DIFERENCIJALNE JEDNADŽBE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "DIFERENCIJALNE JEDNADŽBE"

Transcript

1 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna jednadžba homogenog stupnja Egzaktna diferencijalna jednadžba Dajemo nekoliko karakterističnih primjera diferencijalnih jednadžbi gdje funkcija () predstavlja traženo rješenje dok ' obilježava njenu derivaciju odnosno d ' : d i) diferencijalna jedandžba koja se rješava metodom direktne integracije ' e ; diferencijalna jedandžba koja se rješava metodom separacije varijabli ' ( ) ; i linearna diferencijalna jednadžbe ' + e ; iv) Bernoullijeva diferencijalna jednadžba 5 ' e ; v) egzaktna diferencijalna jednadžba d + ( + ln ) d 0 ; vi) diferencijalna jedandžba homogenog stupnja ( ) d + d 0

2 6 Mervan Pašić: Matan dodatak predavanjima za grupe GHI Naravno postoje još mnogi drugi tipovi diferencijalnih jednadžbi prvog reda Tipovi koje smo gore naveli i koje ćemo detaljno raditi se najčešće pojavljuju u nastavnom procesu Primjetimo da pod rješenjem diferencijalne jednadžbe ' F( ( )) podrazumjevamo funkciju () koja zadovoljava tu jednadžbu u smislu da nakon uvrštavanja te funkcije u ' F( ( )) imamo valjanu jednakost Na primjer funkcija e zadovoljava diferencijalnu jedandžbu ' e + jer kad je uvrstimo u danu jednakost dobivamo 0 0 Kažemo još da je funkcija e jedno konkretno ili takozvano partikularno rješenje ove jednadžbe Međutim to nisu sva njena rješenja Sva njena rješenja takozvano opće rješenje imaju nakon rješavanje dane jednadžbe ' e + oblik c e + e gdje je c proizvoljna konstanta Znači trebamo razlikovati pojam općeg rješenja od pojma partikularnog rješenja neke diferencijalne jednadžbe 9 DIREKTNA INTEGRACIJA Mali broj diferencijalnih jednadžbi možemo riješiti samo direktnom integracijom Međutim kad tad nakon primjene raznih metoda diferencijalnu jednadžbu dovodimo u oblik za direktno integriranje Metodu direktnog integriranja ćemo objasniti na slijedećim primjerima 670 ' e ( ) e d e + c ( ) e + c ' ( + ) ( ) ( + ) d d + d + d c 7 7 ( ) c 7 ' sin ( ) sin d cos + cos d cos + sin ( ) cos + sin + c 7 ' + 67 ; potrebno je prvo naći opće rješenje a potom samo ono koje (0) zadovoljava početni uvjet ( 0) ; i) ' + ( ) ( + ) d + + c 0 (0) (0) c 0 c 0 i rješenje: ( ) +

3 9 Diferencijalne jednadžbe 65 sin ' 67 cos ( π / ) sin sin i) ' ( ) d + c ln cos cos cos ( π / ) ( π / ) ln cos( π / ) + c c ln i rješenje: ( ) lncos + ln ' e 675 () 0 e e i) ' e ( ) e d e d e + c 9 e e ( ) 0 () + c 0 c e 9 9 e e i rješenje: ( ) e 9 9 ln ' 676 () 0 ln ln i) ' ( ) d + c ln () 0 () ln + c 0 c 0 i rješenje: ( ) ln PRIMJEDBA Kako vidimo već u nekoliko primjera rješavanja diferencijalnih jednadžbi neodređeni integrali igraju ključnu ulogu te stoga preporučamo da se vratite na Poglavlje 7 te ponovite osnovne tipove i metode za rješavanje neodređenih integrala Naravno u složenijim tipovima diferencijalnih jednadžbi osim neodređenih integrala potrebno je i znati algoritam za rješavanje dotičnog tipa jednadžbe 9 SEPARACIJA VARIJABLI Sada prelazimo na primjere onih diferencijalnih jednadžbi koje se rješavaju metodom separacije varijabli Sama riječ kaže da treba u danoj diferencijalnoj jednadžbi razdvojiti varijable i na dvije različite strane jednakosti Pri tome prvo treba separirati derivaciju

4 66 Mervan Pašić: Matan dodatak predavanjima za grupe GHI d odnosno trebamo je zapisati u obliku ' Kada se izvrši separacija tada direktnim d integriranje obadviju strana jednakosti dolazimo do rješenja dane jednadžbe Primjetimo da se mali broj jednadžbi može riješiti samo separacijom Međutim veći broj jednadžbi se može raznim metodama dovesti na separaciju varijable ( ) d ' d ( ) d ( ) d ; Rješenja: ln + c 678 d ' ( ) d ( ) d d ( ) ln( ) ln + c ; Rješenja: ( ) i ( ) 0 / c e 679 d ' d d d arc sin + c ; Rješenja: ( ) sin( + c) 680 ' e d e d d e d e + c ; Rješenja: e + c ' ( + ) 68 (0) d d iv) ' ( + ) d + + d arc tg + c ; Opće rješenje: ( ) tg( + c) ; π v) (0) (0) tg (0 + c) c ; π vi) Rješenje zadatka: tg( + ) ' 68 () i) ' d d d d + c ;

5 9 Diferencijalne jednadžbe 67 i Opće rješenje: ( ) + c ; 5 ( ) () + c c ; + 5 Rješenje zadatka: ' e 68 () i) ' e d e d d e d e + c ; i Opće rješenje: + ( ) e c ; () () e + c c 6 e ; Rješenje zadatka: ( ) e + 6 e ZADACI ZA VJEŽBU U slijedećim zadacima metodom separacije naći opća rješenja diferencijalnih jednadžbi 68 d + d 685 ' ' 687 ( ' 688 ' e 0 (sin ' e 689 sin U slijedećim zadacima metodom separacije naći partikularno rješenje diferencijalnih jednadžbi ' () 5 69 e ' (0) 69 ( ) ' + 0 (0) 695 ' () ' + sin 0 () π (ctg ) ' + (0) RJEŠENJA + 68 ln c / c e ( + / ) 686 ( c e ) i e ( + ) c

6 68 Mervan Pašić: Matan dodatak predavanjima za grupe GHI 688 e cos cos sin sin + + c cos + sin ( + ) e c 690 ln ( e ) + 69 e 69 π 69 (ln( ) + c) i cos 9 LINEARNA DIFERENCIJALNA JEDNADŽBA Linearne diferencijalne jednadžbe za razliku od ostalih tipova diferencijalnih jednadžbi imaju svojstvo univerzalnog rješenja To znači da sve linearne diferencijalne jednadžbe imaju istu formu rješenja O tome govori slijedeći rezultat Teorem Neka je zadana linearna diferencijalna jednadžba u općenitom obliku: d + ) q( ) d gdje su ) i q() neprekidne funkcije takozvani koeficijenti jednadžbe Tada sva njena rješenja () imaju oblik: ( ) ( ) p d e c + ( ) q e ) d d Dokaz: dokaz je jednostavan te istovremeno ilustrira postupak za rješavanje linearnih jednadžbi koji sami možemo koristiti u zadacima Ako je () neko rješenje linearne diferencijalne jednadžbe ' + ) q( ) tada želimo pokazati da to rješenje mora imati oblik zadan u iskazu teorema Prvo jednadžbu množimo sa multiplikatorom e sređujemo lijevu stranu i na kraju integriramo obadvije strane jednadžbe: ) d pa d d e ) d e ) d d d ( ) + ( ) p d p e q( ) e ( ) ( ) p d q e e ) d e [ q( ) e ) d ) d ) d q( ) e d + c] ) d d + c Naravno da je moguće koristiti ovu formulu za rješavanje linearnih diferencijalnih jednadžbi Međutim ako nismo dovoljno vični sa integralima bilo bi bolje ponoviti postupak u dokazu ovog teorema To ćemo pokazati na nekoliko riješenih primjera

7 9 Diferencijalne jednadžbe Riješimo diferencijalnu jednadžbu ' + e koristiće formulu za opće rješenje danu u teoremu : i) ) q ( ) e ; p ) d d ln e ) d ln e ; ) d i q ( ) e d e d e ; iv) e ) d ln e v) ) d ) d c ( ) e [ c + q( ) e d] [ c + e ] e Riješimo diferencijalnu jednadžbu ' + e koristeći postupak za dokaz općeg rješenja koji je prezentiran u dokazu teorema Prvo jednadžbu pišemo u obliku ' + e te sa njom radimo slijedeće korake: i) množimo jednadžbu sa multiplikatorom e ) d ln e pa dobivamo i ' + e ; d sređivanje desne strane: ( e ; d integriranjem obadviju strana dobivamo: c + e d ( ) [ c + e ] e c + Na svakom pojedinačno je da procjeni koja od ova dva načina će koristiti u rješavanju linearnih diferencijalnih jednadžbi 698 Riješimo diferencijalnu jednadžbu ' + 5 koristeći postupak za dokaz općeg rješenja koji je prezentiran u dokazu teorema Prvo jednadžbu pišemo u obliku 5 ' + pa postupamo: 5 ln 5 i) množimo jednadžbu sa multiplikatorom e d e 5 pa dobivamo i 5 ' + 5 ; 7 d 7 sređivanje desne strane: ( 5 ; d integriranjem obadviju strana dobivamo: c + d ) [ c + ] ( Riješimo diferencijalnu jednadžbu ' + e koristeći postupak za dokaz općeg rješenja koji je prezentiran u dokazu teorema : c

8 70 Mervan Pašić: Matan dodatak predavanjima za grupe GHI i) množimo jednadžbu sa multiplikatorom e e e ' + e ; d sređivanje desne strane: ( e ; d i integriranjem obadviju strana dobivamo: e c + d ( ) e [ c + ] e + ce d pa dobivamo ZADACI ZA VJEŽBU U slijedećim zadacima naći opće rješenje dane linearne diferencijalne jednadžbe 700 ' 70 ' + ln 70 ' + sin 70 ' + ( ) 70 ' 705 ' ln 706 ' + + e 707 ' e 708 ' + sin 709 ( ' cos ) 70 ( ' )ln 7 ' + ( + ) e U slijedećim zadacima naći partikularno rješenje dane linearne diferencijalne jednadžbe Pri tome kao i kod separacije varijable iz pethodne točke prvo nađemo opće rješenje a potom uvrštavanjem početnog uvjeta izračunamo nepoznatu konstantu c ' + + e ' e 7 7 (0) 5 () ' + e ' + e 7 75 (0) () ' + 5 ( + ) ' () () ' + sin ' + cos ( π ) 0 ( π / ) 0 ' + + ' + e 70 7 () / () ( + ) ' + ( + ) + 7 'cos sin e 7 ( ) (0)

9 9 Diferencijalne jednadžbe 7 RJEŠENJA / c c cos c e ln 70 / 70 ( + c e ) 70 / c e c + ln e + c e 707 e e + c e sin cos + c e 709 ( c + sin ) 70 cln ln 7 ( 6 + c) e 7 + e + e e e 7 e e + ( e e ) e 7 e + e arctg 9arctg cos e cos sin π BERNOULLIJEVA DIFERENCIJALNA JEDNADŽBA Bernoullijeva diferencijalna jednadžba ima oblik: d d + ) q( ) n Ako je n 0 ili n tada je ovo linearna jednadžba Ako je pak n 0 tada se n supstitucijom u Bernoullijeva jednadžba svodi na linearnu jednadžbu Preciznije ako pomnožimo Bernoullijevu jednadžbu sa n d d + ) n n q( ) n tada dobivamo: n d( ) ( ) n + p q( ) n d Sada supstitucijom u dobivamo da Bernoullijeva jednadžba prelazi u linearni oblik: du + ( n) ) u ( n) q( ) d Sada ovu linearnu jednadžbu riješimo koristeći razmatranja iz prethodne točke pa je traženo rješenje Bernoullijeve jednadžbe dano sa /( n) ( ) ( u( )) Ovaj postupak ćemo ponovit na nekoliko riješenih primjera

10 7 Mervan Pašić: Matan dodatak predavanjima za grupe GHI d 7 Riješiti diferencijalnu jednadžbu + d i) Množenjem jednadžbe sa dobivamo: ) d + d d( + d ; i iv) Sada supstitucijom u prethodna jednadžba postaje linearna du u ; d Ovu linearnu jednadžbu rješavamo primjenom postupka iz Teorema pa dobivamo da je: u( ) + + ce ; Na kraju traženo rješenje Bernoullijeve jednadžbe glasi: + + ce ( ) d 75 Riješiti diferencijalnu jednadžbu + Prvo je napišemo u obliku: d d d + Potom radimo slijedeće korake i) Množenjem jednadžbe sa i iv) dobivamo: d + d( ) + ; d d Sada supstitucijom u prethodna jednadžba postaje linearna du 8 + u ; d Ovu linearnu jednadžbu rješavamo primjenom postupka iz Teorema pa c dobivamo da je: u ( ) + ; 8 9 Na kraju traženo rješenje Bernoullijeve jednadžbe glasi: c ( ) 8 9 ± + ZADACI ZA VJEŽBU U slijedećim zadacima naći opće riješenje zadane diferencijalne jednadžbe 76 ' + sin ' + e 79 ' ' 70 ' tg cos 7 ' + + e 0 5

11 9 Diferencijalne jednadžbe 7 U slijedećim zadacima naći partikularno riješenje zadane diferencijalne jednadžbe ' + () 7 ' + () 75 ' tg + tg 0 (0) 77 ' + cos 0 () 5 ' ( ) ' + ( ) e RJEŠENJA 9 76 ( c e + cos + sin ) 0 0 / 77 c e ( + + ) 79 7 (e + c) i / ( + e ) 77 / + c e 8 c ( e + e ) / 7 95 EGZAKTNA DIFERENCIJALNA JEDNADŽBA Diferencijalna jednadžba f ( d + g( d 0 se zove egzaktna ukoliko postoji funkcija u ( takva da je: u f ( u i g( odnosno ukoliko je du f ( d + g( Tada egzaktna jednadžba poprima oblik du 0 dok je opće rješenje dano formulom u ( c Naravno pod uvjetom da smo pronašli iz prethodnih uvjeta funkciju u ( Primjetimo još da se svaka diferencijalna jednadžba prvog reda može napisati u obliku f ( d + g( d 0 Prije pronalaženja funkcije u ( bilo bi dobro provjeriti dali je dana jednadžba uopće egzaktna jer ako nije nećemo moći ni naći takvu funkciju Kriterij za utvrđivanje da li je neka diferencijalna jednadžba egzaktna je dan slijedećim rezultatom

12 7 Mervan Pašić: Matan dodatak predavanjima za grupe GHI Teorem Diferencijalna jednadžba f ( d + g( d 0 ako vrijedi: f g je egzaktna ako i samo To znači da ćemo za danu jednadžbu prvo provjeriti dali je egzaktna koristeći pri tome prethodni teorem a tek potom ćemo tražiti funkciju u ( Postupak za pronalaženje funkcije u ( dajemo u nekoliko slijedećih primjera 78 Nađimo opće rješenje diferencijalne jednadžbe ( + ) d + ( + d 0 Radimo u nekoliko koraka: i) + f ( + i g( ; f g računamo: + i + odnosno f g pa po teoremu zaključujemo da je ( + ) d + ( + d 0 egzaktna diferencijalna jednadžba; i po definiciji egzaktne jednadžbe postoji funkcija u( koja zadovoljava u f ( + iz čega integriranjem slijedi: i u g( + u ( ( + ) d + + c( u ( ( + d + + c( ) odnosno u ( + + c ; iv) S obzirom da je dana jednadžba egzaktna to opće rješenje () u ( c + c ima oblik: 79 Nađimo opće rješenje diferencijalne jednadžbe ( + e ) d + ( + e + d 0 Radimo u nekoliko koraka: i) f ( + e i g( + e + ; f g računamo: + e i + e odnosno f g pa po teoremu zaključujemo da je ( + e ) d + ( + e + d 0 egzaktna diferencijalna jednadžba; i po definiciji egzaktne jednadžbe postoji funkcija u( koja zadovoljava

13 9 Diferencijalne jednadžbe 75 u u f ( + e i g( + e + iz čega integriranjem slijedi: u( ( + e ) d + e + c( u( ( + e + d + e + odnosno u( + e + + c ; iv) S obzirom da je dana jednadžba egzaktna to opće rješenje () u ( c + e + c ima oblik: 70 Nađimo partikularno rješenje diferencijalne jednadžbe Radimo u nekoliko koraka: ( + sin ) d + (cos d 0 uz uvjet ( 0) i) f ( sin i g( cos ; f g f g računamo: sin i sin odnosno pa po teoremu zaključujemo da je ( + sin ) d + (cos d 0 egzaktna diferencijalna jednadžba; i po definiciji egzaktne jednadžbe postoji funkcija u( koja zadovoljava u f ( sin i u g( cos iz čega integriranjem slijedi: u ( ( + sin ) d + cos + c( u ( (cos d cos + c( ) odnosno u ( cos + c ; iv) S obzirom da je dana jednadžba egzaktna to opće rješenje () u ( c cos c ima oblik: v) Sada još trebamo odrediti konstantu c iz uvjeta ( 0) Uvrštavanjem ovog uvjeta u opće rješenje slijedi: cos0 0 c c pa je traženo rješenje zadatka funkcija: cos

14 76 Mervan Pašić: Matan dodatak predavanjima za grupe GHI ZADACI ZA VJEŽBU Naći opće rješenje dane egzaktne diferencijalne jednadžbe 7 ( + ) d + ( + d 0 7 ( e ) d + ( e ) d 0 7 ( + ' e d + ( d 0 75 e d ( + e ) d 0 76 d + ( + ln ) d 0 77 ( + sin ) d cos d 0 Naći partikularno rješenje 78 ( + ln d ( ) d 0 79 ( ) ' + ( () ( + + e (0) ) d + ( e + 0 RJEŠENJA 7 ( 6 + c 7 ( e ) c 7 + c 7 e ( ) c 75 e c 76 ln + c 77 cos c 78 + ln c e ( ) e 96 DIFERENCIJALNA JEDNADŽBA HOMOGENOG STUPNJA Diferencijalna jednadžba f( d+ g( d 0 je homogenog stupnja ukoliko se može svesti na oblik d h( ) Na primjer ukoliko su f ( ) i g ( polinomi homogenog d λ λ stupnja odnosno ako postoji broj λ takav da vrijedi f ( t t t f ( i g( t t t g( tada se diferencijalna jednadžba f ( d + g( d 0 može svesti na oblik d h( ) d Potom uvodimo supstituciju z te se početna jednadžba svodi na oblik riješiv metodom separacije varijabli To ćemo pokazati na nekoliko riješenih primjera 75 Riješiti diferencijalnu jednadžbu homogenog stupnja ( + 5 ) d + d 0 Nije teško primjetiti da su funkcije f ( ( + 5 ) i g ( polinomi homogenog

15 9 Diferencijalne jednadžbe 77 stupnja odnosno f ( t t t f ( i g ( t t t g( Stoga djeljenjem sa ovu jednadžbu svesti na oblik: d 5( ) + 0 d Supstitucijom z gdje je ' z' + z dobivamo: 5z + z' + z 0 z' + z z z Ova se jednadžba rješava separacijom varijabli: S obzirom da je je funkcija zdz d zdz d z ' + z + z z + z ln( 8 z odnosno z 8 c ( ) ± 75 Riješiti diferencijalnu jednadžbu: Supstitucijom z gdje je z' + z z z z c + z ) ln + c z 8 ćemo traženo rješenje jednadžbe ( + 5 ) d + d 0 ' e ' lako dobivamo da je: z z ' + e z' e Ova se jednadžba rješava separacijom varijabli: z z d z d z' e e dz e dz e z ln + c z ln(ln + c) S obzirom da je z odnosno z traženo rješenje jednadžbe ' e je funkcija ( ) ln(ln + c) ZADACI ZA VJEŽBU U slijedećim zadacima naći opće rješenje diferencijalne jednadžbe 75 ' + 75 ' 755 ' ' ( ) ' ' 759 ' ( ) ' 76 + ' ' 76 ( + ) '

16 78 Mervan Pašić: Matan dodatak predavanjima za grupe GHI 76 ' tg 76 ' e U slijedećim zadacima naći partikularno rješenje diferencijalne jednadžbe ' () 0 ' () ' () ' () 0 + ' () ( + ) ' () RJEŠENJA c 6 75 ln + c (log + c) c 6 c 757 c( + ) c +/ c 760 c / 76 ce 76 c i 0 76 sin c 76 ln lnc 765 ln ( + ln ) + ln 769 ( 5 / + ) 770

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

1 Obične diferencijalne jednadžbe

1 Obične diferencijalne jednadžbe 1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA 5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Obične diferencijalne jednadžbe 2. reda

Obične diferencijalne jednadžbe 2. reda VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 13 Obične diferencijalne jednadžbe 2. reda Obične diferencijalne jednadžbe 2. reda U ovoj lekciji vježbamo rješavanje jedne klase običnih

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

Matematika 2. Vježbe 2017/ lipnja 2018.

Matematika 2. Vježbe 2017/ lipnja 2018. Matematika Vježbe 17/18. 3. lipnja 18. Predgovor Ova neslužbena i nedovršena skripta prati auditorne vježbe iz kolegija Matematika koje se u ljetnom semestru ak. god. 17/18. na Gradevinskom fakultetu u

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Obične diferencijalne jednadžbe

Obične diferencijalne jednadžbe Poglavlje 1 Obične diferencijalne jednadžbe 1.1 Primjeri diferencijalnih jednadžbi Primjer 1.1 (Kosi hitac). Tijelo mase m bačeno je u vis početnom brzinom v pod kutem α u polju sile teže. Odredite trajektoriju

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Prikaz sustava u prostoru stanja

Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave

Διαβάστε περισσότερα

3. poglavlje (korigirano) F U N K C I J E

3. poglavlje (korigirano) F U N K C I J E . Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka.

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić Ivančica Mirošević MATEMATIKA Zbirka zadataka http://www.fesb.hr/mat Sveučilište u Splitu Fakultet elektrotehnike, strojarstva i brodogradnje Split, ožujak

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

y f x y g x Bernouli diferencijalna jed.: y' f x y g x y n realni broj; Svodi se na linernu dif.jed. Homogena diferencijalna jed.

y f x y g x Bernouli diferencijalna jed.: y' f x y g x y n realni broj; Svodi se na linernu dif.jed. Homogena diferencijalna jed. 0. DIFERENCIJALNE JEDNADZBE 0. Openito o diferenijalnim jednadzbama Obina diferenijalna jednadzba (dif.jed.) je izraz u kojem se nepoznania nalazi u formi derivaije ili diferenijala. Zavisna promijenjiva

Διαβάστε περισσότερα

LAPLACEOVA TRANSFORMACIJA

LAPLACEOVA TRANSFORMACIJA SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE MATEMATIČKE METODE U KEMIJSKOM INŽENJERSTVU LAPLACEOVA TRANSFORMACIJA Studenti : Nikolina Jakšić Kornelije Kraguljac 1. Laplaceova tranformacija

Διαβάστε περισσότερα

Obi ne diferencijalne jednadºbe

Obi ne diferencijalne jednadºbe VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Lekcija 1 Obične diferencijalne jednadžbe 1. reda Obi ne diferencijalne jednadºbe Uvodni pojmovi Diferencijalne jednadºbe su jednadºbe oblika: f(,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje 6 1 / 60

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje 6 1 / 60 Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje 6 1 / 60 Sadržaj Sadržaj: 1 Linearna diferencijalna jednadžba drugog reda Princip superpozicije rješenja homogene linearne jednadžbe 2 Homogena

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

Sustavi diferencijalnih jednadžbi

Sustavi diferencijalnih jednadžbi PMF-Matematički odsjek Sveučilište u Zagrebu Maja Starčević Sustavi diferencijalnih jednadžbi Skripta Zagreb, 2015. Predgovor Skripta je napisana prema predavanjima iz kolegija Sustavi diferencijalnih

Διαβάστε περισσότερα

Integrali Materijali za nastavu iz Matematike 1

Integrali Materijali za nastavu iz Matematike 1 Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα