Supravodljivost Sadržaj 1 Supravodljivost... 2
|
|
- Ξένη Παπαντωνίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Supravodljivost Sadržaj 1 Supravodljivost Podjela supravodljivih materijala Energijski procijep Meissnerov efekt Izotopni efekt BCS teorija Visokotemperaturni supravodiči Kuprati Supravodiči temeljeni na željezu Istraživanja... 12
2 1 Supravodljivost Supravodljivost je fenomen iščezavanja električnog otpora materijala usljed hlađenja materijala do određene temperature (slika 1.1). Temperaturu pri kojoj materijal postaje supravodljiv nazivamo kritičnom temperaturom i označavamo s T c. Ovu pojavu prvi je uočio Kamerlingh Onnes godine mjereći električni otpor žive za koju je T c = 4.2 K. ρ Obični vodič Supravodič 1.1 Ovisnost električnog otpora kod vodiča i supravodiča Supravodljivost ovisi o tri parametra: kritične temperature (T c ), kritičnog magnetskog polja (H c ) i kritičnoj gustoći struje (J c ) (slika 1.2). Ukoliko su svi parametri ispod kritičnih vijednosti materijal će biti u supravodljivom stanju u suprotnom dolazi do razaranja supravodljivosti. T
3 1.2 Međuovisnost struje, magnetskog polja i temperature 1.1 Podjela supravodljivih materijala Postoji više kriterija za klasificiranje supravodiča: Prema fizičkim svojstima: tip I i tip II Teoriji koja ih objašnjava: konvencionalni (ukoliko za njih vrijedi BCS teorija ili njena preinaka) i nekonvencionalni Prema kritičnoj temperaturi: visokotemperaturni (T c > 77K) i niskotemperaturni Prema materijalu: kemijski elementi (slika 1.3), slitine, keramike i organski supravodiči
4 POZNATI SUPRAVODLJIVI ELEMENTI PRI NORMALNOM TLAKU PRI VISOKOM TLAKU LANTANIDI AKTINIDI 1.3 Supravodljivi elementi 1.2 Energijski procijep Kod normalnih materijala elektronski doprinos toplinskom kapacitetu je proporcionalan temperaturi. Temperaturna ovisnost o toplinskom kapacitetu supravodiča pokazuje drugačija svojstva. Na temperaturi supravodljivog prijelaza toplinski kapacitet naglo raste a daljim snižavanjem temperature eksponencijalno pada prema nuli (slika 1.4). Za T<<T c približno vrijedi: C V Ae B T (1.1)
5 1.4 Ovisnost toplinskog kapaciteta o temperaturi u supravodiču Iz krivulje ovisnosti toplinskog kapaciteta vidimo da se elektroni u supravodiču mogu pobuditi jedino dovođenjem dovoljne energije, odnosno pobuđena stanja supravodiča odvojena su od osnovnog stanja energijskim procijepom. Hipoteza o postojanju energijskog procijepa u supravodičima potvrđena je eksperimentalno mjerenjem apsorpcije u dalekom infracrvenom dijelu spektra. Apsorbiranje upadnog fotona od strane elektrona će se dogoditi tek onda kada elektron s dodatkom njegove energije može prijeći preko energijskog procijepa. Označavanjem energijskog procijepa u supravodiču sa imamo za uvijet apsorpcije: (1.2) 12 Što za frekvenciju praga apsorpcije od 10 Hz daje za širinu energijskog procijepa 10-3 ev. Takav uzak procijep elektroni će prelaziti već i pri malim temperaturama. 1.3 Meissnerov efekt Ponašanje supravodljivog uzorka u vanjskom magnetskom polju su ispitivali Meissner i Ochsenfeld godine. Otkrili su da uzorak u supravodljivom stanju istiskuje magnetske silnice iz unutrašnjosti, dakle magnetska indukcija u uzorku jednaka je nuli. B 0 (1.3)
6 1.5 Magnetske silnice u supravodiču ispod i iznad kritične temperature Magnetsku indukciju uzorka određuje vanjsko polje i magnetizacija: B 0 H M (1.4) Magnetizacija je proporcionalna s vanjskim poljem: M H (1.5) Gdje nam χ označava magnetsku susceptibilnost materijala. Kombiniranjem izraza (1.4) i (1.5) imamo: B 1 H Da bi magnetska indukcija bila jednaka nuli, mora biti 0 (1.6) M H (1.7) Magnetizacija u unutrašnjosti uzorka djeluje suprotno od smjera vanjskog polja što karakterizira dijamagnete. Dijamagnetski efekt je toliko jak u supravodičima da poništava djelovanje vanjskog polja pa supravodiče nazivamo idealnim dijamagnetima. Proporcionalnost između vanjskog polja i magnetizacije u supravodiču postoji do kritičnog magnetskog polja H c jer tada supravodič prelazi u normalno stanje (slika 1.6)
7 1.6 Supravodiči prve vrste Temperaturnu ovisnost kritičnog polja možemo izraziti sa: 2 T H c T Hc 0 1 (1.8) Tc Supravodiče sa ovakovom ovisnošću o vanjskom polju nazivamo supravodičima prvog tipa (slika 1.6). Supravodiče drugog tipa karakteriziraju dva kritična polja: donje kritično polje H c1 i gornje kritično polje H c2. Ispod donjeg kritičnog polja uzorak se nalazi u supravodljivom stanju, između donjeg i gornjeg u mješanom, a iznad gornjeg kritičnog polja u normalnom stanju (slika 1.7). 1.7 Supravodiči druge vrste Izotopni efekt Prijelaz u supravodljivo stanje na različitim temperaturama različitih izotopa elemenata otkriveno je godine. Kritična temperatura opada s masom izotopa 1 T c (1.9) M
8 1.4 BCS teorija BCS teorija je dobila naziv prema početnim slovima američkih fizičara koji su je razradili Bardeen, Cooper i Schrieffer. Na dinamičku interakciju dvaju elektrona koji se gibaju vodičom utječe kulonsko odbijanje i prisutnost pozitivnih iona. Uzmimo dva elektrona koji se gibaju vodičem. Prvi elektron prema Coulombovu zakonu privlači pozitivne ione koji se zbog svoje mase sporije gibaju u odnosu na elektrone. Na taj način dolazi do povećanja koncentracije pozitivnih naboja duž staze kojom je prošao prvi elektron. Taj poremećaj ostaje još neko vrijeme. Područje povećane ionske koncentracije privlači drugi elektron i on se giba prema trajektoriji prvog elektrona. Na taj način u vodičima se inducira i dodatno elektronsko privlačenje izazvano premještanjem pozitivnih iona. Duž trajektorije elektrona se mijenja stupanj pobuđenosti kristalne rešetke. Harmonički oscilatori kojima opisujemo titranje prelaze pod utjecajem prolaska elektrona na nova kvantna stanja a svaki takav prijelaz je popraćen promjenom broja fonona. Kako elektroni u vodiču mogu stvarati i apsorbirati fonone, točnijom kvantnomehaničkom analizom se pokazuje da privlačenje elektrona je uzrokovano izmjenom fonona. Efektivno privlačenje elektrona postoji kada fononski inducirano privlačenje prevlada kulonsko odbijanje. Promjena energije elektrona zbog interakcije s fononom je mala jer su tipične energije elektrona puno veće od energije fonona. Iz Paulijeva principa slijedi da će međudjelovati samo elektroni čije su energije približno jednake Fermijevoj energiji E F. Najveća vjerojatnost sparivanja elektrona je kada su im valni vektori i spinovi suprotni. Takva dva elektrona nazivamo Cooperovim parom. Cooperove parove karakteriziraju kvantna stanja k i k, rezultantni valni vektor je nula kao i rezultantni spin. Posljedica toga je da za njih vrijedi Bose Einsteinova raspodjela, odnosno, za takve čestice ne vrijedi Paulijev princip pa se svi mogu nalaziti u istom kvantnom stanju. Povišivanjem energije za iznos koji je jednak energiji energijskog procijepa dolazi do cjepanja Cooperovog para na dva individualna elektrona. Jakost veze u Cooperovom paru određuje omjer T/T c. Što je manji taj omjer, širi je energijski procijep te su elektroni jače vezani u Cooperovom paru.
9 Energijski procijep se sužava kako se T približava T c i u limesu kada nulu. T Tc ide u Za širinu energijskog procjepa pri apsolutnoj nuli korištenjem modela slabe veze imamo: 0 1 g (1.10) 4 e Gdje bezdimenzionalni parametar g označava jačinu efektivnog privlačenja elektrona. Temperatura prijelaza iz normalnog u supravodljivo stanje je dana s k B T c 1 g pri čemu pretpostavljamo da je (1.11) e 1 g k BT c što je zadovoljeno u modelu slabe veze jer je tada e 1. Nadalje, to povlači da je Tc mnogo niža od Debeyeove temperature koja je približno jednaka. Usporedbom relacija (1.10) i (1.11) dobijamo vezu između kritične temperature i energijskog procijepa: k B Tc (1.12) Iz čega vidimo da je energijski procjep pri apsolutnoj nuli proporcionalan kritičnoj temperaturi. 1.5 Visokotemperaturni supravodiči Visokotemperaturnim supravodičima smatramo supravodiče čija je temperatura supravodljivog prijelaza iznad 30 K. Prvi visokotemperaturni supravodič otkrili su Karl Müller i Johannes Bednorz godine. Izraz visokotemperaturni supravodič dugo se koristio kao sinonim za kuprate sve do otkrića supravodiča sa spojevima željeza (2008. godina). Najistraživaniji visokotemperaturni supravodiči danas su barij bakar oksid (YBCO) i bizmut stroncij bakar oksid (BSCCO). U kontekstu visokotemperaturne supravodljivosti visoka temperatura zadovoljava sljedeće uvijete:
10 To je temperatura iznad 30 K koja je povijesno uzeta kao gornja granica koju je teoretski predviđala BCS teorija Omjer T c /T F je veći nego u konvencijalnim supravodičima Temperatura iznad točke ključanja tekućeg dušika (77 K) Visokotemperaturni materijali imaju veću tehnološku primjenu zbog više temperature prijelaza i veće otpornosti supravodljivosti na magnetska polja. Zbog svoje otpornosti na magnetska polja koriste se u izradi magneta unatoč svojoj krhkoj keramičkoj prirodi. Eksperimentalna i teoretska istraživanja svojstava ovakvih materijala provode se više od dvadeset godina i unatoč otkrića mnogih svojstava ni danas ne postoji općeprihvaćena teorija koja u potpunosti objašnjava sva popratna svojstva tog fenomena Kuprati Kupratnim supravodičima općenito smatramo kvazi dvodimenzijalne spojeve čija svojstva određuju elektroni koji se gibaju po slabo vezanim ravninama bakar oksida. Prostor između slojeva bakar oksida najčešće popunjavaju Y, Ba, Sr, Bi, La, Nd ili drugi elementi koji stabiliziraju spoj i imaju ulogu donora. Ravnine ne moraju biti kristalografski ekvivalentne, pa osnovna ćelija može imati jednu, dvije ili više ravnina.
11 1.8 Fazni dijagram kupratnih supravodiča s elektronskim i šupljinskim dopiranjem Na slici 1.8 prikazan je fazni dijagram kupratnih supravodiča s elektronskim i šupljinskim dopiranjem. Na dijagramu je vidljiva antiferomagnetska (AF) faza blizu dopiranja p = 0, supravodljiva (SC) oko dopiranja p=0.16 i faza pseudoprocijepa (područje ispod crtkane linije). Isto tako su prikazani i rasponi dopiranja za pojedine spojeve. Struktura kuprata je perovskitna. Ravnine bakar oksida tvore pravokutne ćelije s O 2- ionima u vrhovima i s Cu 2+ ionom u središtu. Dopiranje se postiže ubacivanjem pojedinog elementa na novu kristalografsku poziciju ili zamjenom elementa na već postojećoj, koja može biti i unutar i van bakar oksid ravnine Supravodiči temeljeni na željezu Supravodiči koji se temelje na željezu posjeduju slojeve željeza i pnictogena kao što su arsen, fosfor ili nekog halogenog elementa. Prema kritičnoj temperaturi zauzimaju mjesto iza kuprata. Supravodljiva svojstva ovakvih spojeva otkrivena su godine kod LaFePO (T c = 4 K), a godine otkriven je analogan materijal LaFeAs(O, F) koji postaje supravodljiv pod tlakom pri temperaturi od 43 K. Postoji nekoliko vrsta supravodiča koji se temelje na željezu: LnFeAs(O, F) ili LnFeAsO 1-x koji se označavaju kao 1111 materijali
12 (Ba, K)Fe 2 As 2 i srodni materijali sa željezo arsenskim slojevima koje označavamo kao 122 tvarima. Zamjenom željeza sa kobaltom u ovakvim materijalima ne narušava se supravodljivo svojstvo. LiFeAs i NaFeAs FeSe sa malim van stohastičkim ili telurijskim dopiranjem 1.9 Fazni dijagrami dopiranih supravodiča temeljenih na željezu Istraživanja Pitanje na koji način se pojavljuje supravodljivost u visokotemperaturnim supravodičima je jedno od većih danas. Unatoč intenzivnim istraživanjima, mehanizam formiranja elektronskih parova u kristalima ostaje nepoznat. Jedan od razloga je sama kompleksnost materijala zbog kojeg je postavljanje adekvatnog teoretskog modela izrazito težak. Postoje dvije teorije visokotemperaturne supravodljivosti. Prva pretpostavlja da HTS dolazi od antiferomagnetskih fluktuacija u dopiranim sustavima. Prema ovoj teoriji, valna funkcija sparivanja kuprativnih HTS bi trebala imati d X 2 -y 2 simetriju. Stoga, određivanje da li valna funkcija sparivanja ima d valnu simetriju je presudno za ispitivanje spinskog fluktuacijskog mehanizma. Odnosno, ako valna funkcija sparivanja nema d simetriju, mehanizam sparivanja povezan sa spinskim fluktuacijama možemo odbaciti.
13 Prema drugoj teoriji, slojevita struktura koja se sastoji od BCS tipova (s valna simetrija) supravodiča može poboljšati supravodljivost samu od sebe. Uvođenjem dodatne interakcije tuneliranja između slojeva ovaj model je uspio uspješno objasniti anizotropnu simetriju.
14
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
Supravodljivost. Supravodljivost je otkrio Kamerlingh-Onnes god. mjereći otpor žive na niskim temperaturama.
Supravodljivost ρ(t) Hg T C = 4,2 K T Supravodljivost je otkrio Kamerlingh-Onnes 1911. god. mjereći otpor žive na niskim temperaturama. Otpor žive na temperaturi T C = 4,2 K naglo pada na nemjerljivo malu
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Magnetizam i fotoefekt u visokotemperaturnim supravodičima
Magnetizam i fotoefekt u visokotemperaturnim supravodičima Osnovni podaci: Kompleksni metalni oksidi keramike; Perovskiti kisikove piramide ili oktaedri. Karakteristične ravnine bakrenog oksida; Izolatori
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
ELEMENTARNA MATEMATIKA 1
Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A
Elektron u periodičnom potencijalu
Elektron u periodičnom potencijalu U Sommerfeldovom modelu elektroni se gibaju u potencijalnoj jami s ravnim dnom (kutija). Periodični potencijala od pravilne kristalne strukture pozitivnih iona se zanemaruje.
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Metal u oscilirajućem električnom polju
Metal u oscilirajućem električnom polju Raspršivanje elektrona na preprekama može se tretirati kao vrst sile trenja. Jednadžba gibanja elektrona: m u = e F 0 e iωt }{{} sila el. polja γ }{{ m u }, trenje
Materija u magnetskom polju
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Materija u magnetskom polju Vrste magnetskih materijala snove elektrotehnike I Elektroni pri svojoj vrtnji oko jezgre
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Magnetska svojstva materijala
Magnetska svojstva materijala Pod utjecajem magnetskog polja tvari postaju magnetične. Magnetičnost prikazujemo preko veličine koju zovemo magnetizacija. Magnetizacija, M, se definira kao srednja gustoća
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
elektronskog para samo jednog od atoma u vezi
KOMPLEKSNI SPOJEVI Spojevi u kojima se nalaze skupine atoma koji su povezani u više ili manje stabilne jedinice u krutom, tekućem, otopljenom i plinovitom stanju. Koordinacijski spojevi jer imaju koordinacijsku
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo
Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I
Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Izvori magnetskog polja
Izvori magnetskog polja Biot-Savartov zakon - Hans Christian Oersted 1820. g. veza elektriciteta i magnetizma: električna struja u vodiču otklanja magnetsku iglu - Jean-Baptiste Biot (1774.-1862.) i Felix
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Elektron u magnetskom polju
Quantum mechanics 1 - Lecture 13 UJJS, Dept. of Physics, Osijek 4. lipnja 2013. Sadržaj 1 Bohrov magneton Stern-Gerlachov pokus Vrtnja elektrona u magnetskom polju 2 Nuklearna magnetska rezonancija (NMR)
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Fizikalni sustavi i njihovo modeliranje - 2. dio
Fizikalni sustavi i njihovo modeliranje - 2. dio «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja Kondov i Andersonov model Modeli čvrste
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože