SLIKE U BOJI KOLOR MODELI. RGB kolor model
|
|
- Ἀναίτις Κακριδής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 SLIKE U BOJI Korištenje boje u obradi slike je motivisano sa dva osnovna razloga. Prvi je taj da je boja moćan deskriptor koji pojednostavljuje identifikaciju objekata i njihovo izdvajanje. Drugi razlog je to što ljudi mogu razlikovati daleko više nijansi boja nego nijansi sivoga, što je posebno značajno kad se radi interaktivna (pod kontrolom posmatrača) analiza slike. Obrada slika u boji se može podijeliti u dvije oblasti. Jedna je uobičajena obrada slika u boji dok je druga tzv. pseudocolor, odnosno korištenje boje za obradu slika koje u svojoj suštini nemaju boju. Iako je percepcija i interpretacija boje psihološki fenomen koji još uvijek nije u potpunosti razjašnjen, fizička priroda boje se može opisati nekim formalnim zakonima zasnovanim na eksperimentalnim i teoretskim rezultatima. Isaac Newton je još godine opisao razlaganje sunčeve svjetlosti na spektar boja pri prolasku kroz staklenu prizmu. Ljudi i neke životinje vide boju kao dio spektra koji se reflektuje od objekta. Osnovne karakteristike koje se koriste da bi razlikovali jednu boju od druge su: svjetlina, koja odgovara intenzitetu, dominantna boja (hue) koja odgovara dominantnoj talasnoj dužini i zasićenost, koja je obrnuto proporcionalna količina bijele svjetlosti koja je dodata dominantnoj boji. Drugi pristup je trihromatska teorija po kojoj je predstavljanje boje zasnovano na karakteristikama ljudskog vida koji svaku boju razlaže na tri komponente: crvenu, zelenu i plavu. KOLOR MODELI Svrha kolor modela je da uspostavi specifikaciju boja u formi standarda koji bi bio generalno prihvaćen. RGB kolor model Po trihromatskoj teoriji, osjećaj boje nastaje selektivnom pobudom tri klase receptora u oku. Velik dio vidljivog spektra se može predstaviti miješanjem tri osnovne boje. Po RGB modelu, boja se formira sabiranjem tri osnovne boje različitog intenziteta: crvene (Red), zelene (Green) i plave (Blue), Slika 207. Za R=G=B dobiju se sve sive nijanse od crne do bijele. 241
2 Slika 207. [13] RGB color model CMYK kolor model Na područjima gdje se boje RGB modela preklapaju nastaju cijan (Cyan), magenta (Magenta), žuta (Yellow) i bijela (White). Za razliku od aditivnog RGB modela, po CMYK modelu boje se dobivaju oduzimanjem, Slika 208. Ovaj model je zasnovan na apsorpciji svjetlosti koja pada na obojeni papir. Kada bijela svjetlost (kompletan spektar) padne na obojeni papir, dio svjetlosti se apsorbuje, a dio reflektuje do očiju. Ako se iskombinuju čista cijan, magenta i žuta, apsorpcija će biti maksimalna što će proizvesti crnu boju. Kako prilikom štampe nikad nije moguće postići čistu boju, umjesto crne dobije se tamno smeđa, te se sa tri osnovne boje ovog modela: cijan (Cyan), magenta (Magenta) i žuta (Yellow) kombinuje i crna (K). CMY i RGB su komplementarne boje: svaki par boja iz RGB modela formira jednu od CMY boja i obrnuto. Slika 208. [13] CMYK model 242
3 HSI kolor model HSI (hue, saturation, intensity dominantna boja, zasićenost, intenzitet) kolor model odgovara ljudskoj percepciji, samo je umjesto subjektivnog osjećaja svjetline koji je nemoguće izmjeriti usvojen intenzitet. Komponente modela su prikazane na Slici 209. Slika 209. [13] HSI kolor model: A zasićenost, B,D dominantna boja, C intenzitet CMYK kolor model YCbCr model se sastoji od luminentne (Y) i dvije hrominentne komponente: Cb, koja prekriva spektar od plave do žute, i Cr, za spektar od zelene do crvene, Slika 210. Lumenentna komponenta daje sivu verziju slike, dok dvije hrominentne komponente obezbjeđuju konvertovanje sive slike u sliku u boji. Slika 210. YCbCr model (DA Y, B Cr, C Cb) 243
4 OSNOVE DIGITALNE OBRADE SLIKA U BOJI Postoji obilje tehnika za manipulaciju slikama u boji od kojih su mnoge interaktivne. Cilj većine je poboljšanje kvaliteta slike, odnosno dobijanje slike koja se posmatraču najviše dopada. Operacije nad histogramom Slično transformaciji histograma sivih slika, i ovdje se radi o transformaciji histograma, ali pojedinačno za svaku komponentu odabranog kolor modela. Najznačajnije primjene su u poboljšanju kvaliteta slika u boji. Interaktivni postupci transformacije histograma Jedna od osnovnih primjena sastoji se u eksperimentalnom podešavanju svjetline i kontrasta bez uticaja na promjenu boja, da bi se vidjelo što više detalja na slici. U RGB i CMYK kolor prostoru za svaku komponentu kolor modela se koristi ista transformaciona funkcija, dok se u HSI modelu vrši transformacija samo komponente intenziteta. Slika 211 prikazuje najčešće korištene transformacione funkcije za korekciju slika slabog kontrasta, presvijetlih ili pretamnih slika u boji. Nakon podešavanja svjetline i kontrasta, može se pristupiti balansiranju boja. Loše izbalansirane boje su lako okom vidljive, tako da se najčešće radi interaktivno. Uticaj loše izbalansiranosti se najlakše zapazi u područjima za koja znamo da bi trebala biti bijela. U bijelim područjima sve tri komponente RGB ili CMY modela imaju jednake vrijednosti. Ako to nije slučaj, umjesto bijele vidjećemo drugu boju. Boja ljudske kože je takođe veoma karakteristična. Promjene na boji kože ljudi veoma lako zapaze. Na Slici 212 dati su primjeri transformacija koje je u pojedinim slučajevima lošeg balansa boja potrebno primijeniti da bi korigovali sliku. 244
5 (a) (b) (c) Slika 211. [1] (a) Slike lošeg kvaliteta, odozgo prema dole: sa lošim kontrastom, presvijetla, pretamna. (b) Korigovane slike. (c) Transformacione funkcije. 245
6 (a) (b) (c) (d) (e) (f) (g) (h) (i) Slika 212. [1] Transformacione funkcije za korigovanje slika sa lošim balansom boja: (a) original (korigovana slika), (b) suviše crne, (c) premalo crne, (b) suviše cyan, (c) premalo cyan, (b) suviše magente, (c) premalo magente, (b) suviše žute, (c) premalo žute 246
7 Automatski metodi transformacije histograma Za razliku od opisanog interaktivnog pristupa, kod sivih slika je moguće automatski pronaći funkciju preslikavanja koja će transformisati histogram tako da on postane uniforman, odnosno izvršiti njegovu ekvalizaciju. Ako bi ovaj pristup proširili na svaku komponentu kolor modela, došlo bi do promjene boja na slici. Zbog toga je bolje ekvalizaciju primijeniti samo na intenzitetsku komponentu. HSI model je idealan za ovakav pristup. Slika 213 daje primjer ekvalizacije intenzitetske komponente. Slika 213(a) sadrži mnogo tamnih nijansi i ima median vrijednost Nakon ekvalizacije detalji na tamnim površinama su bolje vidljivi, Slika 213(b), ali je i cijela slika svjetlija, median vrijednost je 0.5. Histogram prije i poslije transformacije intenzitetske komponente, kao i sama funkcija preslikavanja, dati su na Slici 213(c). (a) (b) (c) Slika 213. [1] (a) Originalna slika. (b) Slika nakon transformacije histograma intenzitetske komponente. (c) Histogrami slika prije i poslije procesiranja i transformaciona funkcija. 247
8 Glacanje i izostravanje slika u boji Kod sivih slika smo vidjeli da najjednostavniji postupak glačanja slika predstavlja konvoluciju sa konvolucionim kernelom kod koga su sve vrijednosti unutar prozora jednake jedinici. U tom slučaju se konvolucija svodi na jednostavno usrednjavanje u granicama prozora koji zahvata konvolucioni kernel. Ako se princip proširi na RGB slike u boji, onda se usrednjavanje radi po sve tri komponente boje: 1 R ( st, ) K ( st, ) Sxy 1 1 c( x, y) = c ( s, t) = G( s, t) K ( st, ) S K xy, ( st, ) Sxy 1 B ( st, ) K ( st, ) Sxy gdje je S xy prozor u kom se vrši usrednjavanje. Komponente vektora c i c su skalarne slike. Na Slici 214(b) i Slici 214(c) dat je rezultat glačanja Slike 214(a) korištenjem RGB i HSI kolor modela, respektivno. Prednost HSI modela je u tome što prilikom glačanja ne dolazi do promjene boja na slici jer se vrši glačanje samo po intenzitetskoj komponenti. Promjena boja pri korištenju RGB modela je to veća što je veća dimenzija prozora unutar koga se vrši usrednajvanje. Izoštravanje sivih slika se radi pomocu Laplasijana. Kako je Laplasijan vektora definisan kao vektor čije su komponente Laplasijani individualnih skalarnih komponenti ulaznog vektora: 2 2 (, ) ( ) (, ) 2 R xy c ( x, y) = G x, y, 2 B xy princip se može proširiti i na slike u boji. Na Slici 214(d) je rezultat izoštravanja Slike 214(a) zasnovan na Laplasijanu u RGB prostoru, dok je na Slici 214(e) rezultat izoštravanja samo intenzitetske komponente HSI kolor prostora. Slično kao kod glačanja prednost ima ovaj drugi način jer ne dolazi do promjene boja na slici. 248
9 (a) (b) (c) (d) (e) Slika 214. [1] (a) Original. (b) Glačanje u RGB prostoru. (c) Glačanje I komponente u HSI prostoru. (d) Izoštravanje u RGB prostoru. (e) Izoštravanje I komponente u HSI prostoru. 249
10 Segmentacija slika u boji Segmentacija je proces koji sliku dijeli na regione unutar kojih pikseli pokazuju neka zajednička svojstva. Segmentacija na osnovu boje Ako želimo da izvršimo segmentaciju na osnovu boje, onda je prirodno razmišljati u HSI kolor prostoru jer je boja predstavljena hue komponentom. Međutim, dobri rezultati se dobiju i segmentacijom u RGB prostoru. Neka je a srednja boja regiona koje želimo izdvojiti iz slike i neka je z proizvoljna tačka u RGB kolor prostoru. KažeDa bismo mogli reći da li su boje slične, moramo definisati mjeru sličnosti. Najjednostavnije je koristiti Euklidovu distancu. Tako kažemo da je z slično a ako je Euklidova distanca između a i z manja od neke specificirane vrijednosti D 0 : R R G G B B T (, ) ( ) ( ) ( ) ( ) ( ) D z a = z a = z a z a = z a + z a + z a D 0. Izdvajanje ivica Gardijent, koji smo kod sivih slika koristili za izdvajanje ivica, nije definisan za vektorske veličine, tako da unapred znamo da njegovo korištenjne po pojedinačnim komponentama kolor prostora neće dati dobre rezultate. Podsjetimo se da je za skalarne (sive) slike gradijent vektor koji ukazuje na smjer maksimalne promjene svjetline u nekoj koordinati slike. Gradijent se na vektorske slike može proširiti na sljedeći način. Neka su r, g i b jedinični vektori RGB kolor prostora. Definišimo vektore: i R G B u= r+ g + b x x x R G B v = r+ g + b. y y y Napravimo unutrašnje proizvode vektora: g g xx yy 2 2 T = = = + + R G B uu uu, x x x 2 2 T = = = + + R G B v v v v, y y y 2 2 g xy R R G G B B u v u v. x y x y x y T = = =
11 Primijetimo da su ovo funkcije koordinata x i y. Di Zenzo je 1986 godine pokazao da je c x, y dat uglom: smjer maksimalne promjene vektorske funkcije (RGB slike) ( ) i da vrijednost te promjene iznosi: 2g 1 xy 1 θ = tan 2 gxx gyy 1 F( θ) = ( gxx + gyy ) ( gxx gyy ) cos 2θ + 2gxy sin 2θ 2. Za računanje parcijalnih derivacija neophodnih da bi se izračunao smjer i intenzitet ove maksimalne promjene mogu se koristiti ranije spomenuti operatori, npr. Sobelov operator. Na Slici 215(a) je prikazan gradijent Slike 214(a) izračunat ovim vektorskim metodom, dok je Slika 215(b) jednostavan zbir gradijenata izračunatih pojedinačno za R, G i B komponente slike. Slika 215(a) je kompletnija i daje više detalja u ivicama što se vidi sa razlike ove dvije slike prikazane na Slici 215(c), pa čak i direktnim upoređivanjem, npr. posmatrajući okolinu desnog oka. 1 2 (a) (b) (c) Slika 251. [1] (a) Gradijent izračunat vektorskim metodom. (b) Zbir gradijenata pojedinih komponenti RGB slike. (c) Razlika (a)-(b). 251
12 KOMPRESIJA SLIKA U BOJI Pri kodovanju slika u boji, prvo se izvrši transformacija RGB YCbCr. Slika luminentne komponente Y se dijeli na blokove od 8 8 piksela. Slike hrominentnih komponenti Cb i Cr se dijele na blokove od piksela, koji se zatim, decimacijom sa 2, svode na dimenzije 8 8 piksela. Tako na svaka četiri bloka Y komponente dolazi po jedan blok hrominentnih komponenti Cb i Cr. Daljnja kompreija se radi nezavisno za svaku od tri komponente slike Y, Cb i Cr. Kompresijom slike u boji se može postići veći stepen kompresije nego kompresijom gray-scale slika, uz jednak subjektivni osećaj izobličenja slike. Na Slici 216 je prikazana slika Cvijeće u boji sa tri različita stepena kompresije, koji su približno dva puta veći od odgovarajućih stepena kompresije gray-scale slike. (a) (b) (c) (d) Slika 216. [15] JPEG kompresija slike u boji Cvijeće: (a) Originalna slika, (b) Slika komprimovana 10 puta, (c) Slika komprimovana 20 puta, (d) Slika komprimovana 43 puta. 252
13 PSEUDOKOLOR Pod pojmom pseudokolor podrazumijevamo pridruživanje boja vrijednostima svjetlina sivih slika po nekom specificiranom kriteriju. Osnovna svrha upotrebe pseudokolora je bolja vizualizacija promjena na sivim slikama. Kriterij na osnova koga se vrši dodjeljivanje boja je najčešće baziran na vrijednostima svjetlina sivih slika, tako što se svjetlinama koje pripadaju jednom opsegu vrijednosti dodijeli jedna boja, svjetlinama iz sljedećeg opsega druga boja, itd... Slika 217 prikazuje postupak sjeckanja slike, tj. dvodimenzionalne funkcije, tako da se dobije L nivoa, kojima će se pridružiti L različitih boja. Sjeckanje se najčešće vrši ekvidistantnim ravnima. Opsegu svjetlina koje se nađu između dvije ravni pridružuje se jedna boja. Primjene su veoma česte u medicini, Slika 218, i kartografiji, Slika 219. Slika 217. [1] Geometrijska interpretacija formiranja nivoa za pridruživanje boja 253
14 Slika 218. [1] (a) Siva slika štitne žlijezde. (b) Ista slika prikazana u pseudokoloru sa osam boja. (a) (b) (c) (d) Slika 219. [1] (a) Siva slika na kojoj intenzitet svjetlina označava prosječnu mjesečnu količinu padavina. (b) Kolor mapa koja prikazuje način pridruživanja boja. (c) Ista slika prikazana u pseudokoloru sa datom kolor mapom. (d) Uvećani dio slike (c). 254
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
DIGITALNA OBRADA SLIKE
DIGITALNA OBRADA SLIKE Napomena: Osim u dijelu Geometrijske operacije formule ne treba pamtiti, potrebno je moći ih prepoznati kad su napisane. Na slikama 2-4 prikazane su neke tipične primjene digitalne
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Digital Image Processing
Digital Image Processing Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Παρεμβολή Εικόνας Χρησιμοποιείται σε διαδικασίες
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
e'(m,n) Komprimovani podaci Slika 110. Blok šema kodera i dekodera za postupak diferencijalne impulsne kodne modulacije (DPCM) slike.
KOMPRESIJA SA GUBICIMA Prediktivno kodovanje sa gubicima Ako u blok šemu prediktivnog kodera slike bez gubitaka dodamo kvantizer za kvantovanje greške predikcije, dobićemo osnovnu šemu prediktivnog kodera
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako