CURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate"

Transcript

1 Y CURS 0 Regresa lară - aproxmarea ue fuct tabelate cu o fucte aaltca de gradul, pr metoda celor ma mc patrate y = x R² = X

2 Fe o fucţe: f:[a,b], [a,b] petru care este cuoscut u umăr dscret de valor y îtr-u umăr de pucte de reţea x [a,b]: Y x f(x )=y,, I geeral, valorle y sut afectate de eror de măsură sau de eror de calcul y Cum alegem fucta model? X Ce vrem? Aproxmarea aceste fucţ tabelate f cu o fucţe "model": α j - parametr a fucţe model De ce? F(x ; α j ) - permte cuoasterea valor orce puct x x - poate f dervata, tegrata sau folosta alte calcule F trebue să fe determată de feomeul fzc modelat F se va alege dtr-o clasă coveablă de fucţ care să ofere smpltate ş efceţă î prelucrăr ulteroare

3 α j => F Cum determam parametr fucţe model? Se defeşte o fucţoală care să reflecte gradul î care fucţa F aproxmează fucţa tabelată f. Dstaţa dtre fucţa tabelată ş fucţa model: Cazur: Iterpolare: grafcul fucte F trece pr toate puctele (x,y ) Ftare: grafcul fucte F u trece eaparat pr puctele (x,y )

4 Ftare - se mmzează suma abaterlor pătratce ale fucţe model faţă de fucţa tabelată: j S y F(x ; ) Codţle de obţere a parametrlor α j : S j 0; j, k = regrese (ajustare) pr metoda celor ma mc pătrate

5 Regresa lară Fucţa model = fucţe de gradul : F=ax+b F=F(x, α j ) j= Fucţoala S: S y (ax b) Codţle de obţere a parametrlor α j (a ş b): S a S b 0 0 y (ax b) ( x ) 0 y (ax b) 0 xy ax bx 0 y ax b 0 Notăm: x y Sxy x Sxx x Sx y Sy Tem cot că: b b

6 Sstemul de ecuaţ deve: Sxy asxx bsx 0 Sy asx b 0 Îmulţd prma ecuaţe cu ş a doua cu (-S x ) ş aduâdu-le se obţe: a S S S x y xy b Sy asx (S x ) Sxx Semfcata parametrlor de ft: a - pata drepte de regrese a=tg(α) α - ughul făcut de grafcul fucţe F cu axa abscselor b - valoarea la care grafcul fucţe tersectează axa ordoatelor (terceptor) U b =E-rI F=ax+b E=b r= tg() Valorle estmate de dreapta de regrese (y calc ) sut terpretate ca med ale valorlor y asocate cu o aumtă valoare x.

7 Cum se procedează atuc câd fucţa model u este o fucţe de gradul? Exemplu U set de măsurător de radoactvtate t(ore) Λ(mC) C = Bq (t) t 0e

8 t(ore) Λ(mC) l(λ)) l( (t)) l( 0) t l(λ 0 (t))=y y'=a-bt ude a=l(λ 0 ) ş b=λ Λ 0 =exp(6.9565)= l( 0 )

9 Coefcetul de corelare R - dă caltatea ue drepte de regrese R = => fucţa model explcă îtreaga varabltate a lu y R = 0 => u exstă c o relaţe lară ître varabla răspus ş varabla x (ître y ş x) R = 0.5 => aproxmatv 50% d varaţa varable răspus poate f explcată de către varabla depedetă

10 //regresa lara #clude <stdo.h> #clude <coo.h> #clude <graphcs.h> #clude<stdlb.h> #clude<math.h> t ma() { FILE *f; t,,xpm,xpmax,ypm,ypmax,xr,yr; float x,y,xd[0],yd[0],xdm,xdmax,ydm,ydmax; float Sx,Sy,Sxx,Sxy,a,b; float ymed, s,s,r; float ax,bx,ay,by; t xp[50],yp[50]; char f[0],stra[5], strb[5]; prtf("numele fserulu de trare: "); gets(f); f=fope(f,"r"); f(!f) { prtf("\fser exstet!"); getch(); ext(); } =0; Sx=Sy=Sxx=Sxy=0; whle(!feof(f)) { f(fscaf(f,"%f%f",&x,&y)==) { xd[]=x; yd[]=y; ++; Sx+=x; Sy+=y; Sxx+=x*x; Sxy+=x*y; } } =; a=(*sxy-sx*sy)/(*sxx-sx*sx); b=(sy-a*sx)/; fclose(f);

11 f=fope(f,"r"); s=s=0; ymed=sy/; whle(!feof(f)) { } R=-s/s; f(fscaf(f,"%f %f",&x,&y)==) { s+=(a*x+b-y)*(a*x+b-y); s+=(ymed-y)*(ymed-y); } prtf("===================================================\"); prtf("= %d",); for(=0;<;++) prtf("\%0.f\t%0.f",xd[],yd[]); prtf("\\parametr de ft sut:\a= %7.3f\tb= %7.3f\",a,b); prtf("\coefcetul de corelare: R= %g\",r); prtf("===================================================\"); fclose(f); xdm=xdmax=xd[0]; ydm=ydmax=yd[0]; for(=0;<;++) { f(xd[]>xdmax) xdmax=xd[]; else f(xd[]<xdm) xdm=xd[]; f(yd[]>ydmax) ydmax=yd[]; else f(yd[]<ydm) ydm=yd[]; }

12 //Dmesule ferestre de afsare s coefcet de scalare xpm=60;xpmax=440; ypm=85;ypmax=365; ax=(xpmax-xpm)/(xdmax-xdm); bx=xpm-ax*xdm; ay=(ypmax-ypm)/(ydm-ydmax); by=ypmax-ay*ydm; for(=0;<;++) { xp[]=(t)(ax*xd[]+bx); yp[]=(t)(ay*yd[]+by); } twdow(800,500,"regresa lara",5,5); xpmax=getmaxx(); ypmax=getmaxy(); setcolor(green); xr=4;yr=4; for(=-;<=;++) rectagle(50+,75+,450-,375-); for(=0;<;++) { fllellpse(xp[], yp[], xr, yr); delay(500); } setcolor(yellow); setlestyle(0,0,); //Trasarea drepte de regrese le(xp[0],(t)(ay*(xd[0]*a+b)+by),xp[-],(t)(ay*(xd[-]*a+b)+by)); delay(000); //Tparrea formatlor pe grafc settextstyle(4,horiz_dir,); outtextxy(70,390,"i (ma)"); settextstyle(,horiz_dir,3);

13 outtextxy(50,0,"regresa lara"); settextstyle(6,horiz_dir,); outtextxy(50,40,"exemplu: potetometrul compesator"); settextstyle(4,vert_dir,); outtextxy(0,70,"u (V)"); settextstyle(8,horiz_dir,); outtextxy(460,00,"fucta de ft:"); outtextxy(460,30,"f(x) = "); gcvt(a,5,stra); gcvt(b,7,strb); outtextxy(530,30,stra); outtextxy(60,30,"x +"); outtextxy(650,30,strb); gcvt(r,5,stra); outtextxy(460,60,"r^ = "); outtextxy(530,60,stra); outtextxy(460,30,"e = "); outtextxy(500,30,strb); outtextxy(570,30," V"); outtextxy(460,350,"r = "); gcvt(-a,5,stra); outtextxy(500,350,stra); outtextxy(580,350," ohm"); setcolor(red); rectagle(455,30,650,376); whle(!_kbht()); closegraph(); retur 0; }

14 Devaţa stadard (abaterea stadard) = dstaţa mede dtre meda valorlor uu set de date ş datele setulu respectv - măsoară împrăşterea datelor dtr-u set (dspersa faţă de mede) valor, meda = 5 0 valor, meda =

15 Formula X X Numtorul: - - dacă datele X repreztă u eşato - dacă datele X repreztă îtreaga populaţe (petru -mare, -) Semfcate

16

17 _ x x S a er _ S xx S x S a er _ x x x S b er _ x xx xx S S S S b er y b x a S ude: Eroarea estmar parametrlor de ft Sut ecesare mm tre pucte petru aputea folos regresa lara!

18 Exemplu Presupuem că s-au obţut ma multe valor petru E ş petru r, d măsurător repetate. Rezultatul fal se raportează ca ş valoarea mede +/- devaţa stadard.

19 Aalza rezduurlor y = x R² = y = 9.776x x R² = y = 049.9e -0.5x R² = Ft lar Ft expoetal Ft parabolc

20 Dstrbuţa ormală (Gaussaă) Fucţa destăţ de probabltate (destatea ue varable aleatoare cotue) este o fucţe care descre probabltatea relatvă petru ca respectva varablă sa abă o aumtă valoare. Probabltatea ca varabla aleatoare să abă valor îtr-u aumt terval este dată de tegrala destăţ varable respectve pe tervalul dat. Fucţa destăţ de probabltate este eulă pe îtreg domeul său de defţe, ar tegrala sa pe îtreg spaţul este egală cu uu. Fucţa destăţ de probabltate petru dstrbuţa Gaussaă cu meda ş devaţa stadard ( x;, ) exp ( x ) Dstrbuţa Gaussaă stadard (=0 ş =) x ( x) exp

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs

Διαβάστε περισσότερα

Sondajul statistic- II

Sondajul statistic- II 08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere

Διαβάστε περισσότερα

2. Metoda celor mai mici pătrate

2. Metoda celor mai mici pătrate Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo

Διαβάστε περισσότερα

Elemente de teoria probabilitatilor

Elemente de teoria probabilitatilor Elemete de teora probabltatlor CONCEPTE DE BAZA VARIABILE ALEATOARE DISCRETE DISTRIBUTII DISCRETE VARIABILE ALEATOARE CONTINUE DISTRIBUTII CONTINUE ALTE VARIABILE ALEATOARE Spatul esatoaelor, pucte esato,

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

Statistica matematica

Statistica matematica Statstca matematca probleme de dfcultate redusa ) Dtr-o popula e ormal repartzat cu dspersa ecuoscut se face o selec e de volum. Itervalul de îcredere petru meda m a popula e cu dspersa ecuoscut s s este

Διαβάστε περισσότερα

Curs 3. Spaţii vectoriale

Curs 3. Spaţii vectoriale Lector uv dr Crsta Nartea Curs Spaţ vectorale Defţa Dacă este u îtreg, ş x, x,, x sut umere reale, x, x,, x este u vector -dmesoal Mulţmea acestor vector se otează cu U spaţu vectoral mplcă patru elemete:

Διαβάστε περισσότερα

ELEMENTE DE STATISTICA DESCRIPTIVA

ELEMENTE DE STATISTICA DESCRIPTIVA ELEMENTE DE STATISTICA DESCRIPTIVA Cursul CERMI Facultatatea Costruct de Mas www.cerm.utcluj.ro Cof.dr.g. Marus Bulgaru STATISTICA DESCRIPTIVA STATISTICA DESCRIPTIVA Populate, Caracterstca dscreta, cotua

Διαβάστε περισσότερα

Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu

Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea

Διαβάστε περισσότερα

Productia (buc) Nr. Salariaţi Total 30

Productia (buc) Nr. Salariaţi Total 30 Î vederea aalze productvtăţ obţute î cadrul ue colectvtăţ de salaraţ formată d 50 de persoae, s-a extras u eşato format d de salaraţ. Datele refertoare la producţa zle precedete sut prezetate î tabelul

Διαβάστε περισσότερα

Pentru această problemă se consideră funcţia Lagrange asociată:

Pentru această problemă se consideră funcţia Lagrange asociată: etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru

Διαβάστε περισσότερα

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori)

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori) Ssteme cu partajare - cotut Recaptulare: modelul smplu de trafc M / M / PS ( umar de utlzator, server, umar de pozt petru utlzator) M / M / PS ( umar de utlzator, servere, umar de pozt petru utlzator)

Διαβάστε περισσότερα

Curs 3. Biostatistica: trecere in revista a metodelor statistice clasice

Curs 3. Biostatistica: trecere in revista a metodelor statistice clasice Curs 3. Bostatstca: trecere revsta a metodelor statstce clasce Bblo: W.Ewes, G.R. Grat Statstcal methods boformatcs, Sprger, 005 Cap. -3, cap.5 Structura Teste de asocere (depedeță) Teste de cocordață

Διαβάστε περισσότερα

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite. CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte

Διαβάστε περισσότερα

Noţiuni de verificare a ipotezelor statistice

Noţiuni de verificare a ipotezelor statistice Noţu de verfcare a potezelor statstce Verfcarea potezelor statstce este legată de compararea dfertelor poteze asupra ue populaţ statstce (ş u asupra uu eşato) cu datele obţute pr îcercăr expermetale Dacă

Διαβάστε περισσότερα

1. Modelul de regresie

1. Modelul de regresie . Modelul de regrese.. Câteva cosderete de ord geeral La fel ca ş î multe alte dome, î domeul ecoomc ş î partcular î cel al afacerlor se îtâlesc deseor stuaţ care presupu luarea uor decz, care ecestă progoze

Διαβάστε περισσότερα

Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. =

Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. = Xt () Procese stocastce (2) Fe u proces stocastc de parametru cotuu s avad spatul starlor dscret. Cu spatul starlor S = {,,, N} sau S = {,, } Defta : Procesul X() t este u proces Markov daca: PXt { ( )

Διαβάστε περισσότερα

ECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D

ECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D ANALIZA NUMERICA ECUATII NELINIARE PE R (http://bavara.utclu.ro/~ccosm) ECUATII NELINIARE PE R. INTRODUCERE e D R D R : s sstemul: ( x x x ) ( x x x ) D () Daca se cosdera aplcata : D R astel ca: ( x x

Διαβάστε περισσότερα

Statistica descriptivă. Şef de Lucrări Dr. Mădălina Văleanu

Statistica descriptivă. Şef de Lucrări Dr. Mădălina Văleanu Statstca descrptvă Şef de Lucrăr Dr. Mădăla Văleau mvaleau@umfcluj.ro MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medaa, Modul, Meda geometrca, Meda armoca, Valoarea cetrala MĂSURI DE DE DISPERSIE Mm, Maxm,

Διαβάστε περισσότερα

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,,

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,, Cursul 1 Î cele ce urmează vom prezeta o ouă structură algebrcă, structura de spaţu vectoral (spaţu lar) utlzâd structurle algebrce cuoscute: mood, grup, el, corp. Petru îceput să reamtm oţuea de corp:

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

def def punctul ( x, y )0R 2 de coordonate x = b a

def def punctul ( x, y )0R 2 de coordonate x = b a Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă

Διαβάστε περισσότερα

Cercetarea prin sondajul II Note de curs prelegere master data 24 oct.2013

Cercetarea prin sondajul II Note de curs prelegere master data 24 oct.2013 Cercetarea pr sodajul II ote de curs prelegere master data 4 oct.13 al.sac-mau www.amau.ase.ro http://www.ase.ro/ase/studet/de.asp?tem=fsere&id=88.oct.13 1 Dstrbuta ormala.oct.13 Dstrbuta ormala Cea ma

Διαβάστε περισσότερα

Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale.

Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale. Modulul 4 APLICAŢII CONTINUE Subecte :. Cotutatea fucţlor defte pe spaţ metrce.. Uform cotutatate. 3. Lmte. Dscotutăţ lmte parţale lmte terate petru fucţ de ma multe varable reale. Evaluare :. Cotutatea

Διαβάστε περισσότερα

Sondajul statistic -III

Sondajul statistic -III STATISTICA Sodajul statstc -III tema 9 sapt.3-7 aprle 1 al.sac-mau www.amau.ase.ro http://www.ase.ro/ase/studet/de.asp?tem=fsere&id=88 Dstrbuta ormala Dstrbuta ormala Cea ma mportata dstrbute cotua: umeroase

Διαβάστε περισσότερα

ELEMENTE DE TEORIA PROBABILITĂŢILOR

ELEMENTE DE TEORIA PROBABILITĂŢILOR CAPITOLUL ELEMENTE DE TEORIA PROAILITĂŢILOR Câmp de evemete U feome îtâmplător se poate observa, de regulă, de ma multe or Faptul că este îtâmplător se mafestă pr aceea că u ştm date care este rezultatul

Διαβάστε περισσότερα

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât Cp 2 INTEGRALA RIEMANN 9 CAPITOLUL 2 INTEGRALA RIEMANN 2 SUME DARBOUX CRITERIUL DE INTEGRABILITATE DARBOUX Defţ 2 Se umeşte dvzue tervlulu [, ] orce sumulţme,, K,, K, [, ] stfel îcât = { } = < < K< <

Διαβάστε περισσότερα

Tema 2. PRELUCRAREA REZULTATELOR EXPERIMENTALE

Tema 2. PRELUCRAREA REZULTATELOR EXPERIMENTALE Tea. PRELUCRAREA REZULTATELOR EXPERIMENTALE. Eror de ăsură A ăsura o ăre X îseaă a copara acea ăre cu alta de aceeaş atură, [X], aleasă pr coveţe ca utate de ăsură. I ura aceste coparaţ se poate scre X=x[X]

Διαβάστε περισσότερα

TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE

TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE Obectve Cuoaşterea metodelor umerce de descrere a datelor statstce Aalza rcalelor metode umerce etru descrerea datelor cattatve egruate Aalza

Διαβάστε περισσότερα

METODE DE OPTIMIZARE. Lucrarea 8 1. SCOPUL LUCRĂRII 2. PREZENTAREA TEORETICĂ 2.1. METODA CELOR MAI MICI PĂTRATE 2.2. COEFICIENTUL DE CORELAŢIE

METODE DE OPTIMIZARE. Lucrarea 8 1. SCOPUL LUCRĂRII 2. PREZENTAREA TEORETICĂ 2.1. METODA CELOR MAI MICI PĂTRATE 2.2. COEFICIENTUL DE CORELAŢIE Lucrarea 8 METODE DE OPTIMIZARE. SCOPUL LUCRĂRII Prezetarea uor algort de optzare, pleetarea acestora îtr-u lbaj de vel îalt î partcular, C ş folosrea lor î rezolvarea uor problee de electrocă.. PREZENTAREA

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL

9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL 9. CRCE ELECRCE N REGM NESNSODAL 9.. DESCOMPNEREA ARMONCA Ateror am studat regmul perodc susodal al retelelor electrce, adca regmul permaet stablt retele lare sub actuea uor t.e.m. susodale s de aceeas

Διαβάστε περισσότερα

Prof. univ. dr. Constantin ANGHELACHE Prof. univ. dr. Gabriela-Victoria ANGHELACHE Lector univ. dr. Florin Paul Costel LILEA

Prof. univ. dr. Constantin ANGHELACHE Prof. univ. dr. Gabriela-Victoria ANGHELACHE Lector univ. dr. Florin Paul Costel LILEA Metode ş procedee de ajustare a datelor pe baza serlor croologce utlzate î aalza tedţe dezvoltăr dfertelor dome de actvtate socal-ecoomcă Prof. uv. dr. Costat ANGHELACHE Uverstatea Artfex/ASE - Bucureșt

Διαβάστε περισσότερα

ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE

ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE 4. ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE Feomeele de masă studate de statstcă se mafestă pr utăţle dvduale ale colectvtăţ cercetate care preztă o varabltate (împrăştere)

Διαβάστε περισσότερα

8.3. Estimarea parametrilor

8.3. Estimarea parametrilor 8.3. Estmarea parametrlor Modelarea uu feome aleatoru real, precum trafcul ofert de o sursă formaţoală, ue reţele de comucaţ, îseamă detfcarea uu model probablstc, M, varablă aleatore sau proces aleatoru,

Διαβάστε περισσότερα

METODE DE ESTIMARE A PARAMETRILOR UNEI REPARTIŢII. METODA VEROSIMILITĂŢII MAXIME. METODA MOMENTELOR.

METODE DE ESTIMARE A PARAMETRILOR UNEI REPARTIŢII. METODA VEROSIMILITĂŢII MAXIME. METODA MOMENTELOR. Curs 6 OI ETOE E ETIARE A ARAETRILOR UNEI REARTIŢII. ETOA VEROIILITĂŢII AIE. ETOA OENTELOR.. Noţu troductve Î legătură cu evaluarea ş optzarea proceselor oraţoale apar ueroase problee de estare cu sut:

Διαβάστε περισσότερα

Formula lui Taylor Extremele funcţiilor de mai multe variabile Serii de numere cu termeni oarecare Serii cu termeni pozitivi. Criterii de convergenţă

Formula lui Taylor Extremele funcţiilor de mai multe variabile Serii de numere cu termeni oarecare Serii cu termeni pozitivi. Criterii de convergenţă Uverstatea Spru Haret Facultatea de Stte Jurdce, Ecoome s Admstratve, Craova Programul de lceta: Cotabltate ş Iformatcă de Gestue Dscpla Matematc Ecoomce Ttular dscplă Cof uv dr Laura Ugureau SUBIECTE

Διαβάστε περισσότερα

LUCRARE DE LABORATOR NR. 1 MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA

LUCRARE DE LABORATOR NR. 1 MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA LUCRARE DE LABORATOR NR. MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA. OBIECTIVELE LUCRARII Isusrea uor otu refertoare la: - eror

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

METODE DE ANALIZĂ STATISTICĂ A LEGĂTURILOR DINTRE FENOMENE

METODE DE ANALIZĂ STATISTICĂ A LEGĂTURILOR DINTRE FENOMENE METODE DE ANALIZĂ STATISTICĂ A 0. LEGĂTURILOR DINTRE FENOMENE Asura feomeelor de masă studate de statstcă acţoează u umăr de factor rcal ş secudar, eseţal ş eeseţal, sstematc ş îtâmlător, obectv ş subectv,

Διαβάστε περισσότερα

Sisteme cu asteptare - continut. Modelul simplu de trafic

Sisteme cu asteptare - continut. Modelul simplu de trafic Ssteme cu asteptare - cotut Recaptulare: modelul smplu de trafc Dscpla cadrul cozlor de asteptate M / M / Modelul ( server, pozt de asteptare ) Aplcat modelarea trafculu de date la vel de pachete M / M

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Analiza univariata a datelor

Analiza univariata a datelor Aalza uvarata a datelor Chestu orgazatorce Nota: Exame fal (mart, 13 ma): 70% Proect semar: 30% Suport curs: Cătou I. (coord.), Băla C., Dăeţu T., Orza Gh., Popescu I., Vegheş C., Vrâceau D. "Cercetăr

Διαβάστε περισσότερα

2. Sisteme de ecuaţii neliniare

2. Sisteme de ecuaţii neliniare Ssteme de ecuaţ elare 9 Ssteme de ecuaţ elare Î acest catol abordăm roblema reolvăr umerce a sstemelor de ecuaţ alebrce elare Cosderăm următorul sstem de ecuaţ î care cel uţ ua d ucţle u este lară Sub

Διαβάστε περισσότερα

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011 Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila

Διαβάστε περισσότερα

Sub formă matriceală sistemul de restricţii poate fi scris ca:

Sub formă matriceală sistemul de restricţii poate fi scris ca: Metoda gradetulu proectat (metoda Rose) Î cazul problemelor de optmzare covee ale căror restrcţ sut lare se poate folos metoda gradetulu proectat. Î prcpu, această metodă poate f folostă ş petru cazul

Διαβάστε περισσότερα

Teoria aşteptării- laborator

Teoria aşteptării- laborator Teora aşteptăr- laborator Model de aşteptare cu u sgur server. Î tmpul zle la u ATM (automat bacar care permte retragerea de umerar s alte trazacţ bacare electroce) avem î mede 4 de cleţ pe oră, adcă.4

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE

PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE Lucrarea r. PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE. GENERALITATI I electrotehcă ş electrocă terv umeroase mărm fzce ca: tesue, curet, rezsteţă, eerge, etc., care se caracterzează pr mărme ş pr aumte

Διαβάστε περισσότερα

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008 Cocursul Naţioal Al. Myller CLASA a VII-a Numerele reale disticte x, yz, au proprietatea că Să se arate că x+ y+ z = 0. 3 3 3 x x= y y= z z. a) Să se arate că, ditre cici umere aturale oarecare, se pot

Διαβάστε περισσότερα

Universitatea din București, Facultatea de Chimie, Specializarea: Chimie Medicală/Farmaceutică

Universitatea din București, Facultatea de Chimie, Specializarea: Chimie Medicală/Farmaceutică Uverstatea d Bucureșt, Facultatea de Chme, Specalzarea: Chme Medcală/Farmaceutcă Statstcă & Iformatcă TEME ș aplcaț Laborator (M. Vlada, 07 Laborator Tema. Calcule statstce, fucț matematce ș statstce facltăț

Διαβάστε περισσότερα

PRELUCRAREA DATELOR EXPERIMENTALE

PRELUCRAREA DATELOR EXPERIMENTALE PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

STATISTICĂ MARINELLA - SABINA TURDEAN LIGIA PRODAN

STATISTICĂ MARINELLA - SABINA TURDEAN LIGIA PRODAN MARINELLA - SABINA TURDEAN LIGIA PRODAN STATISTICĂ STATISTICĂ CUPRINS Captolul NOŢIUNI INTRODUCTIVE... 5. Momete ale evoluţe statstc... 5. Obectul ş metoda statstc... 5.3 Noţu fudametale utlzate î statstcă...

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

CURS 6 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ (continuare)

CURS 6 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ (continuare) CURS 6 ERODIAICĂ ŞI FIZICĂ SAISICĂ (cotuare) 6.1 Prcpul II al termodamc Să e reamtm că prmul prcpu al termodamc a arătat posbltatea trasformăr lucrulu mecac, L, î căldură, Q, ş vers, fără a specfca î ce

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ

CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ Coderaţ prelmare Î captolele precedete am dcutat depre pobltăţle de culegere a datelor pe baza metodelor de obervare totală au parţală, ca ş depre modaltăţle

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

PROBLEME CU PARTEA ÎNTREAGĂ ŞI

PROBLEME CU PARTEA ÎNTREAGĂ ŞI PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Probabilități și Statistică 1.1. Metoda Monte-Carlo

Probabilități și Statistică 1.1. Metoda Monte-Carlo Matematcă ș Iformatcă.. Metoda Mote-Carlo.. Metoda Mote Carlo. Aplcaţ. Precza metode. Termeul,,Metoda Mote Carlo este som cu termeul,,metoda epermetelor statstce. Aparţa aceste metode se raportează de

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5 Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

INTRODUCERE. Obiectivele cursului

INTRODUCERE. Obiectivele cursului STATISTICĂ ECONOMICĂ INTRODUCERE Deschderea ş mobltatea metodelor statstce de vestgare a feomeelor ş roceselor, î coferă acestea u caracter geeral de cercetare a realtăţ. Acest fat stă la baza dfertelor

Διαβάστε περισσότερα

3. INDICATORII STATISTICI

3. INDICATORII STATISTICI 3. INDICATORII STATISTICI 3.. Necestatea folosr dcatorlor statstc. Idcator statstc prmar. Idcator statstc dervaţ Am văzut că obectul de studu al statstc îl costtue feomeele ş procesele de masă. Acestea

Διαβάστε περισσότερα

6. VARIABILE ALEATOARE

6. VARIABILE ALEATOARE 6. VARIABILE ALEATOARE 6.. Vrble letore. Reprtţ de probbltte. Fucţ de reprtţe O vrblă letore este o cttte măsurtă î legătură cu u expermet letor, de exemplu, umărul de produse cu defecţu î producţ zlcă

Διαβάστε περισσότερα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem

Διαβάστε περισσότερα

METODE NUMERICE Obiective curs Conţinut curs

METODE NUMERICE Obiective curs Conţinut curs ETODE NUERICE Obectve curs Crearea, aalza ş mplemetarea de algortm petru rezolvarea problemelor d matematca cotuă Aalza complextăţ, aalza ş propagarea erorlor, codţoarea problemelor ş stabltatea umercă

Διαβάστε περισσότερα

METODA REFRACTOMETRICĂ DE ANALIZĂ

METODA REFRACTOMETRICĂ DE ANALIZĂ METODA REFRACTOMETRICĂ DE ANALIZĂ Refractometra este o metodă de testare fzcă a propretățlor ue substațe pr măsurarea dcelu de refracțe. Idcele de refracțe este măsurat cu ajutorul refractometrelor. Idcele

Διαβάστε περισσότερα

B( t B 11. NOŢIUNILE FUNDAMENTALE ŞI TEOREMELE GENERALE ALE DINAMICII Lucrul mecanic. y O j

B( t B 11. NOŢIUNILE FUNDAMENTALE ŞI TEOREMELE GENERALE ALE DINAMICII Lucrul mecanic. y O j . Noţule fudametale ş teoremele geerale ale dam. NŢIUNILE FUNDAMENTALE ŞI TEREMELE GENERALE ALE DINAMIII Reolvarea problemelor de damă se fae u ajutorul uor teoreme, umte teoreme geerale, deduse pr aplarea

Διαβάστε περισσότερα

Din această definiţie a probabilităţilor rezultă următoarele proprietăţi ale acestora:

Din această definiţie a probabilităţilor rezultă următoarele proprietăţi ale acestora: FIABILIAE Î proectarea ş costrucţa dfertelor ecpamete este ecesară asgurarea sguraţe î fucţoare a acestora; această codţe a codus la utlzarea î proectare a aumtor coefceţ de sguraţă. Noţule de fabltate

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

aşteptării pot fi înţelese cu ajutorul noţiunilor de bază culese din acest volum. În multe cazuri hazardul, întâmplarea îşi pun amprenta pe

aşteptării pot fi înţelese cu ajutorul noţiunilor de bază culese din acest volum. În multe cazuri hazardul, întâmplarea îşi pun amprenta pe Cuprs Prefaţă... 5 I. ELEMENTE DE ALGEBRĂ LINIARĂ... 7 Matrc... 8 Matrc partculare... 9 Iversa ue matrc... Ssteme de ecuaţ lare... 5 Problema compatbltăţ sstemelor... 7 Problema determăr sstemelor... 8

Διαβάστε περισσότερα

Laborator 4 Interpolare numerica. Polinoame ortogonale

Laborator 4 Interpolare numerica. Polinoame ortogonale Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode

Διαβάστε περισσότερα

Elemente de teorie a informaţiei. 1. Câte ceva despre informaţie la modul subiectiv

Elemente de teorie a informaţiei. 1. Câte ceva despre informaţie la modul subiectiv Elemete de teore a formaţe. Câte ceva desre formaţe la modul subectv Î cele ce urmează vom face câteva cosderaţ legate de formaţe ş măsurare a e. Duă cum se cuoaşte formaţa se măsoară î bţ. De asemeea

Διαβάστε περισσότερα

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii... Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe

Διαβάστε περισσότερα

UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE OPTICĂ BN B

UNIVERSITATEA POLITEHNICA DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE OPTICĂ BN B UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE OPTICĂ BN - B DIFRACŢIA LUMINII DETERMINAREA LUNGIMII DE UNDĂ A RADIAŢIEI LUMINOASE UTILIZÂND REŢEAUA DE DIFRACŢIE 004-005

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα