Polimerizacija kemijska reakcija u kojoj niskomolekulski spojevi, monomeri, međusobnim povezivanjem kovalentnim kemijskim vezama tvore makromolekule,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Polimerizacija kemijska reakcija u kojoj niskomolekulski spojevi, monomeri, međusobnim povezivanjem kovalentnim kemijskim vezama tvore makromolekule,"

Transcript

1 Polimerizacija kemijska reakcija u kojoj niskomolekulski spojevi, monomeri, međusobnim povezivanjem kovalentnim kemijskim vezama tvore makromolekule, tj. molekule polimera

2 Monomer - osnovna građevna jedinica polimera

3 n HO OH + n HOOC COOH monomer etilen-glikol (EG) monomer tereftalna kiselina (TPA) OOC COO n + 2n H 2 O poli(etilen-tereftalat), PET

4 Stupanj polimerizacije, DP broj ponavljanih jedinica neke polimerne molekule DP eng. degree of polymerization Molekulska masa polimera, M n produkt DP-a i molekulske mase ponavljane jedinice, M 0 M n = DP x M 0 Oligomeri polimeri s malim stupnjem polimerizacije, - viskozne kapljevine ili lako taljive krutine, lako su topljivi Polimeri s većim stupnjem polimerizacije i molekulskim masama većim od otapaju se uz prethodno bubrenje i stvaraju čvrste filmove ili vlakna

5 Reakcije polimerizacije dijele se s obzirom na 1. mehanizam rasta lanca 2. medij polimerizacije

6 1. Mehanizam rasta lanca: 1. lančane polimerizacije (radikalske) - lančasti rast polimernog lanca. I. inicijacija II. propagacija III. terminacija 2. stupnjevite polimerizacije - stupnjeviti rast polimernog lanca, izdvajanje vode, amonijaka ( male molekule) monomer + monomer dimer dimer + monomer trimer dimer + dimer tetramer trimer + monomer tetramer itd.

7 2. Medij polimerizacije - homogene polimerizacije - u masi - u otopini - heterogene polimerizacije - u masi - u otopini - u suspenziji - u emulziji - u plinskoj fazi - međupovršinske polikondenzacije

8 1. mehanizam rasta lanca a) lančane polimerizacije (radikalske) 1. Inicijacija 2. Propagacija 3. Terminacija 1. Inicijacija - dodatak inicijatora R M ki RM primarna aktivna specija

9 Primjer radikalske polimerizacije: Inicijacija - utjecaj topline, svjetla - raspad inicijatora I 2 R H2O2 2O H Inicijator - vrlo važan za početak reakcije polimerizacije jer stvara prve radikale koji iniciraju nastajanje monomernih radikala i tako započinje prijenos aktivnosti.

10 Inicijatori: a) anorganski inicijatori vodikov peroksid, H 2 O 2 (O-O veza) HO 60 o C OH 2OH hidroksilni radikal kalijev persulfat K 2 S 2 O 8 (O-O veza) O O KO S O O S OK O O 40 o C 2K + + O 2O S O O sulfatni anion- radikal

11 b) organski peroksidi dibenzoil peroksid, DBP (O-O veza) O C O O C O C O 2 O 65 o C benzoiloksi radikal ditercijarni butilperoksid (O-O veza) H 3 C CH 3 C CH 3 CH 3 CH 3 o C O O C 2H 3 C C O CH 3 CH 3 CH 3 t-butiloksi radikal

12 t-butilhidroperoksid (O-O veza) CH 3 CH 3 H 3 C C O OH H 3 C C O + OH CH 3 CH 3 c) inicijatori sa S-S vezom tetrametiltiuram disulfid, TMTD - vulkanizacija kaučuka (CH 3 ) 2 N C S S C N (CH 3 ) 2 60 o C 2 (CH 3 ) 2 N C + S 2 S S S

13 d) inicijatori s N-N vezom,'-azobisizobutironitril, AIBN H 3 C CH 3 C N N CH 3 C CH 3 40 o C 2 H 3 C CH 3 C + N 2 C N C N C N 2 cijano-2 propil radikal

14 2. Propagacija dobivaju se polimerni lanci različitih duljina RM primarna aktivna specija M kp RMM RMM M kp RMMM - primjer: polimerizacija etilena nastanak polietilena R CH CH R CH C H primarna aktivna specija R CH C H CH CH R CH CH CH C H

15 3. Terminacija faza prestanka rasta polimernog lanca a) kombinacijom RM n M m R k t k RM M R n m - primjer - polietilen: R CH CH CH C H C H CH CH CH R R CH CH CH CH CH CH CH CH R

16 b) disproporcioniranjem RM n M m R k td RM n RM m R CH CH CH C H C H CH CH CH R R CH CH CH CH CH CH CH CH R terminirani polimerni lanac ova dvostruka veza može se napasti i ponovo se može izazvati polimerizacija

17 c) prijenosom rasta lančane reakcije (chain transfer) - nepoželjno RM n RH k RM n H R tt postaje aktivan I- inicijator, R - radikal, M - monomer, k d konstanta disocijacije, k i - konstanta inicijacije, k p - konstanta propagacije, k tk - konstanta transfera kombinacijom, k td - konstanta disproporcionacije, k tt - konstanta transferom

18 Prijenos rasta lanca terminirani polimerni lanac HO C H 2 RH HO CH 3 R RH može biti: - inicijator - otapalo - monomer - polimer

19 1. Prijenos rasta lanca na inicijator - Inicijatori u pravilu nisu prenosioci rasta lanca - do faze terminacije većina se inicijatora potroši (dodaje se u vrlo malim konc. (svega 0,1%) i zato je efekt prijenosa rasta s molekulama inicijatora vrlo malen) - Vodikov peroksid dobar inicijator, loš prenosilac rasta lanca (poželjno) - t-butilhidroperoksid prenosilac rasta lanca

20 2. Prijenos rasta lanca na otapalo - Otapalo je uvijek prisutno, osim kod polim. u masi. - Otapalo utječe na krajnje grupe polimernog radikala i na veličinu molekulskih masa, ali ne utječe na strukturu lanca. Aldehidna i ketonska otapala - odlični prenosioci rasta lanca kod radikalske polim. zbog lakog otpuštanja H-atoma. Serija otapala: benzen, toluen, etilenbenzen, kumen, trifenilmetan: ovim redom raste brzina prijenosa zbog lakoće otpuštanja H-atoma.

21 Serija otapala: benzen, toluen, etilenbenzen, kumen, trifenilmetan ovim redom raste brzina prijenosa zbog lakoće otpuštanja H-atoma: H C H benzen H C H H toluen H C H H e tilb e n z e n bolji prijenos rasta lanca

22 C H C H H 3 C CH 3 k u m en tr if e n ilm e ta n bolji prijenos rasta lanca

23 - halogena otapala: prenosioci rasta lanca CH 3 Cl, Cl 2, CHCl 3, CCl 4 - CCl 4 najveći prenosilac rasta lanca (nestabilnost Cl, jaka mobilnost) - tioli (merkaptani) jako veliki prenosioci (veza S-H) nestabilna: C 2 H 5 SH etantiol

24 3. Prijenos rasta lanca na monomer - relativno je malen jer na kraju polimerizacije kad nastupa terminacija teorijski nema monomera (slično kao što nema ni inicijatora) U početnoj fazi dolazi do prijenosa aktivnosti s inicijatora na monomer, a potom monomer prelazi u oligomer i polimer što utječe na smanjenje konc. monomera.

25 Vrlo reaktivni monomeri - prenosioci rasta lanca - vinil-acetat CH O C CH 3 O - vinil-klorid =CHCl

26 Prijenos rasta lanca na polimer - Nastajanje bočnih grana ili umreženja - najčešći prijenos rasta lanca (na kraju polimerizacije, kada nastupa terminacija, osim otapala postoji samo polimer) Primjer: reaktivnost poli(vinil-acetata) A B - CH - O C = O C CH 3

27 Prijenos rasta lančaste reakcije s polimerom uvijek dovodi do reakcije grananja, osim ako se prijenos odvija na kraju lanca.

28 CH CH CH CH CH CH R R R R R R + CH R CH CH C CH CH CH R R R R R R + CH R R CH CH CH C CH CH CH R R R R R R

29 intenzivnije grananje - kada je velika koncentracija polimera, tj. kod visokog stupnja konverzije. Kod svake radikalske polimerizacije dolazi do nastajanja razgranatih polimera.

30 -kod poliakrilata konstanta prijenosa vrlo visoka pa u konačnici nastaje umrežen polimer: CH COOR CH COOR CH COOR CH COOR Dodatkom modifikatora ili polimerizacijom u otopini ili emulziji moguće je izbjeći takve reakcije umreženja.

31 Zanimljiv slučaj prijenosa rasta lančaste reakcije s polimera kod polietilena. - rastući lanac tom prilikom reagira tu i tamo sa svojim vlastitim lancem intramolekularno povezivanje CH H CH CH 2 CH CH 2 ( ) 3 CH 3 ( ) 3 CH 3

32 Ta se reakcija naziva «backbiting», «ugristi sam sebe za rep». Intramolekularno povezivanje polimera ima velikog utjecaja na konačna fizičko-mehanička svojstva. Najvišu konstantu prijenosa ima PVAc jer je mjesto prijenosa vodikov atom acetilne grupe, to je reaktivno mjesto na kojem se nastali radikal stabilizira rezonancijskom interakcijom karbonilnom grupom. Prijenos lančaste reakcije može se kod PVAc dogoditi i kao intramolekularna reakcija s vlastitom acetilnom grupom.

33 CH O C O O CH CO H O C O CH 3 Osim intramolekularnog prijenosa može doći i do intermolekularnog prijenosa koji također vodi stvaranju dugih grana. Takvo grananje događa se u poli(vinil-acetatu) na ugljiku acetatne grupe.

34 CH CH + O O O + CH O C O C O C O C O CH 3 CH 3 CH 3 VAc CH O C O CH O CO CH 3

35 Prema tome, molekule poli(vinil-acetata) mogu sadržavati dva tipa razgranatih lanaca, a gustoća grananja opisuje se Flory-evom jednadžbom: 1 ρ c [1 ( ) ln(1 p P P)] - gustoća grananja (broj grana prema broju polimernih jedinica) P - konverzija

36 - ovisnost gustoće grananja o konverziji: kada je konverzija približno 100%, naglo raste gustoća grana. 100 P /%

37 Kinetika slobodno-radikalske polimerizacije Na osnovi navedenog može se definirati A) brzina reakcije inicijacije, R i R i = k i I (1) Gdje je: k i - konstanta brzine inicijacije, I - molarna koncentracija inicijatora

38 B) brzina reakcije propagacije, R p R p = - d M dt = k p [M ] M (2) Gdje je: k p M [M ] konstanta brzine propagacije molarna koncentracija monomera molarna koncentracija aktivnih radikala

39 C) brzina reakcije terminacije R t R t = k 2 t M (3) Gdje je: k t konstanta brzine terminacije [ M ] molarna koncentracija aktivnih radikala

40 - značajno smanjenje konc. monomera javlja se u fazi propagacije te se može reći da je brzina polimerizacije jednaka: - d M dt = R p = k p M M Nakon kraćeg vremena polimerizacije: stacionarno stanje, tj. stanje dinamičke ravnoteže - brzina nastajanja slobodnih radikala u fazi inicijacije jednaka je brzini nestajanja u fazi terminacije

41 R R i t (4) kako je: R t k t M 2 slijedi da je: R i 2k t M 2 (5) (Faktor 2 dodaje se u skladu s općim pravilom konverzije da prilikom terminacije nestaju 2 radikala).

42 Jedn. (5) može se pisati i ovako; R M 1/ 2 i 2k t ako sada izraz iz jedn. (6) uvrstimo u jedn. (2), dobije se izraz za brzinu propagacije: (6) R k p p R M 1/ 2 i 2k t (7) Zamjenom R i u jedn. (7) izrazom (1) dobije se sljedeći izraz: R p k p k [I] M 1/ 2 i 2k t

43 Sada se taj izraz može pisati kao brzina ukupne reakcije polimerizacije koja glasi; R p = k p [M] [I] 1/2 (8) Brzina polimerizacije ovisi; - o konc. monomera - o konc. inicijatora * eksponent ½ označava drugi korijen što znači da udvostručenjem brzine inicijacije ne dolazi do dvostrukog povećanja reakcije polimerizacije, već se povećava za faktor 1,44 (korijen iz 2).

44 Veličina reakcija polimerizacije definirana je stupnjem polimerizacije Stupanj polimerizacije kinetički je definiran kao odnos brzina polimerizacije i suma svih brzina terminacije.

45 To su brzine R i, R p, R t, gdje R t uključuje terminacije normalnu terminaciju - kombinacijom - disproporcioniranjem terminaciju prijenosa rasta lanca - na inicijator - na monomer - na otapalo

46 Prema definiciji slijedi da je: Brojčani prosječni stupanj polimerizacije: DP n (R t / 2 ) k t,m R [M ][M] p k t,s [M ][S] k t,i [M ][I] (9) R p R t - brzina reakcije propagacije - brzina reakcije terminacije kombinacijom Ostala tri člana su - terminacija prijenosa rasta lančaste reakcije ( M, monomer; I, inicijator; S, otapalo)

47 b) stupnjevite polimerizacije (kondenzacijske) - stupnjeviti rast polimernog lanca: monomer + monomer dimer dimer + monomer trimer dimer + dimer tetramer trimer + monomer tetramer itd.

48 - polikondenzacija - polimerizacija u kojoj male molekule tvore polimerne molekule kondenzacijom - nastaju i male molekule (voda, amonijak, CO 2, HCl, N 2, metanol) - postupan tijek ukupne reakcije, reverzibilnost (duže trajanje polimerizacije, visoka temperatura)

49 Primjer: poliamidi a) CH CONH nh O nh2n CH2 COOH n w-aminoheksakiselina poliamid (nylon 6, perlon) b) HOOC-( ) 4 COOH + H 2 N ( ) 6 NH 2 -OC-( ) 4 -CO-NH-( ) 6 NH- + 2H 2 O adipinska kis. heksametilendiamin poliamid (nylon 6,6) -CONH- grupe amidne grupe

50 Primjer: poliesteri n HO OH + n HOOC COOH monomer etilen-glikol (EG) monomer tereftalna kiselina (TPA) OOC COO n + 2n H 2 O poli(etilen-tereftalat), PET -COO- grupe esterske grupe

51 Postupci proizvodnje PET-a 1. Direktna esterifikacija n HO OH + n HOOC COOH monomer monomer etilen-glikol tereftalna kiselina (EG) (TPA) OOC COO n + 2n H 2 O PET

52 2. Esterska izmjena 1. H 3 COOC COOCH 3 + HO OH monomer monomer dimetil-tereftalat (DMT) etilen-glikol(eg) HO OOC COOCH 3 + CH 3 OH metil-2-hidroksietil-tereftalat (MHET) metanol (M) 2. HO OOC COOCH 3 + HO OH metil-2-hidroksietil-tereftalat (MHET) etilen-glikol (EG) HO OOC COO OH + CH 3 OH monomer 1,4-bis-hidroksietilentereftalat (BHET) metanol (M)

53 3. HO OOC COO OH monomer 1,4-bis-hidroksietilentereftalat (BHET) - OOC- -COO - + HO OH ( PET etilen-glikol (EG)

54 Kondenzacijske polimerizacije: 2 tipa 1. dva razna polifunkcionalna monomera u kojem svaki ima samo jedan tip funkcionalne grupe n H 2 N-R-NH 2 + n HOOC-R'-COOH HN-R-NH-OC-R'-CO n +n H 2 O Ili, općenito: n A-A + n B-B A-A-B-B n HOOC-( ) 4 COOH + H 2 N ( ) 6 NH 2 -OC-( ) 4 -CO-NH-( ) 6 NH- + 2H 2 O adipinska kis. heksametilendiamin poliamid (nylon 6,6)

55 2. jedan monomer koji sadrži oba tipa funkcionalnih grupa: n H 2 N-R-COOH HN-R-CO n +n H 2 O ili općenito: n AB A-B n CH CONH nh O nh2n CH2 COOH n w-aminoheksakiselina poliamid (nylon 6, perlon)

56 Reaktivnost funkcionalnih grupa 1. korak: HO-R-OH+HOOC-R'-COOH HO-R-O-CO-R'-COOH+H 2 O dialkohol dikiselina dimer 2. korak: dimer reagira s drugim dimerom a) 2HO-R-O-CO-R'COOH H 2 O + HO-R-O-CO-R'-COO-R-O-CO-R'-COOH tetramer ili dimer + monomer

57 b) HO-R-O-CO-R'-COOH + HO-R-OH H 2 O + monomer HO-R-O-CO-R'-CO-O-R-OH trimer

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Fizička hemija makromolekula

Fizička hemija makromolekula Fizička hemija makromolekula Šk. 2013/2014 2. Predavanje Oktobar 2013. Dr Gordana Ćirić-Marjanović, vanredni profesor 2. Reakcije polimerizacije. 2.1. Lančane reakcije polimerizacije Kod lančane polimerizacije,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

HETEROGENE POLIMERIZACIJE

HETEROGENE POLIMERIZACIJE Pojava više faza uslijed različitih uzroka Nemješljivost monomera (monomeri etilen glikol i tereftalna kiselina nisu mješljivi, s porastom konverzije sustav prelazi u jednu fazu) Geliranje (gel je po definiciji

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

IMOBILIZACIJA AKTIVNIH TVARI ZA BIOLOŠKO PREPOZNAVANJE

IMOBILIZACIJA AKTIVNIH TVARI ZA BIOLOŠKO PREPOZNAVANJE IMBILIZACIJA AKTIVI TVARI ZA BILŠK PREPZAVAJE EZIMI ATITIJELA RECEPTRI MIKRRGAIZMI ŽIVTIJSKE ILI BILJE STAICE ŽIVTIJSKA I BILJA VLAKA KLJUČI PRCES PRI IZRADI BISEZRA IMBILIZACIJA BILŠKE TVARI - AJČEŠĆE

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Materijali I POLIMERI. Prof. dr. sc. Ivica Kladarić

Materijali I POLIMERI. Prof. dr. sc. Ivica Kladarić Materijali I POLIMERI Prof. dr. sc. Ivica Kladarić Osnove polimera Osnove polimera Područja primjene polimernih materijala Osnove polimera Riječ polimer je složenica koja potječe od grčkih riječi: πολυ

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

sastoji se od različitih izomernih struktura s po jednim atomom klora na svaka 4 C-atoma

sastoji se od različitih izomernih struktura s po jednim atomom klora na svaka 4 C-atoma POLIKLOROPREN (CR) Poli (2-klorbutadien) sastoji se od različitih izomernih struktura s po jednim atomom klora na svaka 4 C-atoma H H 2 C C C Cl CH CH 2 CH 2 2 C C Cl H n kloropren polikloropren udio pojedinih

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

REAKCIJE ELIMINACIJE

REAKCIJE ELIMINACIJE REAKIJE ELIMINAIJE 1 . DEIDROALOGENAIJA (-X) i DEIDRATAIJA (- 2 O) su najčešći tipovi eliminacionih reakcija X Y + X Y 2 Dehidrohalogenacija (-X) X strong base + " X " X = l, Br, I 3 E 2 Mehanizam Ova

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

DINAMIČKA MEHANIČKA ANALIZA (DMA)

DINAMIČKA MEHANIČKA ANALIZA (DMA) Karakterizacija materijala DINAMIČKA MEHANIČKA ANALIZA (DMA) Dr.sc.Emi Govorčin Bajsić,izv.prof. Zavod za polimerno inženjerstvo i organsku kemijsku tehnologiju Da li je DMA toplinska analiza ili reologija?

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Fizička hemija makromolekula

Fizička hemija makromolekula Fizička hemija makromolekula Šk. 2017/2018 3. Predavanje Dr GordanaĆirić-Marjanović, redovni profesor 2.2 Jonska polimerizacija 2.2.2 Katjonska polimerizacija Katjonska polimerizacija je lančana reakcija

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola)

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) 1 Adicija alkohola 2 AETALI I PLUAETAL AETALI 3 Adicijom jednog mola alkohola na mol aldehida ili ketona nastaje poluacetal

Διαβάστε περισσότερα

C kao nukleofil (Organometalni spojevi)

C kao nukleofil (Organometalni spojevi) C kao nukleofil (Organometalni spojevi) 1 Nastajanje nukleofilnih C atoma i njihova adicija na karbonilnu grupu Ukupan proces je jedan od najkorisnijih sintetskih postupaka za stvaranje C-C veze 2 Priroda

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Fizička hemija makromolekula

Fizička hemija makromolekula Fizička hemija makromolekula Šk. 2017/2018 3. Predavanje Oktobar 2017. dr G.Ćirić-Marjanović, redovni profesor 2.2 Jonska polimerizacija 2.2.2 Katjonska polimerizacija Katjonska polimerizacija je lančana

Διαβάστε περισσότερα

Kiselo bazni indikatori

Kiselo bazni indikatori Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα