SEPARACIONE TEHNIKE -razdvajanje jedne kompomente iz višekomponentnog sistema taloženje i ceđenje destilacija kristalizacija ekstrakcija
|
|
- Μυρίνα Ζάππας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 HROMATOGRAFIJA SEPARACIONE TEHNIKE -razdvajanje jedne kompomente iz višekomponentnog sistema taloženje i ceđenje destilacija kristalizacija ekstrakcija centrifugiranje hromatografske tehnike
2 HROMATOGRAFIJA različita raspodela komponenti između dve faze od kojih je jedna pokretna (mobilna), a druga nepokretna (stacionarna); komponente se zadržavaju u nepokretnoj, odnosno pokretnoj fazi različito vreme i kreću se kroz sistem različitim brzinama; posle izvesnog vremena komponente se razdvajaju, pri čemu komponente koje su više vremena u nepokretnoj fazi putuju sporije i obrnuto.
3 Princip razdvajanja Razdvajanje komponenata smeše pomoću dve faze: nepokretne (stacionarne) i pokretne (mobilne) na osnovu različitog afiniteta komponenata prema stacionarnoj i mobilnoj fazi Nernstov zakon raspodele: koeficijent raspodele, K= c s /c m K zavisi od prirode supstance, stac. i mob. faze i temperature, a ne zavisi od koncentracije
4 FAZE NEPOKRETNA FAZA čvrsta ili tečna naneta na čvrst nosač POKRETNA FAZA gasovita ili tečna
5 HROMATOGRAFIJA - PODELA hromatografija Stacionarna faza: čvrsta tečna adsorpciona podeona Mobilna faza: gas tečna gas tečna gasna tečna gasna tečna
6 PRINCIP RAZDVAJANJA Adsorpcione različita, reverzibilna adsorpcija komponenti na nepokretnoj fazi Podeone delimično, selektivno rastvaranje komponenti u nepokretnoj fazi
7 HROMATOGRAFIJA Ruski botaničar Cvet otkrio je princip razdvajanja pigmenta iz lišća primenom adsorpcije izložio je svoje otkriće Biološkom društvu Varšavskog udruženja prirodnih nauka
8 Zeleni hlorofil nije samo zelen i nije samo hlorofil!
9 HROMATOGRAFIJA u koloni
10 Preparativna hromatografija u koloni U toku svih faza hromatografskog postupka u kolonu se konstantnim protokom uvodi rastvarač
11 Preparativna hromatografija u koloni U toku svih faza hromatografskog postupka u kolonu se konstantnim protokom uvodi rastvarač
12 Preparativna hromatografija u koloni U toku svih faza hromatografskog postupka u kolonu se konstantnim protokom uvodi rastvarač
13 Preparativna hromatografija u koloni U toku svih faza hromatografskog postupka u kolonu se konstantnim protokom uvodi rastvarač
14 Analitička hromatografija u koloni Preparativna hromatografija
15 Gasna hromatografija (Gas Chromatography - GC) Pokretna faza gas Nepokretna faza tečnost naneta na čvrst nosač Princip podeona hromatografija (najrastvorljivije komponente najsporije putuju)
16 Osnovni delovi GC Izvor gasa nosača sa regulatorom pritiska i protoka Injektor (sistem za unošenje uzorka) Hromatografska kolona u termostatu Detektor Sistem za registraciju signala iz detektora (računar i pisač)
17 Gasni hromatograf (GC)
18 Gasni hromatograf princip rada pritisak gasa se smanjuje pomoću regulatora pritiska gas ulazi u komoru za ubrizgavanje uzorka koja se nalazi na povišenoj temparaturi u komoru se, pomoću šprica, ubrizgava uzorak koji može biti tečan ili gasovit uzorak trenutno isparava i biva ponesen u struji gasa nosioca cela smeša ulazi u kolonu u koloni se nalazi punjenje koje predstavlja čvrst nosač na koji je naneta tečna faza u koloni dolazi do raspodele komponenti između gasne i tečne faze, prema KOEFICIJENTU RASPODELE K za svaku komponentu postoji odgovarajući koeficijent raspodele, jer je rastvorljivost različita
19 Pokretna faza u GC Izbor gasa zavisi od tipa detektora He H 2 N 2
20 Injektor -komora za ubrizgavanje uzorka
21 KOMORA ZA UBRIZGAVANJE UZORKA uzorak mora trenutno da ispari temperatura komore mora biti viša od temperature ključanja najneisparljivije komponente obično je temperatura komore za 50 o C viša od temperature kolone, da proces ne bi bio povratan ako uzorak ne ispari trenutno, dolazi do razvlačenja pikova količine uzorka su 1-50 µl
22 Kolone za GC
23 Kolone - pakovane (punjene) i kapilarne 1-5 m m
24 KOLONA spiralno savijena kraća (staklena) ili duža (metalna) cev ako je metalna, napravljena je od nerđajućeg čelika, bakra ili aluminijuma optimalna dužina je 70cm do 2m savijene su spiralno radi uštede u prostoru efikasnost kolone raste sa njenom dužinom, ali se otpor povećava, tako da se mora naći optimalna dužina analitičke kolone su duže i uže (φ=6mm) preparativne kolone su kraće i šire (φ do 20mm)
25 KOLONA analitičke kolone su namenjene hemijskoj analizi kod preparativnih kolona cilj je prolaz što više uzorka kroz kolonu kako bi se dobilo potrebno jedinjenje u koloni se nalazi punjenje čvrstog nosača na koji je naneta tečna faza nosač se meša sa određenom količinom tečne faze rastvorene u pogodnom rastvaraču (pentan, aceton, CH 2 Cl 2 ) blagim zagrevanjem rastvarač otparava
26 Osobine čvrstog nosača velika specifična površina (1m 2 /g) hemijska inertnost dobro prijanjanje tečne faze termička stabilnost mehanička čvrstoća dobijanje u vidu ravnomernih okruglih čestica često se koristi diatomejska zemlja (87% SiO 2, Fe 2 O 3, Al 2 O 3, CaO, K 2 O, H 2 O) porozan materijal
27 Osobine i izbor tečne faze neisparljiva na radnoj temperaturi termički stabilna posedovanje odgovarajućeg koeficijenta raspodele K za komponente u uzorku hemijska inertnost prema analiziranoj supstanci (ako reaguje, to mora biti brzo i reverzibilno) od tečne faze zavisi uspešnost razdvajanja uzorak se mora rastvarati u tečnoj fazi («Slično se u sličnom rastvara.») izbor se vrši na osnovu polarnosti (standard skvalen C 30 H 50 ima polarnost 0)
28 Stacionarne faze
29 Stacionarnu fazu karakteriše: Polarnost Maksimalna dozvoljena temperatura
30 Otvorene (kapilarne) kolone nemaju čvrsti nosač, već je tečna faza naneta na zidove kolone uske staklene cevi φ = 0,25-1,00 mm dužina m visoka moć razlaganja je posledica dužine kolone (nema otpora protoku) brze analize potrebne su male količine uzoraka vrlo su efikasne u razdvajanju
31 PRINCIP RAZDVAJANJA Podeona hromatografija slično se u sličnom rastvara komponente putuju kroz sistem samo kada se nalaze u pokretnoj fazi najrastvorljivija komponenta najduže putuje, jer je najduže u nepokretnoj fazi razdvojene komponente stižu do detektora, što se registruje u formi signala koji se zove PIK
32 Rezolucija
33 Hromatogram x-osa RETENCIONO VREME vreme zadržavanja Na osnovu retencionog vremena identifikujemo jedinjenja. Na osnovu površine pikova vrši se kvantitativna analiza.
34 Uticaj temperature na nižoj temperaturi rastvorljivost je veća i razdvajanje je efikasnije viša temperatura potrebna je da bi sve komponente iz uzorka bile u gasovitoj fazi i da vreme zadržavanja u koloni ne bi bilo previše dugo na povišenoj temperaturi slabije je rastvaranje i postoji mogućnost otparavanja tečne faze tipičan opseg: o C
35 Programiranje temperature ako analizirana smeša obuhvata komponente sa velikim rasponom temperatura ključanja, tada bi prvi pikovi bili vrlo uski, poslednji vrlo široki, a vreme analize bilo bi veoma dugo zato u ovakvim slučajevima rad pri izotermskim uslovima nije pogodan tada se primenjuje programiranje temperature, tj. povećavanje u određenim vremenskim intervalima i razmaci između pikova su približno jednaki, a vreme analize je kraće
36 Program t
37 Svojstva detektora za GC Dobra osetljivost Velika stabilnost i reproduktivnost Linearan odgovor za širok opseg konc. Temperaturski opseg C Brz odgovor koji ne zavisi od protoka Lak za rukovanje Nedestruktivan
38 Detektori za GC Na bazi termičke provodnosti (TCD) Plameno-jonizujući (FID) Merenje elektronskog zahvata (ECD) Plameno-fotometrijski (FPD) Atomski-emisioni (AED) Foto-jonizacioni (PID)
39 Detektor na bazi termičke provodnosti (katarometar) katarometar je jednostavan i univerzalan (primenljiv na sve supstance); nije destruktivan; manje je osetljiv od drugog tipa; odgovor detektora je proporcionalan koncentraciji.
40 Detektor na bazi termičke provodnosti (TCD)
41 Detektor na bazi termičke provodnosti (TCD)
42 Detektor na bazi termičke provodnosti ceo sistem je termostatiran vlakna se greju električnom strujom do iste temperature kada preko vlakna prelazi gas-nosilac, on hladi vlakno u zavisnosti od svoje termičke provodljivosti temperatura određuje otpor žice kada kroz vlakna protiče samo gas-nosilac, temperatura i otpor žice su uravnoteženi kada u struji gasa naiđe uzorak, komponenta koja se nalazi u uzorku ima različitu termičku provodljivost od gasa-nosioca tada se menja temperatura žice u tom kraku, a time i njen otpor neuravnoteženost otpora dve žice izaziva električni signal koji se registruje kao pik.
43 Detektor na bazi termičke provodnosti termičke provodljivosti gasa-nosioca i komponenti iz uzorka treba da budu što različitije organska jedinjenja imaju bliske vrednosti termičke provodljivosti N 2 je blizak organskim supstancama, dok su vrednosti H 2 i He znatno veće zato su H 2 i He znatno bolji nego N 2, kada je u pitanju katarometar kod N 2 je znatno smanjena osetljivost
44 Plameno-jonizujući detektor (FID) sagorevanje uzorka u plamenu H 2 -vazduh dobijaju se CHO + joni u plamenu joni se kreću ka katodi broj jona je proporc. broju C atoma ili molarnoj masi uzorka ne reaguje na neorganska jedinjenja ukljućujući N 2, okside azota, H 2 S, SO 2, CO, CO 2, H 2 O, a reaguje na sve organske supstance.
45 Plameno-jonizujući detektor (FID) gas-nosilac je vodonik plamen funkcioniše kao anoda između katode i anode postoji otpor, tj. nema toka struje kada nema jona koji bi tu struju prenosili smeša vodonika i uzorka dolazi do plamenika i H 2 gori u struji vazduha organska supstanca sagoreva u plamenu, pri čemu se formiraju joni njihovim kretanjem uspostavlja se struja koja se registruje kao signal ovaj detektor je veoma osetljiv (10-12 g/ml) skoro je univerzalan mana je što je skup i destruktivan
46 Izbor gasa-nosioca i brzine protoka kod TCD najbolji su H 2 i He zbog termičke provodljivosti mana vodonika eksplozivan mana helijuma skup kod FID vodonik je neophodan N 2 se može koristiti kao gas-nosilac, ali se H 2 mora dodati zbog sagorevanja protok gasa se reguliše redukcionim ventilom na ml/min gas-nosilac mora proći kroz kolonu, a od otpora kolone zavisi pritisak koji će se primeniti protok tokom merenja mora biti konstantan i tačno definisan, posebno kada se vrši identifikacija komponenata na bazi retencionog vremena
47 t R Idealan detektor MASENI SPEKTROMETAR Univerzalan (registruje MS spektar) Osetljiv na pg jedinjenja Brz (prikupljanje podataka znatno kraće od vremena eluiranja jedinjenja) Pouzdana kvalitativna analiza (MS i MS/MS) Pouzdana kvantitativna analiza (površina pika)
48 Rezime - razdvajanje u GC zavisi od: isparljivosti komponente (isparljivije brže) rastvorljivosti komponente (rastvorljivije sporije) polarnosti komponente i kolone (polarnije sporije) temperature kolone (veća temperatura-brže) brzine gasa (optimalna brzina) dužine kolone (duža kolona-duže putovanje)
49 PRIMENA GC razdvajanje kvalitativna analiza kvantitativna analiza preparativni rad prečišćavanje (kontrola čistoće)
50 Kvalitativna analiza osnov za identifikaciju je retenciono vreme retenciono vreme je karakteristično za određenu supstancu u određenoj koloni ako dve supstance imaju isto ili slično retenciono vreme, treba analizu proveriti sa drugim tipom kolone pouzdanija metoda za identifikaciju masena spektrometrija
51 Kvantitativna analiza površina ispod pika proporcionalna je koncentraciji odgovarajuće supstance najpre se formira kalibracioni dijagram Preparativni rad i prečišćavanje (Kontrola čistoće) cilj dobijanje čiste komponente za dalji rad kada se pojavi pik željene komponente, ona se na izlazu, kroz staklenu cevčicu, uvodi u suvi led i kondenzuje se
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
(Liquid Chromatography LC)
Tečna hromatografija (Liquid Chromatography LC) - niz metoda kod kojih je pokretna faza tečna: tečno-čvrsta hromatografija tečno-tečna hromatografija jonoizmenjivačka hromatografija gelna hromatografija
Hromatografija u farmaceutskoj analizi i kontroli lekova
Hromatografija u farmaceutskoj analizi i kontroli lekova 1906... Mihail Semjonovič Cvet (1872 1919) 2 1 Hromatografija je metoda koja služi za razdvajanje sličnih i/ili potpuno različitih jedinjenja. Razdvajanje
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Hromatografija u farmaceutskoj analizi i kontroli lekova
Hromatografija u farmaceutskoj analizi i kontroli lekova 1906... Mihail Semjonovič Cvet (1872 1919) 2 Hromatografija je metoda koja služi za razdvajanje sličnih i/ili potpuno različitih jedinjenja. Razdvajanje
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Uvod u kromatografske separacije
Analitičke tehnike u kliničkom laboratoriju: elektroforetske i kromatografske separacije Uvod u kromatografske separacije Dario Mandić, KBC Osijek 1. Povijest kromatografije chroma & graphein = KROMATOGRAFIJA
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
RAVNOTEŽA TEČNO-PARA
RAVNOTEŽA TEČNO-PARA Smeša dve isparljive komponente (dve tečnosti) koje se mešaju u svim odnosima: f = c p + 2 = 2 2 + 2 = 2 tečna homogena smeša+para iznad tečnosti Ako su te dve nezavisno promenjive
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
HROMATOGRAFSKE METODE
Analiza namirnica 49 HROMATOGRAFSKE METODE Princip hromatografije Sve hromatografske metode se svode na raspodeljivanje smeše komponenata između dve različite fizičke faze. Pod fizičkom fazom podrazumevamo
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
2 D analitičke metode. 2D tečna hromatografija
2 D analitičke metode 2D tečna hromatografija Vremenski okviri Kasne sedamdese i rane osamdese Postavljaju se principi metode i konceptulani i teorijski modeli. Pokazuje se da je moguće dobiti analitičku
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
Izbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Moguća je klasifikacija metoda po načinu kako faze dolaze u kontakt: kontinualni i stupnjeviti (diskontinualni) kontakt. Od svih tehnika ekstrakcija
METODE ODVAJANJA Odvajanje radnog materijala predstavlja jednu od osnovnih i najčešće primenjivanih tehnika u hemijskim laboratorijama. Fizičke i hemijske osobine supstanci na kojima se zasnivaju analitička
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje
EuroCons Group Karika koja povezuje Filtracija vazduha Obrok vazduha 24kg DNEVNO Većina ljudi ima razvijenu svest šta jede i pije, ali jesmo li svesni šta udišemo? Obrok hrane 1kg DNEVNO Obrok tečnosti
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Idealno gasno stanje-čisti gasovi
Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim
Testiranje statistiqkih hipoteza
Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
RASTVORI. više e komponenata. Šećer u vodi, O 2 u vodi, zubne plombe, vazduh, morska voda
RASTVORI Rastvori su homogene smeše e 2 ili više e komponenata Šećer u vodi, O 2 u vodi, zubne plombe, vazduh, morska voda Fizička stanja rastvora Rastvori mogu da postoje u bilo kom od 3 agregatna stanja:
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K
1 Zadatak temperatura K- C Telo A se nalazi na temperaturi 50 C i zagreje se za 50 K. Telo B se nalazi na temperaturi 313 K.i zagreje se za 40 C. Koje je telo toplije posle zagravanja i kolika je razlika
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE
MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika