Marko Periša, dipl. ing. UVODNO PREDAVANJE ELEKTROSTATIKA I
|
|
- Ἓσπερος Παπαδάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 VJEŽBE - ELEKTROTEHNIKA Marko Periša, dipl. ing. UVODNO PREDAVANJE ELEKTROSTATIKA I
2 KOLEGIJ NOSITELJI KOLEGIJA: Dr.sc. Sadko Mandžuka Dr.sc. Edouard Ivanjko Dr.sc. Niko Jelušić Asistent Marko Periša, dipl.ing. KONZULTACIJE: PONEDJELJAK 10:00 12:00 BORONGAJ SOBA 09 SRIJEDA 10:00 12:00 BORONGAJ SOBA
3 SUSTAV BODOVANJA Izvedba i način polaganja ispita Tijekom akademske godine ocjenjuje se uključenost studenta u nastavi na slijedeći način: Prisutnost i aktivnost na predavanjima i vježbama - 5 bodova (Minimalna prisutnost 60% Izrada zadaća i dr.) Kontrolna provjera znanja - 2x10=20 bodova (pismeno) Seminarski rad 15 bodova Uvjet za potpis i mogućnost pristupanju pismenom dijelu ispita je minimalno 20 bodova. Preostalih 60 bodova moguće je skupiti polaganjem dva kolokvija i/ili polaganjem ispita. Student koji položi oba kolokvija, sukladno iskazanom uspjehu, dobiva srednju ocjenu kao završnu u indeks. Iznimka je ocjena izvrstan (5) koja se ostvaruje jedino uz konačnu usmenu provjeru. Osim toga, student koji želi slijedeću višuocjenumožeseprijavitiza usmeni dio ispita. Student koji nije prošao neki od kolokvija pristupa pismenom dijelu ispita gdje mu se svaki od prethodno položenih kolokvija prizna kao odgovor na pismenom dijelu djeuispita (ovo o vrijedi samo za prvo pismeno ps opolaganje ispita). Na usmenom dijelu ispita dobiva se konačna ocjena.
4 UVODNE VJEŽBE Sustavi jedinica Međunarodni sustav mjernih jedinica SI Dimenzijske jednadžbe izjednačavanje jednadžbi OSNOVNE JEDINICE SI Fizikalna veličina Znak veličine SI jedinica Znak jedinice VRIJEME t SEKUNDA s DULJINA l METAR m MASA m KILOGRAM kg EL. STRUJA I AMPER A TERMODINAMIČKA TEMPERATURA T KELVIN K SVJETLOSNA JAKOST Iv KANDELA cd MNOŽINA (KOLIČINA) TVARI n MOL mol Slika 1. Međunarodni sustav mjernih jedinica SI
5 SUSTAVI JEDINICA Slika 2. Izvedene jedinice SI s posebnim nazivom i oznakom
6 SUSTAVI JEDINICA
7 ELEKTROSTATIKA DEFINICIJE: ELEKTRIČNI NABOJ COULOMBOV ZAKON ELEKTRIČNO POLJE GAUSSOV ZAKON POTENCIJAL ELEKTROSTATIČKOG POLJA
8 ELEKTRIČNI NABOJ ELEKTRIČNI NABOJI: POZITIVNI - PROTONI NEGATIVNI - ELEKTRONI NEUTRALNI NEUTRONI OZNAKA NABOJA Q [As=C (Coulomb) ] ELEMENTARNI NABOJ e= C Coulombova sila (Coulombov zakon) -gdje je k konstanta proporcionalnosti i ovisi o mediju -za zrak (izmjereno) k Vm/As - ε 0 dielektrična konstanta vakuma
9 ELEKTRIČNI NABOJ Ako na naboj djeluje više naboja Q 1,Q 2,Q 3, tada je ukupna sila jednaka vektorskom zbroju sila kojima djeluje svaki od naboja Q 1, Q n na Q. -Q 3 +Q 2 +Q 0 +Q 1 n F rez F 30 F rez F i i 1 F 10 F 20
10 COULOMBOV ZAKON, JAKOST EL. POLJA, POTENCIJAL ZADACI 1. Dva točkasta naboja istog predznaka nalaze se u zraku na udaljenosti r jedan od drugoga. Odrediti iznos, smjer i orijentaciju djelovanja sile između naboja. Q 1 =65 [ C], Q 2 =10[nC]ir=7[cm].Obavezno nacrtati sliku.(f=1,20n) 2. Pozitivni točkasti naboj Q 1 i negativni točkasti naboj Q 2 nalaze se od pozitivnog točkastog naboja Q 0 na udaljenosti r 1 = r 2. Njihov međusobni položaj prikazan je na slici. Odredite iznos rezultantne sile na naboj Q 0 te skicirajte vektorski dijagram sila za taj naboj, odredite jakost el. polja u toj točki, Q = -6 = [C], Q 2 [C], Q 0 = 10-6 [C], r 1 = r 2 = 5 [cm]. (F10=3,6N, F20=7,2N,Frez=8,04N) 3. Tri mala tijela, električnih naboja Q 1 = [C] i Q 3 = [C], naboj Q 2 koji je nepoznatog predznaka zauzimaju u vakuumu položaj kao što je prikazano na slici. Odredite položaj tako da se sva tijela pod djelovanjem Coulombovih sila nalaze u mirovanju, udaljenost r 13 = 7cm. (x=0,05m) +Q 1 Q 2 +Q 3 r 13
11 COULOMBOV ZAKON - ZADACI 4. Tri jedinična naboja Q A =Q C =e i Q B =-e su raspoređena u vrhove jednakostraničnogtrokuta. t k t Odredidi silu natočkasti ti naboj C. F F A A QA Q 2 4πεr C F B π N N 2 F F F F B cos F A cos N
12 COULOMBOV ZAKON, JAKOST EL. POLJA, POTENCIJAL ZADACI 5. Na udaljenosti 10cm od točkastog naboja Q1=10µC nalazi se točka A kako je prikazano na slici. Potrebno je izračunati potencijal φ A, te jakost električnog polja točkastog naboja u toj točki.(φ=900000v,e= v/m ) A 6. Dva točkasta naboja Q 1 =1µC, Q 2 =9µC međusobno su udaljeni d=12cm: Gdje treba staviti negativan naboj Q 3 da bi električna sila na njega iščezla?(a=0,03m) 0 03m) Kolika je jakost polja u toj točci, ako je Q 3 =12µC? (E=0) Koliki je električni potencijal u toj točci?(φ=1198,4kv) a d-a Q1 Q3 Q2 d
13 COULOMBOV ZAKON, JAKOST EL. POLJA, POTENCIJAL ZADACI 1. U točkama na kružnici polumjera 100 m nalaze (prema skici) pozitivni naboji iznosa Q 1 = Q 2 = 1mC, Q 3 = Q 4 =2 mc. Kolika je potencijalna energija pozitivnog naboja Q 0 = 1 mc koji se nalazi u središtu kružnice. (φ1= φ2=90000v, φ3= φ4=180000v,wp=540j)
14 RAD U EL. POLJU, PLOČASTI KONDENZATOR, SPAJANJE KON. ZADACI 2. Ekvipotencijalne plohe u presjeku su dane slikom. Koliki je izvršen rad ako je negativan naboj od 1μC prijeđe put iz točke A u točku D. (W=-5μJ) 3. Pločasti kondenzator ima površinu ploča S=400cm 2, razmak ploča d=0,08mm, a kapacitet C=0, F.. Potrebno je odrediti relativnu dielektričnu konstantu εr papira koji je upotrijebljen kao S=400cm 2 d=0,08mm C=0,01µF εr=? dielektrikum? 2,25
15 RAD U EL. POLJU, PLOČASTI KONDENZATOR, SPAJANJE KON. ZADACI 4. Kondenzator je načinjen od ravnih ploča u obliku kvadrata stranica a= 10 cm, koje se nalaze na međusobnom razmaku d= 10 mm, i u zraku. Kondenzator se nabije do napona od 100 V, i odspoji od izvora. Kondenzator se potopi u ulje do polovice na način kako je prikazano na slici (relativna permitivnost ulja iznosi ε r =2,5, dok je permitivnost u vakuumu ε =8.84 F/m). Odredite ukupni kapacitet za ovaj spoj. (Cuk= F) d 0 a r
16 RAD U EL. POLJU, PLOČASTI KONDENZATOR, SPAJANJE KON. ZADACI 1. Dva točkasta t električna naboja q 1 = +50 nc i q 2 = -50 nc nalaze se na udaljenosti a=1 m u zraku. Koliki je rad potreban uložiti za pomicanje točkastog električnog naboja q 3 = -150 nc po putanji AB, a koliko je po putanji BC. (Wab=0J,Wbc=1,97 10 Wb -5 J) B C a a/2 a/2 + - q 1 A q 2
17 RAD U EL. POLJU, PLOČASTI KONDENZATOR, SPAJANJE KON. ZADACI 2. Dvije paralelne metalne ploče, svaka površine S=100 cm 2, čine pločasti kondenzator. Razmak između ploča je d=10mm.ploče se nabiju nabojem +Q i-q tako da se spoje na izvor napona U= 100V,azatim odspoje od izvora. Koliko će iznositi napon na pločama i kapacitet kondenzatora ako se između ploča, paralelno s njima umetne: ploča dielektrika (ε r =3); metalna ploča debljine a= 3mm d1=3mm, d2=4mm Cuk=8, F
18 RAD U EL. POLJU, PLOČASTI KONDENZATOR, SPAJANJE KON. ZADACI 3. Kondenzator sa ravnim pločama kapacitivnosti C= 100 pf, naelektriziran iran je vezivanjem na električni izvor, napona U= 100 V (sl. a). Što će se desiti kada se ploča ovog kondenzatora pomakne u stranu za x=a/2 (sl. b), a izvor se prethodno od spoji. (U=200V) a a/2 a) b)
19 RAD U EL. POLJU, PLOČASTI KONDENZATOR, SPAJANJE KON. ZADACI 1. Odredite kapacitet C AB koji nadomješta spoj sa slike ako su: C 1 =10µF, C 2 =10µF, C 3 =30µF, C 4 =15µF. (Cab=42µF) C1 C2 A C4 C3 B C3 2. Na slici i je dan spoj kondenzatora C = F, C2= F, C3= F, U=110V Odredite: Koliki će naboj poteći kada se uključi sklopka P? Energiju pohranjenu u svakom kondenzatoru (Q=165µC, W1=1,512mJ, W2=3,025mJ, W3=4,53mJ)
20 RAD U EL. POLJU, PLOČASTI KONDENZATOR, SPAJANJE KON. ZADACI 3. Kombinacija nenabijenih kondenzatora sa slike priključena je na izvor napona U=120V. Odredite napone na C 3 i C 5 ako kapaciteti iznose C 1 =20μF, C 2 =C 5 =40μF, C 3 =60μFiC 4 =16μF. (U3=16V, U5=40V)
21 RAD U EL. POLJU, PLOČASTI KONDENZATOR, SPAJANJE KON. ZADACI 4. Kondenzatori su spojeni prema slici, i priključeni na izvor napona U=12 V. a) Izračunaj nadomjesni kapacitet čitavog spoja kondenzatora. b) Kolika je trajna struja kroz kapacitet C 3. Kapaciteti su C 1 =C 2 =C 3 =C 4 =10 pf, C 5 =C 6 =20pF (C= F, I=0)
1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj
ELEKTROTEHNIKA TZ Prezime i ime GRUPA Matični br. Napomena: U tablicu upisivati slovo pod kojim smatrate da je točan odgovor. Upisivati isključivo velika štampana slova. Točan odgovor donosi jedan bod.
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
E L E K T R I C I T E T
Coulombov zakon E L E K T R I C I T E T 1. Dva sitna tijela jednakih naboja međusobno su udaljena 0,3 m i privlače se silom 50 μn. Koliko iznosi svaki naboj? Q = 2,2 10 ⁸ C 2. Odredi kolikom će silom međusobno
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
SADRŽAJ. 1. Električni naboj 2. Coulombov zakon 3. Električno polje 4. Gaussov zakon 5. Potencijal elektrostatičkog polja
ELEKTROSTATIKA 1 SADRŽAJ 1. Električni naboj 2. Coulombov zakon 3. Električno polje 4. Gaussov zakon 5. Potencijal elektrostatičkog polja 1. Električki naboj Eksperiment Stakleni štap i svilena krpa nakon
1. Rad sila u el. polju i potencijalna energija 2. Električni potencijal 3. Vodič u električnom polju 4. Raspodjela naboja u vodljivom tijelu 5.
ELEKTROSTTIK II 1. Rad sila u el. polju i potencijalna energija 2. Električni potencijal 3. Vodič u električnom polju 4. Raspodjela naboja u vodljivom tijelu 5. Dielektrik u električnom polju 6. Električki
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
1. Osnovni pojmovi o elektricitetu
1. Osnovni pojmovi o elektricitetu 1.0. Uvod U ljetnim olujnim danima nastaju žestoke munje, koje imaju razornu moć. Svatko se zapita odakle munji ta energija. To su pitanje ljudi postavljali stoljećima.
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Slika 1. Električna influencija
Elektrostatika_intro Naboj, elektriziranje trenjem, dodirom i influencijom za vodiče i izolatore, Coulombov zakon, električno polje, potencijal i napon, kapacitet, spajanje kondenzatora, gibanje naboja
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
F2_ zadaća_ L 2 (-) b 2
F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.
ELEKTROTEHNIKA 1 ELEKTROSTATIKA ELEKTRIČNI KAPACITET I KONDENZATORI
ELEKTROTEHNIKA 1 ELEKTROSTATIKA ELEKTRIČNI KAPACITET I KONDENZATORI 1 ELEKTROSTATIKA SADRŽAJ Električki kapacitet i kondenzatori 2 ELEKTRIČKI KAPACITET I KONDENZATORI Uvodna razmatranja Elektrostatika
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t.
Popis oznaka A el A meh A a a 1 a 2 a a a x a y - rad u električnom dijelu sustaa [Ws] - mehanički rad; rad u mehaničkom dijelu sustaa [Nm], [J], [Ws] - mehanički rad [Nm], [J], [Ws] - polumjer kugle;
Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I
Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika
TEHNIČKI FKULTET SVEUČILI ILIŠT U RIJECI Zavod za elektoenegetiku Studij: Peddiplomski stučni studij elektotehnike Kolegij: Osnove elektotehnike I Pedavač: v. ped. m.sc. anka Dobaš Elektostatika Elektični
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa
Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Elektrodinamika
Elektrodinamika.. Gibanje električnog naboja u električnom polju.2. Električna struja.3. Električni otpor.4. Magnetska sila.5. Magnetsko polje električne struje.6. Magnetski tok.7. Elektromagnetska indukcija
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Ampèreova i Lorentzova sila zadatci za vježbu
Ampèreova i Lorentzova sila zadatci za vježbu Sila na vodič kojim prolazi električna struja 1. Kroz horizontalno položen štap duljine 0,2 m prolazi električna struja jakosti 15 A. Štap se nalazi u horizontalnom
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
gdje je Q naboj što ga primi kondenzator, C kapacitet kondenzatora.
Zadatak 06 (Mimi, gimnazija) Elektična enegija pločastog kondenzatoa, kapaciteta 5 µf, iznosi J Kolika je količina naboja pohanjena na kondenzatou? Rješenje 06 = 5 µf = 5 0-5 F, W = J, =? Enegija nabijenog
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Priprema za državnu maturu
Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Podsjetnik za državnu maturu iz fizike značenje formula
Podsjetnik za državnu maturu iz fizike značenje formula ukratko je objašnjeno značenje svih slova u formulama koje se dobiju uz ispit [u uglatim zagradama su SI mjerne jedinice] Kinetika v = brzina ( =
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
5. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm?
Coulombov zakon 1. Metalna kugla polumjera R = 10 cm nabijena je plošnom gustoćom naboja σ = 7, 95 nc/m 2. Kolika je razlika izmedu broja protona i broja elektrona u kugli? 2. Koliki je omjer gravitacijske
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
OSNOVE ELEKTROTEHNIKE II Vježba 11.
OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm?
1 Coulombov zakon 1. Koliki je omjer gravitacijske i elektrostatske sile izmedu dva elektrona? m e = 9, 11 10 31 kg 2. Na kojoj će udaljenosti u zraku odbojna sila izmedu dvaju jednakih naboja q 1 = q
Elektricitet i magnetizam. 1. Elektricitet
1. Elektricitet Podsjetnik Dodatna literatura:, E.M.Purcel. Udžbenik fizike Sveučilišta u Berkeleyu. Najelementarnije: Fizika 2. V. Paar i V. Šips. Školska knjiga. 2 Povijest elektriciteta Tales iz Mileta
Materijali u el. polju. Dielektrici
Materijali u el. polju. Dielektrici do sada električna polja u vakuumu i ponašanje vodiča u el. polju. Izolatori u električnom polju? Izolator naboj se ne može slobodno gibati nema utjecaja na E?? POGREŠNO!
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
2 k k r. Q = N e e. e k C. Rezultat: 1.25
Zadatak 0 (Mia, ginazija) Dvije kuglice nabijene jednaki pozitivni naboje na udaljenosti.5 u vakuuu eđusobno se odbijaju silo od 0. N. Za koliko se boj potona azlikuje od boja elektona u svakoj od nabijenih
ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
ELEKTRIČNO I MAGNETNO POLJE
ELEKTRIČNO I MAGNETNO POLJE Elektroni u mirovanju elektrostatika elektrostatska polja/sile dielektričnost ε 0 Elektroni u gibanju elektrodinamika magnetska polja/sile permeabilnost µ 0 Elektromagnetski
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Značenje indeksa. Konvencija o predznaku napona
* Opšte stanje napona Tenzor napona Značenje indeksa Normalni napon: indeksi pokazuju površinu na koju djeluje. Tangencijalni napon: prvi indeks pokazuje površinu na koju napon djeluje, a drugi pravac
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
ELEKTROSTATIKA. Električni naboji. Električna sila, električno polje. Električni potencijal. Električna potencijalna energija
ELEKTROSTATIKA Električni naboji Električna sila, električno polje Električni potencijal Električna potencijalna energija Pokusi pokazuju da postoje dvije vrste električnih naboja: pozitivni i negativni
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
ZADATCI S NATJECANJA
ZADATCI S NATJECANJA MAGNETIZAM 41. Na masenom spektrometru proučavamo radioaktivni materijal za kojeg znamo da se sastoji od mješavine 9U 35 9U. Atome materijala ioniziramo tako da im je naboj Q +e, ubrzavamo
V(x,y,z) razmatrane povrsi S
1. Napisati izraz koji omogucuje izracunavanje skalarne funkcije elektricnog potencijala V(x,y,z) u elektrostaskom polju, ako nema prostornoo rasporedjenih elekricnih naboja. Laplaceova diferencijalna
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)
šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
Dinamika tijela. a g A mg 1 3cos L 1 3cos 1
Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:
Zadatak 161 (Igor, gimnazija) Koliki je promjer manganinske žice duge 31.4 m, kroz koju teče struja 0.8 A, ako je napon
Zadatak 6 (gor, gimnazija) Koliki je promjer manganinske žice duge. m, kroz koju teče struja 0.8, ako je napon između krajeva 80 V? (električna otpornost manganina ρ = 0. 0-6 Ω m) ješenje 6 l =. m, = 0.8,