăţ de probabltate este eulă pe îtreg domeul său de defţe, ar tegrala sa pe îtreg spaţul este egală cu uu. Fucţa destăţ de probabltate petru dstrbuţa Gaussaă cu meda ş devaţa stadard ( x;, ) exp ( x ) Dstrbuţa Gaussaă stadard (=0 ş =) x ( x) exp
Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Sondajul statistic- II
08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere
2. Metoda celor mai mici pătrate
Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo
Elemente de teoria probabilitatilor
Elemete de teora probabltatlor CONCEPTE DE BAZA VARIABILE ALEATOARE DISCRETE DISTRIBUTII DISCRETE VARIABILE ALEATOARE CONTINUE DISTRIBUTII CONTINUE ALTE VARIABILE ALEATOARE Spatul esatoaelor, pucte esato,
T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Statistica matematica
Statstca matematca probleme de dfcultate redusa ) Dtr-o popula e ormal repartzat cu dspersa ecuoscut se face o selec e de volum. Itervalul de îcredere petru meda m a popula e cu dspersa ecuoscut s s este
Curs 3. Spaţii vectoriale
Lector uv dr Crsta Nartea Curs Spaţ vectorale Defţa Dacă este u îtreg, ş x, x,, x sut umere reale, x, x,, x este u vector -dmesoal Mulţmea acestor vector se otează cu U spaţu vectoral mplcă patru elemete:
ELEMENTE DE STATISTICA DESCRIPTIVA
ELEMENTE DE STATISTICA DESCRIPTIVA Cursul CERMI Facultatatea Costruct de Mas www.cerm.utcluj.ro Cof.dr.g. Marus Bulgaru STATISTICA DESCRIPTIVA STATISTICA DESCRIPTIVA Populate, Caracterstca dscreta, cotua
Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea
Productia (buc) Nr. Salariaţi Total 30
Î vederea aalze productvtăţ obţute î cadrul ue colectvtăţ de salaraţ formată d 50 de persoae, s-a extras u eşato format d de salaraţ. Datele refertoare la producţa zle precedete sut prezetate î tabelul
Pentru această problemă se consideră funcţia Lagrange asociată:
etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru
Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori)
Ssteme cu partajare - cotut Recaptulare: modelul smplu de trafc M / M / PS ( umar de utlzator, server, umar de pozt petru utlzator) M / M / PS ( umar de utlzator, servere, umar de pozt petru utlzator)
Curs 3. Biostatistica: trecere in revista a metodelor statistice clasice
Curs 3. Bostatstca: trecere revsta a metodelor statstce clasce Bblo: W.Ewes, G.R. Grat Statstcal methods boformatcs, Sprger, 005 Cap. -3, cap.5 Structura Teste de asocere (depedeță) Teste de cocordață
CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.
CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte
Noţiuni de verificare a ipotezelor statistice
Noţu de verfcare a potezelor statstce Verfcarea potezelor statstce este legată de compararea dfertelor poteze asupra ue populaţ statstce (ş u asupra uu eşato) cu datele obţute pr îcercăr expermetale Dacă
1. Modelul de regresie
. Modelul de regrese.. Câteva cosderete de ord geeral La fel ca ş î multe alte dome, î domeul ecoomc ş î partcular î cel al afacerlor se îtâlesc deseor stuaţ care presupu luarea uor decz, care ecestă progoze
Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. =
Xt () Procese stocastce (2) Fe u proces stocastc de parametru cotuu s avad spatul starlor dscret. Cu spatul starlor S = {,,, N} sau S = {,, } Defta : Procesul X() t este u proces Markov daca: PXt { ( )
ECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D
ANALIZA NUMERICA ECUATII NELINIARE PE R (http://bavara.utclu.ro/~ccosm) ECUATII NELINIARE PE R. INTRODUCERE e D R D R : s sstemul: ( x x x ) ( x x x ) D () Daca se cosdera aplcata : D R astel ca: ( x x
Statistica descriptivă. Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă Şef de Lucrăr Dr. Mădăla Văleau mvaleau@umfcluj.ro MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medaa, Modul, Meda geometrca, Meda armoca, Valoarea cetrala MĂSURI DE DE DISPERSIE Mm, Maxm,
Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,,
Cursul 1 Î cele ce urmează vom prezeta o ouă structură algebrcă, structura de spaţu vectoral (spaţu lar) utlzâd structurle algebrce cuoscute: mood, grup, el, corp. Petru îceput să reamtm oţuea de corp:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
def def punctul ( x, y )0R 2 de coordonate x = b a
Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă
Cercetarea prin sondajul II Note de curs prelegere master data 24 oct.2013
Cercetarea pr sodajul II ote de curs prelegere master data 4 oct.13 al.sac-mau www.amau.ase.ro http://www.ase.ro/ase/studet/de.asp?tem=fsere&id=88.oct.13 1 Dstrbuta ormala.oct.13 Dstrbuta ormala Cea ma
Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale.
Modulul 4 APLICAŢII CONTINUE Subecte :. Cotutatea fucţlor defte pe spaţ metrce.. Uform cotutatate. 3. Lmte. Dscotutăţ lmte parţale lmte terate petru fucţ de ma multe varable reale. Evaluare :. Cotutatea
Sondajul statistic -III
STATISTICA Sodajul statstc -III tema 9 sapt.3-7 aprle 1 al.sac-mau www.amau.ase.ro http://www.ase.ro/ase/studet/de.asp?tem=fsere&id=88 Dstrbuta ormala Dstrbuta ormala Cea ma mportata dstrbute cotua: umeroase
ELEMENTE DE TEORIA PROBABILITĂŢILOR
CAPITOLUL ELEMENTE DE TEORIA PROAILITĂŢILOR Câmp de evemete U feome îtâmplător se poate observa, de regulă, de ma multe or Faptul că este îtâmplător se mafestă pr aceea că u ştm date care este rezultatul
CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât
Cp 2 INTEGRALA RIEMANN 9 CAPITOLUL 2 INTEGRALA RIEMANN 2 SUME DARBOUX CRITERIUL DE INTEGRABILITATE DARBOUX Defţ 2 Se umeşte dvzue tervlulu [, ] orce sumulţme,, K,, K, [, ] stfel îcât = { } = < < K< <
Tema 2. PRELUCRAREA REZULTATELOR EXPERIMENTALE
Tea. PRELUCRAREA REZULTATELOR EXPERIMENTALE. Eror de ăsură A ăsura o ăre X îseaă a copara acea ăre cu alta de aceeaş atură, [X], aleasă pr coveţe ca utate de ăsură. I ura aceste coparaţ se poate scre X=x[X]
TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE
TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE Obectve Cuoaşterea metodelor umerce de descrere a datelor statstce Aalza rcalelor metode umerce etru descrerea datelor cattatve egruate Aalza
METODE DE OPTIMIZARE. Lucrarea 8 1. SCOPUL LUCRĂRII 2. PREZENTAREA TEORETICĂ 2.1. METODA CELOR MAI MICI PĂTRATE 2.2. COEFICIENTUL DE CORELAŢIE
Lucrarea 8 METODE DE OPTIMIZARE. SCOPUL LUCRĂRII Prezetarea uor algort de optzare, pleetarea acestora îtr-u lbaj de vel îalt î partcular, C ş folosrea lor î rezolvarea uor problee de electrocă.. PREZENTAREA
a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Numere complexe. a numerelor complexe z b b arg z.
Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea
9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL
9. CRCE ELECRCE N REGM NESNSODAL 9.. DESCOMPNEREA ARMONCA Ateror am studat regmul perodc susodal al retelelor electrce, adca regmul permaet stablt retele lare sub actuea uor t.e.m. susodale s de aceeas
Prof. univ. dr. Constantin ANGHELACHE Prof. univ. dr. Gabriela-Victoria ANGHELACHE Lector univ. dr. Florin Paul Costel LILEA
Metode ş procedee de ajustare a datelor pe baza serlor croologce utlzate î aalza tedţe dezvoltăr dfertelor dome de actvtate socal-ecoomcă Prof. uv. dr. Costat ANGHELACHE Uverstatea Artfex/ASE - Bucureșt
ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE
4. ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE Feomeele de masă studate de statstcă se mafestă pr utăţle dvduale ale colectvtăţ cercetate care preztă o varabltate (împrăştere)
8.3. Estimarea parametrilor
8.3. Estmarea parametrlor Modelarea uu feome aleatoru real, precum trafcul ofert de o sursă formaţoală, ue reţele de comucaţ, îseamă detfcarea uu model probablstc, M, varablă aleatore sau proces aleatoru,
METODE DE ESTIMARE A PARAMETRILOR UNEI REPARTIŢII. METODA VEROSIMILITĂŢII MAXIME. METODA MOMENTELOR.
Curs 6 OI ETOE E ETIARE A ARAETRILOR UNEI REARTIŢII. ETOA VEROIILITĂŢII AIE. ETOA OENTELOR.. Noţu troductve Î legătură cu evaluarea ş optzarea proceselor oraţoale apar ueroase problee de estare cu sut:
Formula lui Taylor Extremele funcţiilor de mai multe variabile Serii de numere cu termeni oarecare Serii cu termeni pozitivi. Criterii de convergenţă
Uverstatea Spru Haret Facultatea de Stte Jurdce, Ecoome s Admstratve, Craova Programul de lceta: Cotabltate ş Iformatcă de Gestue Dscpla Matematc Ecoomce Ttular dscplă Cof uv dr Laura Ugureau SUBIECTE
LUCRARE DE LABORATOR NR. 1 MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA
LUCRARE DE LABORATOR NR. MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA. OBIECTIVELE LUCRARII Isusrea uor otu refertoare la: - eror
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
METODE DE ANALIZĂ STATISTICĂ A LEGĂTURILOR DINTRE FENOMENE
METODE DE ANALIZĂ STATISTICĂ A 0. LEGĂTURILOR DINTRE FENOMENE Asura feomeelor de masă studate de statstcă acţoează u umăr de factor rcal ş secudar, eseţal ş eeseţal, sstematc ş îtâmlător, obectv ş subectv,
Sisteme cu asteptare - continut. Modelul simplu de trafic
Ssteme cu asteptare - cotut Recaptulare: modelul smplu de trafc Dscpla cadrul cozlor de asteptate M / M / Modelul ( server, pozt de asteptare ) Aplcat modelarea trafculu de date la vel de pachete M / M
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Analiza univariata a datelor
Aalza uvarata a datelor Chestu orgazatorce Nota: Exame fal (mart, 13 ma): 70% Proect semar: 30% Suport curs: Cătou I. (coord.), Băla C., Dăeţu T., Orza Gh., Popescu I., Vegheş C., Vrâceau D. "Cercetăr
2. Sisteme de ecuaţii neliniare
Ssteme de ecuaţ elare 9 Ssteme de ecuaţ elare Î acest catol abordăm roblema reolvăr umerce a sstemelor de ecuaţ alebrce elare Cosderăm următorul sstem de ecuaţ î care cel uţ ua d ucţle u este lară Sub
CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea
EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.
Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica
Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport
Analiza bivariata a datelor
Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele
COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi
OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete
Analiza matematica Specializarea Matematica vara 2010/ iarna 2011
Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila
Sub formă matriceală sistemul de restricţii poate fi scris ca:
Metoda gradetulu proectat (metoda Rose) Î cazul problemelor de optmzare covee ale căror restrcţ sut lare se poate folos metoda gradetulu proectat. Î prcpu, această metodă poate f folostă ş petru cazul
Teoria aşteptării- laborator
Teora aşteptăr- laborator Model de aşteptare cu u sgur server. Î tmpul zle la u ATM (automat bacar care permte retragerea de umerar s alte trazacţ bacare electroce) avem î mede 4 de cleţ pe oră, adcă.4
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE
Lucrarea r. PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE. GENERALITATI I electrotehcă ş electrocă terv umeroase mărm fzce ca: tesue, curet, rezsteţă, eerge, etc., care se caracterzează pr mărme ş pr aumte
Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008
Cocursul Naţioal Al. Myller CLASA a VII-a Numerele reale disticte x, yz, au proprietatea că Să se arate că x+ y+ z = 0. 3 3 3 x x= y y= z z. a) Să se arate că, ditre cici umere aturale oarecare, se pot
Universitatea din București, Facultatea de Chimie, Specializarea: Chimie Medicală/Farmaceutică
Uverstatea d Bucureșt, Facultatea de Chme, Specalzarea: Chme Medcală/Farmaceutcă Statstcă & Iformatcă TEME ș aplcaț Laborator (M. Vlada, 07 Laborator Tema. Calcule statstce, fucț matematce ș statstce facltăț
PRELUCRAREA DATELOR EXPERIMENTALE
PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală
STATISTICĂ MARINELLA - SABINA TURDEAN LIGIA PRODAN
MARINELLA - SABINA TURDEAN LIGIA PRODAN STATISTICĂ STATISTICĂ CUPRINS Captolul NOŢIUNI INTRODUCTIVE... 5. Momete ale evoluţe statstc... 5. Obectul ş metoda statstc... 5.3 Noţu fudametale utlzate î statstcă...
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
CURS 6 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ (continuare)
CURS 6 ERODIAICĂ ŞI FIZICĂ SAISICĂ (cotuare) 6.1 Prcpul II al termodamc Să e reamtm că prmul prcpu al termodamc a arătat posbltatea trasformăr lucrulu mecac, L, î căldură, Q, ş vers, fără a specfca î ce
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ
CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ Coderaţ prelmare Î captolele precedete am dcutat depre pobltăţle de culegere a datelor pe baza metodelor de obervare totală au parţală, ca ş depre modaltăţle
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
PROBLEME CU PARTEA ÎNTREAGĂ ŞI
PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Probabilități și Statistică 1.1. Metoda Monte-Carlo
Matematcă ș Iformatcă.. Metoda Mote-Carlo.. Metoda Mote Carlo. Aplcaţ. Precza metode. Termeul,,Metoda Mote Carlo este som cu termeul,,metoda epermetelor statstce. Aparţa aceste metode se raportează de
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5
Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
INTRODUCERE. Obiectivele cursului
STATISTICĂ ECONOMICĂ INTRODUCERE Deschderea ş mobltatea metodelor statstce de vestgare a feomeelor ş roceselor, î coferă acestea u caracter geeral de cercetare a realtăţ. Acest fat stă la baza dfertelor
3. INDICATORII STATISTICI
3. INDICATORII STATISTICI 3.. Necestatea folosr dcatorlor statstc. Idcator statstc prmar. Idcator statstc dervaţ Am văzut că obectul de studu al statstc îl costtue feomeele ş procesele de masă. Acestea
6. VARIABILE ALEATOARE
6. VARIABILE ALEATOARE 6.. Vrble letore. Reprtţ de probbltte. Fucţ de reprtţe O vrblă letore este o cttte măsurtă î legătură cu u expermet letor, de exemplu, umărul de produse cu defecţu î producţ zlcă
REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita
REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem
METODE NUMERICE Obiective curs Conţinut curs
ETODE NUERICE Obectve curs Crearea, aalza ş mplemetarea de algortm petru rezolvarea problemelor d matematca cotuă Aalza complextăţ, aalza ş propagarea erorlor, codţoarea problemelor ş stabltatea umercă
METODA REFRACTOMETRICĂ DE ANALIZĂ
METODA REFRACTOMETRICĂ DE ANALIZĂ Refractometra este o metodă de testare fzcă a propretățlor ue substațe pr măsurarea dcelu de refracțe. Idcele de refracțe este măsurat cu ajutorul refractometrelor. Idcele
B( t B 11. NOŢIUNILE FUNDAMENTALE ŞI TEOREMELE GENERALE ALE DINAMICII Lucrul mecanic. y O j
. Noţule fudametale ş teoremele geerale ale dam. NŢIUNILE FUNDAMENTALE ŞI TEREMELE GENERALE ALE DINAMIII Reolvarea problemelor de damă se fae u ajutorul uor teoreme, umte teoreme geerale, deduse pr aplarea
Din această definiţie a probabilităţilor rezultă următoarele proprietăţi ale acestora:
FIABILIAE Î proectarea ş costrucţa dfertelor ecpamete este ecesară asgurarea sguraţe î fucţoare a acestora; această codţe a codus la utlzarea î proectare a aumtor coefceţ de sguraţă. Noţule de fabltate
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
aşteptării pot fi înţelese cu ajutorul noţiunilor de bază culese din acest volum. În multe cazuri hazardul, întâmplarea îşi pun amprenta pe
Cuprs Prefaţă... 5 I. ELEMENTE DE ALGEBRĂ LINIARĂ... 7 Matrc... 8 Matrc partculare... 9 Iversa ue matrc... Ssteme de ecuaţ lare... 5 Problema compatbltăţ sstemelor... 7 Problema determăr sstemelor... 8
Laborator 4 Interpolare numerica. Polinoame ortogonale
Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode
Elemente de teorie a informaţiei. 1. Câte ceva despre informaţie la modul subiectiv
Elemete de teore a formaţe. Câte ceva desre formaţe la modul subectv Î cele ce urmează vom face câteva cosderaţ legate de formaţe ş măsurare a e. Duă cum se cuoaşte formaţa se măsoară î bţ. De asemeea
1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...
Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,
Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ
CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE OPTICĂ BN B
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE OPTICĂ BN - B DIFRACŢIA LUMINII DETERMINAREA LUNGIMII DE UNDĂ A RADIAŢIEI LUMINOASE UTILIZÂND REŢEAUA DE DIFRACŢIE 004-005
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri