E L E K T R I C I T E T

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "E L E K T R I C I T E T"

Transcript

1 Coulombov zakon E L E K T R I C I T E T 1. Dva sitna tijela jednakih naboja međusobno su udaljena 0,3 m i privlače se silom 50 μn. Koliko iznosi svaki naboj? Q = 2,2 10 ⁸ C 2. Odredi kolikom će silom međusobno djelovati dva naboja na udaljenosti 5 cm ako na udaljenosti 1 cm međusobno djeluju silom 5 10 ⁴ N F = 0,2 10 ⁴ N 3. Koliko će se izmijeniti sila kojom međusobno djeluju dva točkasta naboja ako svaki od njih povećamo tri puta te također razmak među njima povećamo tri puta? Sila se neće promijeniti. 4. Dvije jednake kuglice nalaze se u zraku na međusobnoj udaljenosti r. Kuglice imaju naboj Q₁ i Q₂. Dotaknemo ih i vratimo u prijašnji položaj. Koliki je omjer sila koje među njima djeluju prije i poslije doticanja? Q 1+Q 2 ; F 1 = 4Q 1Q 2 2 F 2 (Q 1 +Q 2 ) 2 5. Množina elektriciteta od jednog kulona sadrži 6,25 10¹⁸ elektronskih naboja. Koliko bi elektrona otpalo na svaki četvorni metar Zemljine površine kad bi se ta množina elektriciteta jednoliko raspodijelila po njoj? Polumjer Zemlje je R km. N = 1,2 10⁴ elektrona/m²

2 6. Jedna kugla ima naboj od 8,3 10 ⁹ C, druga -6,6 10 ⁹ C. Kugle su međusobno udaljene 10 cm. Kolikom se silom privlače kugle: a) u zraku, b) u vodi relativne permitivnosti ɛ r = 80? a) F = -4,9 10 ⁵ N; b) F = 6,1 10 ⁷ N 7. Kolikom se silom odbijaju dva jednaka točkasta naboja od 10 ⁷ C ako se nalaze na međusobnoj udaljenosti 2, 4, 6, 8 i 10 cm? Nacrtajte grafički prikaz ovisnosti sile o udaljenosti naboja. F₁ = 7,5 10 ² N, F₂ = 5,6 10 ² N, F₃ =2,5 10 ² N, F₄ = 1,4 10 ² N, F₅ = 9 10 ³ N 8. Atom vodika ima jedan proton u jezgri i jedan elektron koji kruži oko jezgre. Uz pretpostavku da je staza elektrona kružna, nađite: a) silu kojom međusobno djeluju proton i elektron ako je razmak između tih dviju čestica 5,3 10 ¹¹ m, b) linearnu brzinu elektrona. F = 8,2 10 ⁸ N 9. Kolikom ukupnom silom djeluju dva jednaka istoimena točkasta naboja na treći isti takav naboj koji se nalazi na polovini njihova međusobnog razmaka? F = Odredi kolika je relativna permitivnost petroleja ako dva jednaka naboja ⁹ C međusobno djeluju u petroleju na udaljenosti 1 cm silom 5 10 ⁶ N. ɛ r = 2

3 11. Dva točkasta naboja, Q₁ = +10 ⁸ C i Q₂ = ⁹ C nalaze se u zraku međusobno udaljeni 50 cm. Na kojemu se mjestu između njih naboj Q₃ nalazi u ravnoteži? x₁ = 34,5 cm 12. Dva točkasta naboja nalaze se u zraku međusobno udaljeni 20 cm. Na koju međusobnu udaljenost treba smjestiti te naboje u ulju, relativne permitivnosti ɛ r = 5, da bismo postigli jednaku uzajamnu silu djelovanja? r = 8,9 10 ² m 13. Kolika je ukupna masa svih elektrona u naboju 1 C? m = 5,6 10 ¹² kg 14. Dvije jednake kugle naboja 4 10 ¹¹ C i 10 ¹¹ C nalaze se u zraku na udaljenosti koja je mnogo veća od njihovih polumjera. Odredi mase kugala ako je poznato da je gravitacijska sila kojom se privlače kugle uravnotežena električnom silom zbog koje se kugle odbijaju. m = 0,23 kg 15. Kuglica mase 150 mg, naboja 10 ⁸ C, obješena je na niti izolatora. Na udaljenosti 32 cm ispod kuglice stavimo drugu kuglicu. Koliki mora biti po veličini i predznaku naboj na toj kuglici da bi se napetost niti udvostručila? Q₂ = 1,7 10 ⁶ C

4 16. Kolikom bi se silom privlačile dvije jednake olovne kugle polumjera R = 1 cm međusobno udaljene r = 1 m kada bismo svakom atomu prve kugle oduzeli po jedan elektron i sve te elektrone predali drugoj kugli? F = 4 10¹⁸ N 17. Dvije jednake kuglice, svaka mase 1,5 g, vise u zraku na izoliranim nitima jednakih duljina obješenima u jednoj točki. Kuglice nabijemo negativno jednakim količinama naboja i one se razmaknu na udaljenost 10 cm, dok je kut što ga zatvaraju niti 36⁰. Koliki je naboj primila svaka kuglica? Q = 7,3 10 ⁸ C 18. Hoće li se promijeniti gustoća naboja na površini vodiča koji ima oblik pravokutne ploče ako tu ploču savijemo tako da poprimi oblik valjka? Povećat će se Električno polje 19. Na naboj 2,0 10 ⁷ C u nekoj točki električnog polja djeluje sila 0,015 N. Kolika je jakost polja u toj točki? E = 7,5 10⁴ N/C 20. Točke A, B i C nalaze se u električnom polju točkaste množine naboja, kako je prikazano na slici. a) Koliki rad treba utrošiti da bismo neki naboj prenijeli iz točke A u točku B? b) Usporedi rad koji bi trebalo utrošiti da se taj naboj prenese iz A u C s radom pri prenošenju iz B u C? a) W = 0; b) W AC = W BC _ B C A

5 21. Kolika je razlika potencijala između neke točke na površini nabijene metalne kugle i neke točke u unutrašnjosti kugle? Jednaka je nuli. 22. Usporedi rad što ga treba utrošiti pri prijenosu naboja u električnom polju iz točke M u N i iz točke M u O na slici. W MN = W MO O M _ N 23. Dva se naboja jednaka veličinom nalaze na nekoj međusobnoj udaljenosti. U kojem će slučaju jakost polja u točki koja se nalazi na polovici njihove međusobne udaljenosti biti veća: kad su naboji istoimeni ili kad su raznoimeni? Kada su nabijeni suprotnim nabojem. 24. Odredi jakost električnog polja i potencijal u točki koja je udaljena 1 nm od jezgre atoma helija naboja +2e. Kolika je potencijalna energija protona u toj točki? E = 2,9 10⁹ N/C; ϕ = 2,9 V; W = E p = 4,6 10 ¹⁹ J 25. Kugla polumjera 2 cm nabijena je negativno do potencijala V. Odredi masu svih elektrona koji čine naboj kugle. m = 2,5 10 ²⁰ kg

6 26. Na izoliranoj metalnoj kugli polumjera 5 cm nalazi se naboj 1,66 10 ⁶ C. Koliki je potencijal: a) u središtu kugle, b) na površini kugle, c) u točki koja je udaljena 1 m od središta kugle? a) i b) Potencijal u središtu kugle jednak je potencijalu na površini kugle, ϕ = V, c) ϕ = 1,49 10⁴ V 27. Koliki rad moramo utrošiti da u električnom polju premjestimo naboj 10 ⁸ C iz jedne točke polja u drugu ako je razlika potencijala između tih točaka 900 V? W = 9 10 ⁶ J 28. Osam kapljica vode, od kojih svaka ima polumjer 1 mm i naboj 10 ¹⁰ C, slije se u jednu veću kap. Koliki je potencijal nastale kapi? R = 2 mm, ϕ = 3,6 10³ V 29. Dva naboja Q₁ = 1,5 10 ⁸ C i Q₂ = 3 10 ⁸ C nalaze se u zraku i udaljeni su međusobno za r = 60 cm. Kolika je jakost električnog polja u sredini između njih? E₁ = 1,5 10³ N/C, E₂ = 3 10⁴ N/C, E = 2,85 10⁴ N/C u smjeru prema Q₁. 30. Odredi rad koji se utroši kad se kroz prostor, u kojem je razlika potencijala 10 V, giba elektron.

7 31. U kojem će slučaju jakost električnog polja u nekoj točki polja i sila koja djeluje na naboj u toj točki biti suprotnog predznaka? 32. Dvije horizontalne usporedne ploče u vakuumskoj cijevi međusobno su udaljene 4 cm i spojene na napon 220 V. Nađi: a) jakost električnog polja u prostoru između ploča (uz pretpostavku da je polje homogeno), b) stalnu silu koja djeluje na elektron u prostoru između ploča, c) energiju koju postiže elektron kad se pomakne za 4 cm u smjeru suprotnome od smjera polja, d) omjer električne i gravitacijske sile koja djeluje na elektron u polju između ploča. 33. Metalna kugla polumjera 10 cm spojena je tankim vodičem s drugom kuglom koja ima polumjer 5 cm. Na obje kugle dovedemo ukupan naboj iznosa 1,2 10 ⁷ C. Koliki je naboj svake kugle? 34. Koliki rad treba utrošiti da se u vakuumu prenese naboj 0,2 10 ⁷ C iz beskonačnosti u točku koja je 1 cm udaljena od površine kugle polumjera 1 cm? Na kugli je površinska gustoća naboja 10 ⁵ C/m². 35. Naboj iznosa 4 nc dovodi se iz neizmjernosti na pozitivno nabijen vodič. Pritom se utroši rad 2 J. Koliki je potencijal vodiča?

8 36. Izrazite u elektronvoltima: a) energiju elektrona koji se giba brzinom 10³ m/s, b) srednju energiju translacijskog gibanja molekula plina pri 0 ⁰C, c) energiju koju ima molekula dušika na visini 100 m iznad površine Zemlje. 37. Dvije usporedne metalne ploče, međusobno udaljene 1,8 cm, priključene su na napon 2,4 10⁴ V. Taj napon proizvodi električno polje koje ima smjer vertikalno prema dolje. Odredi naboj što ga ima kapljica ulja mase 2,2 10 ¹⁰ g koja miruje u električnom polju. 38. Elektron je postigao brzinu 10⁶ m/s pošto je prešao put od jedne nabijene metalne ploče do druge. Razmak između ploča bio je 5,3 mm. Kolika je bila jakost električnog polja u kojemu se gibao elektron? 39. Koju bi brzinu postigla kuglica mase 5 g i naboja 5 μc kad bi se gibala s mjesta potencijala ϕ₁ = V na mjesto potencijala ϕ₂ = V? Početna brzina kuglice je nula. 40. Elektron se giba u električnom polju koje ga ubrzava među točkama razlike potencijala 600 V. Za koliko se povećala energija elektrona ako on na svojem putu nije pretrpio nikakav gubitak energije?

9 41. Jakost homogenog električnog polja iznosi V/m. Nađi razliku potencijala između dvije točke koje su smještene (na istoj silnici) na udaljenosti 3 cm. 42. U točki A jakost električnog polja iznosi 36 V/m, a u točki B 9 V/m (slika). Kolika je jakost polja u točki C koja leži na sredini između točaka A i B? C B A 43. Metalni stalak i kuglicu na uređaju prikazanome na slici nabijemo elektriziranim štapom. Kuglica se otkloni iz položaja C u položaj D, pri čemu je položaj točke D za 1 cm viši od točke C. Razlika potencijala ϕ C ϕ D = 500 V. Kuglica ima masu 10 mg. Koliki je naboj kuglice? 44. Elektron uleti u homogeno električno polje u vakuumu i giba se u smjeru električnih silnica. Nakon koliko će vremena brzina elektrona biti jednaka nuli ako je jakost polja 90 N/C, a početna brzina elektrona 1,8 10³ km/s? 45. U homogeno električno polje jakosti V/m uleti okomito na silnice polja elektron brzinom 5 10³ km/s. a) Koliko će elektron skrenuti od svojeg početnog smjera pošto u polju prijeđe put 8 cm? b) Kakav oblik ima staza elektrona?

10 46. Za koliki će se kut otkloniti kuglica od staniola mase 0,4 g, obješena na svilenoj niti ako je stavimo u horizontalno homogeno polje jakosti 10⁵ N/C? Naboj je kuglice 4,9 10 ⁹ C. 47. Aluminijsku kuglicu mase 9 g, naboja 10 ⁷ C, stavimo u ulje. Kolika je jakost električnog polja koje djeluje na kuglicu ako kuglica u ulju lebdi, a polje ima smjer vertikalno prema gore? Električni kapacitet 48. Dvije metalne kugle različitih polumjera imaju jednake množine naboja. Što možemo reći o njihovim potencijalima? 49. Dvije jednake metalne kugle imaju različite množine naboja. Što možemo reći o potencijalima tih kugala? 50. Metalna izolirana kugla polumjera 5 cm ima potencijal 800 V. Koliki je naboj na kugli? 51. Dvije nabijene kugle nakon dodira imaju naboje Q₁ = 400 nc i Q₂ = 200 nc. Kako se odnose njihovi obujmovi?

11 52. Dvije kugle polumjera R₁ i R₂, a istog naboja Q, dovedemo u dodir. Kako se među njima podijele naboji? 53. Metalna kugla polumjera R = 6 cm dotiče se jednog pola akumulatora napona U = 4 V, dok mu je drugi pol uzemljen. Koliki naboj Q prima kugla? 54. Mjehur od sapunice promjera 0,16 m nabijen je Q = 33 nc. Za koliko se promijeni potencijal mjehura ako mu se promjer poveća 4 cm? 55. Ploča od pertinaksa ima debljine 0,2 cm. S obje strane nalijepljeni su aluminijski listići u obliku kvadrata stranice 30 cm. Koliki je kapacitet tog kondenzatora ako je ɛ r = 6? 56. Na staklenu ploču debljine 1 mm nalijepljena su s obje strane dva kvadrata od staniola površine 50 cm². Koju množinu naboja treba prenijeti na taj kondenzator da bi imao napon 1000 V? Relativna permitivnost stakla je Jedan je oblog kondenzatora uzemljen, a na drugi dovedemo naboj 1 μc. Napon među pločama iznosi 20 V. Koliki je kapacitet kondenzatora?

12 58. Kondenzatori kapaciteta C₁ = 10 μf, C₂ = 15 μf i C₃ = 12 μf spojeni su usporedno. Koliki je kapacitet kondenzatorske baterije? 59. Kondenzatori kapaciteta C₁ = 10 μf, C₂ = 15 μf i C₃ = 12 μf spojeni su u seriju. Koliki je kapacitet kondenzatorske baterije? 60. Dva usporedno spojena kondenzatora C₁ i C₂ serijski su spojena s kondenzatorom kapaciteta C₃. Koliki je ukupni kapacitet? Nacrtaj shemu. 61. Koje sve vrijednosti za kapacitet možemo dobiti ako na različite načine spojimo kondenzatore kapaciteta 2 μf, 4μF i 6 μf? Nacrtaj sheme. 62. Možemo li povećati energiju školskog pločastog kondenzatora a da ne mijenjamo količinu naboja na njemu?

13 63. Pločasti kondenzator nabijemo tako da ga priključimo na polove akumulatora. Zatim ga isključimo s akumulatora i smanjimo udaljenost među pločama kondenzatora dva puta. Kako će se promijeniti: a) naboj na pločama, b) napon na pločama, c) jakost električnog polja među njima, i d) energija kondenzatora? 64. Dvije lajdenske boce spojene su serijski na napon V. Odredi kapacitet prve boce, ako je kapacitet druge 6,5 10 ¹⁰ F, a naboj na svakoj boci 4,5 10 ⁶ C. 65. Kondenzator je sastavljen od 100 listića staniola površine 10 cm x 12 cm, odijeljenih parafiniranim papirom (ɛ r = 4) debljine 0,2 mm. Svi neparni listići spojeni su zajedno, a isto tako i parni. Koliki je kapacitet tog kondenzatora? 66. Kondenzator je sastavljen od dviju paralelnih ploča površine 60 cm² koje su jedna od druge udaljene 3 mm. Među njima je bakelit, kojega je relativna permitivnost 4. Kondenzator ima napon 500 V. Kolika se energija oslobodi izbijanjem tog kondenzatora?

14 67. Kondenzatore kapaciteta 1 μf i 4 μf spojimo u seriju i tako spojene priključimo na izvor napona 450 V. a) Koliki je kapacitet tako spojenih kondenzatora? b) Koliki je napon na priključnicama svakog kondenzatora? 68. Kondenzator kapaciteta 20 pf nabijen je na napon 500 V. Koliko se topline razvije pri izbijanju tog kondenzatora ako pretpostavimo da se 80% energije kondenzatora pretvori u toplinu iskre? 69. Kondenzator kapaciteta 4 μf nabijemo do napona 450 V i spojimo ga u paralelu s praznim kondenzatorom kapaciteta 5 μf. Koliki će biti kapacitet baterije i koliki joj je napon? 70. Kondenzator kapaciteta 0,5 μf nabijemo do napona 100 V i zatim ga isključimo s izvora napona. Usporedno kondenzatoru priključimo drugi kondenzator kapaciteta 0,4 μf. Odredi energiju iskre koja preskoči pri spajanju kondenzatora?

gdje je Q naboj što ga primi kondenzator, C kapacitet kondenzatora.

gdje je Q naboj što ga primi kondenzator, C kapacitet kondenzatora. Zadatak 06 (Mimi, gimnazija) Elektična enegija pločastog kondenzatoa, kapaciteta 5 µf, iznosi J Kolika je količina naboja pohanjena na kondenzatou? Rješenje 06 = 5 µf = 5 0-5 F, W = J, =? Enegija nabijenog

Διαβάστε περισσότερα

2 k k r. Q = N e e. e k C. Rezultat: 1.25

2 k k r. Q = N e e. e k C. Rezultat: 1.25 Zadatak 0 (Mia, ginazija) Dvije kuglice nabijene jednaki pozitivni naboje na udaljenosti.5 u vakuuu eđusobno se odbijaju silo od 0. N. Za koliko se boj potona azlikuje od boja elektona u svakoj od nabijenih

Διαβάστε περισσότερα

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj ELEKTROTEHNIKA TZ Prezime i ime GRUPA Matični br. Napomena: U tablicu upisivati slovo pod kojim smatrate da je točan odgovor. Upisivati isključivo velika štampana slova. Točan odgovor donosi jedan bod.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

Elektrodinamika

Elektrodinamika Elektrodinamika.. Gibanje električnog naboja u električnom polju.2. Električna struja.3. Električni otpor.4. Magnetska sila.5. Magnetsko polje električne struje.6. Magnetski tok.7. Elektromagnetska indukcija

Διαβάστε περισσότερα

Ampèreova i Lorentzova sila zadatci za vježbu

Ampèreova i Lorentzova sila zadatci za vježbu Ampèreova i Lorentzova sila zadatci za vježbu Sila na vodič kojim prolazi električna struja 1. Kroz horizontalno položen štap duljine 0,2 m prolazi električna struja jakosti 15 A. Štap se nalazi u horizontalnom

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

Slika 1. Električna influencija

Slika 1. Električna influencija Elektrostatika_intro Naboj, elektriziranje trenjem, dodirom i influencijom za vodiče i izolatore, Coulombov zakon, električno polje, potencijal i napon, kapacitet, spajanje kondenzatora, gibanje naboja

Διαβάστε περισσότερα

( ) ( ) n. Ukupni kapacitet od n usporedno (paralelno) spojenih kondenzatora možemo naći iz izraza

( ) ( ) n. Ukupni kapacitet od n usporedno (paralelno) spojenih kondenzatora možemo naći iz izraza Zadatak 08 (Maija ginazija) Dva uspoedno spojena kondenzatoa i seijski su spojeni s kondenzatoo kapaciteta. Koliki je ukupni kapacitet? Nactajte sheu. Rješenje 08 =? Ukupni kapacitet od n seijski spojenih

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

1. Rad sila u el. polju i potencijalna energija 2. Električni potencijal 3. Vodič u električnom polju 4. Raspodjela naboja u vodljivom tijelu 5.

1. Rad sila u el. polju i potencijalna energija 2. Električni potencijal 3. Vodič u električnom polju 4. Raspodjela naboja u vodljivom tijelu 5. ELEKTROSTTIK II 1. Rad sila u el. polju i potencijalna energija 2. Električni potencijal 3. Vodič u električnom polju 4. Raspodjela naboja u vodljivom tijelu 5. Dielektrik u električnom polju 6. Električki

Διαβάστε περισσότερα

Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t.

Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t. Popis oznaka A el A meh A a a 1 a 2 a a a x a y - rad u električnom dijelu sustaa [Ws] - mehanički rad; rad u mehaničkom dijelu sustaa [Nm], [J], [Ws] - mehanički rad [Nm], [J], [Ws] - polumjer kugle;

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

5. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm?

5. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm? Coulombov zakon 1. Metalna kugla polumjera R = 10 cm nabijena je plošnom gustoćom naboja σ = 7, 95 nc/m 2. Kolika je razlika izmedu broja protona i broja elektrona u kugli? 2. Koliki je omjer gravitacijske

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

1. Osnovni pojmovi o elektricitetu

1. Osnovni pojmovi o elektricitetu 1. Osnovni pojmovi o elektricitetu 1.0. Uvod U ljetnim olujnim danima nastaju žestoke munje, koje imaju razornu moć. Svatko se zapita odakle munji ta energija. To su pitanje ljudi postavljali stoljećima.

Διαβάστε περισσότερα

Podsjetnik za državnu maturu iz fizike značenje formula

Podsjetnik za državnu maturu iz fizike značenje formula Podsjetnik za državnu maturu iz fizike značenje formula ukratko je objašnjeno značenje svih slova u formulama koje se dobiju uz ispit [u uglatim zagradama su SI mjerne jedinice] Kinetika v = brzina ( =

Διαβάστε περισσότερα

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Materijali u el. polju. Dielektrici

Materijali u el. polju. Dielektrici Materijali u el. polju. Dielektrici do sada električna polja u vakuumu i ponašanje vodiča u el. polju. Izolatori u električnom polju? Izolator naboj se ne može slobodno gibati nema utjecaja na E?? POGREŠNO!

Διαβάστε περισσότερα

4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm?

4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm? 1 Coulombov zakon 1. Koliki je omjer gravitacijske i elektrostatske sile izmedu dva elektrona? m e = 9, 11 10 31 kg 2. Na kojoj će udaljenosti u zraku odbojna sila izmedu dvaju jednakih naboja q 1 = q

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.

Διαβάστε περισσότερα

ELEKTROSTATIKA. Električni naboji. Električna sila, električno polje. Električni potencijal. Električna potencijalna energija

ELEKTROSTATIKA. Električni naboji. Električna sila, električno polje. Električni potencijal. Električna potencijalna energija ELEKTROSTATIKA Električni naboji Električna sila, električno polje Električni potencijal Električna potencijalna energija Pokusi pokazuju da postoje dvije vrste električnih naboja: pozitivni i negativni

Διαβάστε περισσότερα

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika TEHNIČKI FKULTET SVEUČILI ILIŠT U RIJECI Zavod za elektoenegetiku Studij: Peddiplomski stučni studij elektotehnike Kolegij: Osnove elektotehnike I Pedavač: v. ped. m.sc. anka Dobaš Elektostatika Elektični

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

SADRŽAJ. 1. Električni naboj 2. Coulombov zakon 3. Električno polje 4. Gaussov zakon 5. Potencijal elektrostatičkog polja

SADRŽAJ. 1. Električni naboj 2. Coulombov zakon 3. Električno polje 4. Gaussov zakon 5. Potencijal elektrostatičkog polja ELEKTROSTATIKA 1 SADRŽAJ 1. Električni naboj 2. Coulombov zakon 3. Električno polje 4. Gaussov zakon 5. Potencijal elektrostatičkog polja 1. Električki naboj Eksperiment Stakleni štap i svilena krpa nakon

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem

Διαβάστε περισσότερα

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

F2_ zadaća_ L 2 (-) b 2

F2_ zadaća_ L 2 (-) b 2 F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Marko Periša, dipl. ing. UVODNO PREDAVANJE ELEKTROSTATIKA I

Marko Periša, dipl. ing. UVODNO PREDAVANJE ELEKTROSTATIKA I VJEŽBE - ELEKTROTEHNIKA Marko Periša, dipl. ing. UVODNO PREDAVANJE ELEKTROSTATIKA I KOLEGIJ NOSITELJI KOLEGIJA: Dr.sc. Sadko Mandžuka Dr.sc. Edouard Ivanjko Dr.sc. Niko Jelušić Asistent Marko Periša, dipl.ing.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

kondenzatori električna struja i otpor Istosmjerni strujni krugovi

kondenzatori električna struja i otpor Istosmjerni strujni krugovi kondenzatori električna struja i otpor Istosmjerni strujni krugovi - Dva vodiča, nose jednaki naboj suprotnog predznaka - kondenzator - Vodiče nazivamo ploče kondenzatora - Između ploča kondenzatora postoji

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

( ) 2. σ =. Iz formule za površinsku gustoću odredimo naboj Q na kugli. 2 oplošje kugle = = =

( ) 2. σ =. Iz formule za površinsku gustoću odredimo naboj Q na kugli. 2 oplošje kugle = = = Zadatak 0 (Maija, ginazija) Koliki ad teba utošiti da e u paznini (vakuuu) penee naboj 0. 0-7 iz bekonačnoti u točku koja je c udaljena od povšine kugle polujea c? Na kugli je plošna (povšinka) gutoća

Διαβάστε περισσότερα

Vježba 081. ako zavojnicom teče struja jakosti 5 A? A. Rezultat: m

Vježba 081. ako zavojnicom teče struja jakosti 5 A? A. Rezultat: m Zadatak 8 (Marija, medicinska škola) Kolika je jakost magnetskog polja u unutrašnjosti zavojnice od 5 zavoja, dugačke 5 cm, ako zavojnicom teče struja jakosti A? ješenje 8 N = 5, l = 5 cm =.5 m, = A, H

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje zima 2016.) drugi razred (do magnetizma)

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje zima 2016.) drugi razred (do magnetizma) Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje zima 2016.) Sve primjedbe na facebook stranicu Fizikagfp drugi razred (do magnetizma) TEKUĆINE (priprema za

Διαβάστε περισσότερα

Zadatak 161 (Igor, gimnazija) Koliki je promjer manganinske žice duge 31.4 m, kroz koju teče struja 0.8 A, ako je napon

Zadatak 161 (Igor, gimnazija) Koliki je promjer manganinske žice duge 31.4 m, kroz koju teče struja 0.8 A, ako je napon Zadatak 6 (gor, gimnazija) Koliki je promjer manganinske žice duge. m, kroz koju teče struja 0.8, ako je napon između krajeva 80 V? (električna otpornost manganina ρ = 0. 0-6 Ω m) ješenje 6 l =. m, = 0.8,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

I. Zadatci višestrukoga izbora

I. Zadatci višestrukoga izbora I. Zadatci višestrukoga izbora U sljedećim zadatcima od više ponuđenih odgovora samo je jedan točan. Točne odgovore morate označiti znakom X na listu za odgovore kemijskom olovkom. Svaki točan odgovor

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Elektricitet i magnetizam. 1. Elektricitet

Elektricitet i magnetizam. 1. Elektricitet 1. Elektricitet Podsjetnik Dodatna literatura:, E.M.Purcel. Udžbenik fizike Sveučilišta u Berkeleyu. Najelementarnije: Fizika 2. V. Paar i V. Šips. Školska knjiga. 2 Povijest elektriciteta Tales iz Mileta

Διαβάστε περισσότερα

Impuls i količina gibanja

Impuls i količina gibanja FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba 4 Impuls i količina gibanja Ime i prezime prosinac 2008. MEHANIKA

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

FIZIKA. Rezultati državne mature 2010.

FIZIKA. Rezultati državne mature 2010. FIZIKA Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 9395 k 36 38,4 St. pogreška mjerenja 5,25 edijan 36 od 18 St. devijacija 18,57 Raspon 80 inimum 0 aksimum

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

ZADATCI S NATJECANJA

ZADATCI S NATJECANJA ZADATCI S NATJECANJA MAGNETIZAM 41. Na masenom spektrometru proučavamo radioaktivni materijal za kojeg znamo da se sastoji od mješavine 9U 35 9U. Atome materijala ioniziramo tako da im je naboj Q +e, ubrzavamo

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

Rješenje 469. m = 200 g = 0.2 kg, v 0 = 5 m / s, h = 1.75 m, h 1 = 0.6 m, g = 9.81 m / s 2, E k =?

Rješenje 469. m = 200 g = 0.2 kg, v 0 = 5 m / s, h = 1.75 m, h 1 = 0.6 m, g = 9.81 m / s 2, E k =? Zadatak 469 (Davor, tehnička škola) Kuglicu mase 00 g izbacimo početnom brzinom 5 m / s sa visine.75 m. Koliko iznosi kinetička energija kuglice kada se nalazi na visini 0.6 m iznad tla? Zanemarite gubitak

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

ELEKTRIČNO I MAGNETNO POLJE

ELEKTRIČNO I MAGNETNO POLJE ELEKTRIČNO I MAGNETNO POLJE Elektroni u mirovanju elektrostatika elektrostatska polja/sile dielektričnost ε 0 Elektroni u gibanju elektrodinamika magnetska polja/sile permeabilnost µ 0 Elektromagnetski

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

namotanih samo u jednom sloju. Krajevi zavojnice spojeni su s kondenzatorom kapaciteta 10 µf. Odredite naboj na kondenzatoru.

namotanih samo u jednom sloju. Krajevi zavojnice spojeni su s kondenzatorom kapaciteta 10 µf. Odredite naboj na kondenzatoru. Zadatak (Mira, ginazija) Dvaa ravni, paralelni vodičia eđusobno udaljeni 5 c teku struje.5 A i.5 A u isto sjeru. Na kojoj udaljenosti od prvog vodiča je agnetska indukcija jednaka nuli? ješenje r 5 c.5,.5

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

2, r. a : b = k i c : d = k, A 1 c 1 B 1

2, r. a : b = k i c : d = k, A 1 c 1 B 1 Zaatak 4 (Amia, gimnazija) Dvije jenake kuglice, svaka mase 3 mg, vise u zaku na tankim nitima uljine m Niti slobonim kajevima objesimo na istu točku i kuglice ostanu međusobno ualjene 75 cm Oeite naboj

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

(12.j.) 11. Dva paralelna vodiča nalaze se u vakuumu. Kroz njih prolaze struje I1 i I2, kako je prikazano na crteţu.

(12.j.) 11. Dva paralelna vodiča nalaze se u vakuumu. Kroz njih prolaze struje I1 i I2, kako je prikazano na crteţu. MAGNETIZAM (ispitni katalog) 11. Tri jednaka ravna magneta spojimo u jednu cjelinu, kao što je prikazano na slikama. Koji crteţ ispravno prikazuje razmještaj polova magneta nastalog nakon spajanja? (08.)

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

Elektrodinamika Elektrodinamika

Elektrodinamika Elektrodinamika 1. 1.1. 1.1 1.. 1. 1.3. 1.3 1.4. 1.4 1.5. 1.5 1.6. 1.6 1.7. 1.7 1.8. Elektrodinamika Elektrodinamika Gibanje naboja električnog pod naboja utjecajem u električnom električnog polju polja Električna struja

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

5. predavanje. Vladimir Dananić. 27. ožujka Vladimir Dananić () 5. predavanje 27. ožujka / 16

5. predavanje. Vladimir Dananić. 27. ožujka Vladimir Dananić () 5. predavanje 27. ožujka / 16 5. predavanje Vladimir Dananić 27. ožujka 2012. Vladimir Dananić () 5. predavanje 27. ožujka 2012. 1 / 16 Sadržaj 1 Magnetske pojave O magnetizmu Gaussov zakon za magnetsko polje Nabijena čestica u magnetskom

Διαβάστε περισσότερα

Tok električnog polja. Gaussov zakon. Tok vektora A kroz danu površinu S definiramo izrazom:

Tok električnog polja. Gaussov zakon. Tok vektora A kroz danu površinu S definiramo izrazom: Definicija (općenito): Tok električnog polja. Gaussov zakon Tok vektora A kroz danu površinu definiramo izrazom: Φ A d A d cosϕ A n komponenta vektora A okomita na element površine d d ϕ < 90 Φ > 0 A n

Διαβάστε περισσότερα

I. Zadatci višestrukoga izbora

I. Zadatci višestrukoga izbora I. Zadatci višestrukoga izbora U sljedećim zadatcima od više ponuđenih odgovora samo je jedan točan. Točne odgovore morate označiti znakom X na listu za odgovore kemijskom olovkom. Svaki točan odgovor

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga 1. Koliko se puta promijeni kinetička energija automobila kada se njegova brzina poveća tri puta? A. Poveća se 3 puta. B. Poveća se 6 puta. C. Poveća se 9 puta. D. Poveća se 12 puta.

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα