Uvod v fiziko. z rešenimi problemi za študente tehniških smeri

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Uvod v fiziko. z rešenimi problemi za študente tehniških smeri"

Transcript

1 MARKO PINTERIĆ Uvod v fiziko z rešenimi probemi za študente tehniških smeri y x F = m a Mutationem motus proportionaem esse vi motrici impressae, et fieri secundum ineam rectam qua vis ia imprimitur.

2 ii Uvod v fiziko z rešenimi probemi Uvod v fiziko z rešenimi probemi Avtor: Recenzija: doc. dr. Marko Pinterić Lektoriranje: Ana Brunčič Obikovanje: Ana Brunčič Zaožba: Leto izdaje: 203 Tisk: Nakada: Cena: 8 dr. Martin Horvat doc. dr. Anita Prapotnik Brdnik Univerza v Mariboru, Fakuteta za gradbeništvo Rograf d.o.o. 49 izvodov 203, Fakuteta za gradbeništvo, Univerza v Mariboru. Vse pravice pridržane. Noben de te izdaje ne sme biti reproduciran, shranjen ai prepisan v kateri koi obiki oziroma na kateri koi način, bodisi eektronsko, mehansko, s fotokopiranjem, snemanjem ai kako drugače, brez predhodnega pisnega dovojenja astnikov avtorskih pravic. CIP - Kataožni zapis o pubikaciji Univerzitetna knjižnica Maribor 53:62(075.8) PINTERIĆ Marko Uvod v fiziko z rešenimi probemi : za študente tehniških študijskih smeri / Marko Pinterić. - Maribor : Fakuteta za gradbeništvo, 203 ISBN COBISS.SI-ID

3 Kazao I Teorija in probemi Kinematika 3. Premo gibanje Večdimenzijsko gibanje Kroženje Statika 7 2. Statika točkastega teesa Težišče Statika togega teesa Eastične astnostni tees Dinamika Premo gibanje točkastega teesa Kroženje točkastega teesa Vrtenje togega teesa Energija in deo 45 5 Gibana in vrtina koičina 5 6 Nihanje in vaovanje 57 7 Mehanika tekočin 65 8 Topota in pini 69

4 x Uvod v fiziko z rešenimi probemi II Rešitve 77 Kinematika 79. Premo gibanje Večdimenzijsko gibanje Kroženje Statika 5 2. Statika točkastega teesa Težišče Statika togega teesa Eastične astnostni tees Dinamika Premo gibanje točkastega teesa Kroženje točkastega teesa Vrtenje togega teesa Energija in deo 93 5 Gibana in vrtina koičina 2 6 Nihanje in vaovanje 23 7 Mehanika tekočin 24 8 Topota in pini 25

5 I. Teorija in probemi

6 8 Uvod v fiziko z rešenimi probemi Težišče in gostota V primeru togega teesa je njegova masa m razporejena v prostoru in je koristno definirati poožajni vektor masnega središča r T = i m i r i, r T = i m i m r dm. (2.2) Poožajni vektor masnega središča je v večini tehniških probemov (homogeno gravitacijsko poje) enak poožajnem vektorju prijemaišča sie gravitacije imenovanemu težišče; čeprav masno središče in težišče nista sopomenki, bomo v tej pubikaciji za oba uporabjai isti izraz težišče. Pri izračunu težišča tees uporabjamo veičine gostota ρ, poščinska gostota ρ A in vzdožna gostota ρ, ki so za homogena teesa definirane kot ρ = m V, ρ A = m A, ρ = m, (2.3) (2.4) (2.5) kjer predstavja dožino enodimenzijskega, A poščino dvodimenzijskega in V prostornino trodimenzijskega teesa. Ker je pri homogenih teesih gostota konstantna, se izračun težišča bistveno poenostavi. Naj dodamo, da je pri homogenih in simetričnih teesih težišče v geometrijskem središču teesa. Točkasto teo Gibanje tees opisujejo Newtonovi zakoni gibanja. Ravnovesje teesa dooča I. Newtonov zakon. Ker je v svoji originani obiki zakon definiran za točkasto teo, gibanje katerega v poponosti opisuje e premik, ga bomo v pubikaciji imenovai I. Newtonov zakon za premik: če (in samo če) je rezutanta vseh si, ki deuje na točkasto teo, enaka nič, teo miruje ai pa se giba enakomerno F = 0 v = konst. (2.6)

7 2 Statika 9 Ta zakon ahko uporabimo tudi za toga teesa, ki se ne vrtijo, saj se v tem primeru pojavi e vzporedni premik oziroma je hitrost za vse dee teesa enaka. Togo teo Togo teo je ideaizacija končnodimenzijskega trdnega teesa, pri kateri zanemarimo deformacije. To pomeni, da se razdaja med pojubnima izbranima točkama teesa ne spreminja. Na spošno se v primeru togega teesa ahko pojavita vzporedni premik (transacija) in vrtenje (rotacija). V tem primeru zgoraj zapisan I. Newtonov zakon ni uporaben, saj imajo razični dei teesa ahko razične premike in hitrosti! Če spošno gibanje togega teesa opišemo kot kombinacijo premika težišča in vrtenja teesa okrog osi skozi težišče in upoštevamo, da je seštevek notranjih si in notranjih momentov si enak nič, se I. Newtonov zakon pospoši v dva enostavna zakona. I. Newtonov zakon za premik težišča: če (in samo če) je rezutanta vseh si, ki deuje na togo teo, enaka nič, težišče teesa miruje ai pa se giba enakomerno F = 0 v T = konst. (2.7) I. Newtonov zakon za vrtenje: če (in samo če) je rezutanta vseh momentov si, ki deujejo na togo teo, enaka nič, se teo ne vrti ai pa se vrti enakomerno M = 0 ω = konst. (2.8) Enostavno se da pokazati, da je za statične probeme izbira izhodišča za računanje momentov si pojubna. Za opis medsebojnega deovanje posameznih tees uporabimo III. Newtonov zakon: če prvo teo deuje na drugo s sio F 2, drugo teo deuje na prvo z nasprotno, enako veiko sio F 2 F 2 = F 2. (2.9)

8 32 Uvod v fiziko z rešenimi probemi m Črko U na siki, ki je narejena iz homogene kovinske paice konstantne poščine prereza, skupne dožine 5 =,00 m in skupne mase m = 0,50 kg, obesimo za eno od ogišč. Za koikšen kot se odkoni? (32 ) Brezbrižni deavec pritrdi jeken nosiec dožine d = 4,5 m in mase,0 t z dvema enako dogima jekenicama dožine = 2,2 m na koncu nosica in dveh tretjinah dožine nosica. Izračunajte, za koikšen kot je nagnjen nosiec gede na vodoravnico, ko ga žerjav dvigne. (25 )

9 2 Statika d 2.4 Eastične astnostni tees 2.3 Na sredo 2,0 m doge žice s poščino prereza,0 mm 2, ki je sprva napeta v vodoravni smeri, obesimo utež mase 0 kg. Žica se pri tem povesi za 80 mm. Koikšen je prožnostni modu žice? (2,0 0 N/m 2 ) 2.32 Žice dožine,0 m in poščine prereza,0 mm 2 iz medenine, jeka in žeeza povežemo eno za drugo. En konec tako sestavjene žice pritrdimo na strop, na drugi konec pa obesimo utež mase 0 kg. Za koiko se raztegne ceotna žica? Prožnostni modui za medenino, jeko in žeezo so,0 0 N/m 2, 2,0 0 N/m 2 in,5 0 N/m 2. Maso žic zanemarite. (2,7 mm) 2.33 Žice dožine,0 m in poščine prereza,0 mm 2 iz medenine, jeka in žeeza z ene strani pritrdimo na strop, na drugi konec pa na njih obesimo utež mase 0 kg. Za koiko se raztegnejo žice, če so njihovi raztezki enaki? Prožnostni modui za medenino, jeko in žeezo so,0 0 N/m 2, 2,0 0 N/m 2 in,5 0 N/m 2. Maso žic zanemarite. (0,22 mm)

10 II. Rešitve

11 48 Uvod v fiziko z rešenimi probemi 2.29 F p 0 F p 0 F g2 T 2 d 2 x T r g y T d T T T 3 d 3 F g F g3 F g a. Gravitacijske sie v težiščih posameznih deov Na črko U (sika evo) deujejo tri sie gravitacije posameznih deov črke s prijemaišči v njihovih težiščih F g = m g, F g2 = m 2 g in F g3 = m 3 g, ter sia podage F p. Mase posameznih deov dobimo, upoštevajoč da sta poščina

12 2 Statika 49 prereza in posedično dožinska gostota ρ ceotne paice konstantna (2.5) ρ = m 5, m = ρ = m 5 2 = 2 5 m, m 2 = ρ 2 = m 5 = 5 m, m 3 = ρ 3 = m 5 2 = 2 5 m. Za rešitev probema moramo uporabiti I. Newtonov zakon za vrtenje (2.8). Najbojša izbira izhodišča za računanje momentov si je točka 0 oziroma prijemaišče sie podage F p, ki ni podana in je ne potrebujemo. V tem primeru se zakon gasi M 0 = M 2 + M 3 M = d 2 F g2 + d 3 F g3 d F g = 0. Iz geometrije sistema vidimo, da so Končno dobimo d = sin, d 2 = 2 cos, d 3 = cos sin. 2 cos 5 mg + ( cos sin ) 2 5 mg sin 2 5 mg = 0 = tan = sin cos = 5 = = b. Gravitacijska sia v skupnem težišču Probem ahko rešimo tudi tako, da izračunamo težišče ceotne črke U (sika desno), kar smo že storii v probemu 2.7. V tem primeru je sia gravitacije ceotnega teesa zbrana samo v eni točki, zato na črko U deujeta samo dve sii, sia gravitacije F g in sia podage F p. Če I. Newtonov zakon za vrtenje (2.8) zapišemo v obesišču 0, dobimo M = r g F g = 0. Edina možnost, da je zgornji vektorski produkt enak nič, je da sta vektorja r g in F g med seboj v vzporedna. Ker je vektor F g navpičen, ahko skepamo, da je težišče točno pod obesiščem, torej ahko zapišemo tan = x T y T = 5 8 = = 32.

13 50 Uvod v fiziko z rešenimi probemi 2.30 F v h α F v2 h α y x F v α 6 d F g T 2 d α T 6 d 6 d F g 3 d Za rešitev bomo potrebovai kot med jekenico in nosicem α cos α = 3 d = α = 47. a. Sie na nosiec Na nosiec deujejo sia gravitacije F g = mg in dve sii jekenic F v in F v2 (sika evo). Za rešitev probema napišimo I. Newtonov zakon za vrtenje (2.8) okrog osi skozi težišče T M T = 2 d F v2 sin α 6 d F v sin α = 0 = F v = 3 F v2 in I. Newton zakon za premik težišča (2.7) F x = F v cos α F v2 cos α F g sin = 0, F y = F v sin α + F v2 sin α F g cos = 0. Če iz zgornjih dveh enačb izočimo zadnja čena in ju med seboj deimo dobimo tan = F g sin F g cos = (F v F v2 ) cos α (F v + F v2 ) sin α = 2 cot α = = 25.

14 2 Statika 5 b. Sie na sistem nosica in jekenic Probem ahko rešimo drugače, če kot pri prejšnji naogi upoštevamo, da je težišče točno pod obesiščem (sika desno). V tem primeru ahko napišemo 6 tan = d h, tan α = h 3 d. Če iz zgornjih dveh enačb izočimo h, dobimo tan = 2 cot α = = Eastične astnostni tees 2.3 y x 0 0 x α F F g F Ker je žica na svoji poovici upognjena, situacijo opišemo z dvema žicama poščine prereza A = 0 6 m 2 nenapete dožine 0 = m. Žici se zaradi uteži mase m = 0 kg podajšata do dožine, kar povzroči poves x = 0,08 m. Povečanje dožine vsake žice dobimo s pomočjo geometrijskega izračuna = 0 = x2 0 = 3,2 0 3 m. Podajšanje žic povzroča sia vzdož vsake žice. Zapišimo I. Newtonov zakon za premik (2.7) v y-smeri v točki stika obeh žic F y = 2F sin α F g = 0 = F = F g 2 sin α = mg 2 x mg = x2 = 630 N. 2x

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

UVOD : RAZVOJ SKOZI ZGODOVINO :

UVOD : RAZVOJ SKOZI ZGODOVINO : SEMINARSKA NALOGA IZ IZIKE S T A T I K A UVOD : Statika je e de t.im. Newtonove fizike, ki je pa zaradi razširjenosti in spošne uporabe v nekaterih tehničnih strokah obravnavana očeno. Tudi sama statika

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje.

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje. 2. Dinamika 2.1 Sila III. PREDNJE 2. Dinamika (sila) Grška beseda (dynamos) - sila Gibanje teles pod vplivom zunanjih sil 2.1 Sila Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

F g = 1 2 F v2, 3 2 F v2 = 17,3 N. F v1 = 2. naloga. Graf prikazuje harmonično nihanje nitnega nihala.

F g = 1 2 F v2, 3 2 F v2 = 17,3 N. F v1 = 2. naloga. Graf prikazuje harmonično nihanje nitnega nihala. Vaje - Gimnazija, 1. etnik, razična snov 1. naoga Kroga z maso 1 kg je pritrjena na dve vrvici, kakor kaže sika. Poševna vrvica okepa z vodoravnico kot 30. Izračunaj s koikšnima siama sta napeti vrvici!

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Mehanski izračuni žičnih anten Janez Červek, S57J

Mehanski izračuni žičnih anten Janez Červek, S57J Mehanski izračuni žičnih anten Janez Červek, S57J Radioamaterji pri gradnji žičnih anten v večini primerov izračunamo samo dožino žice. Statične in trdnostne izračune ter predpise pa zanemarimo. Posedica

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004

MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004 MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004 NTF, Visokošolski strokovni program KINEMATIKA 18. 2. 2004 Osnovne kinematične količine.: položaj r, hitrost, brzina, pospešek. Definicija vektorja

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2 Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala

Διαβάστε περισσότερα

Univerza v Ljubljani FS & FKKT. Varnost v strojništvu

Univerza v Ljubljani FS & FKKT. Varnost v strojništvu Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: srede med 9:00 in 11:30 pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si,

Διαβάστε περισσότερα

1 Seštevanje vektorjev in množenje s skalarjem

1 Seštevanje vektorjev in množenje s skalarjem Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

1 3D-prostor; ravnina in premica

1 3D-prostor; ravnina in premica 1 3D-prostor; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru, ki nimata skupne

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno

Διαβάστε περισσότερα

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS Mehanika L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 2. januar 2004 Kazalo 1 Gibalne enačbe 4 1 Posplošene koordinate...............................

Διαβάστε περισσότερα

GEOMETRIJA V RAVNINI DRUGI LETNIK

GEOMETRIJA V RAVNINI DRUGI LETNIK GEOMETRIJA V RAVNINI DRUGI LETNIK 2 1 Geometrija v ravnini 1.1 Osnove geometrije Točka je tisto, kar nima delov. Črta je dolžina brez širine. Ploskev je tisto, kar ima samo dolžino in širino. Osnovni zakoni,

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a:

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a: FIZIKA 1. poglavje: Mehanika - B. Borštnik 1 MEHANIKA(prvi del) Kinematika Obravnavamo gibanje točkastega telesa. Izberemo si pravokotni desni koordinatni sistem (sl. 1), to je takšen, katerega os z kaže

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Pravokotni koordinatni sistem; ravnina in premica

Pravokotni koordinatni sistem; ravnina in premica Pravokotni koordinatni sistem; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Govorilne in konzultacijske ure 2014/2015

Govorilne in konzultacijske ure 2014/2015 FIZIKA Govorilne in konzultacijske ure 2014/2015 Tedenske govorilne in konzultacijske ure: Klemen Zidanšek: sreda od 8.00 do 8.45 ure petek od 9.40 do 10.25 ure ali po dogovoru v kabinetu D17 Telefon:

Διαβάστε περισσότερα