ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 25 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

Πανελλαδικές εξετάσεις 2015

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Τομέας Mαθηματικών "ρούλα μακρή"

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

Β 1 α τρόπος Έστω z=x+yi. Τότε για την δοσμένη σχέση έχουμε:

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γ. τ. των εικόνων των μιγαδικών z είναι ο κύκλος κέντρου Ο(0,0) κι ακτίνας ρ=2. 4 z. 4 w 4 w 4. Πράγματι: w (1 1) 4

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1,

1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:


x R, να δείξετε ότι: i)

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

3o Επαναληπτικό Διαγώνισμα 2016

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

5o Επαναληπτικό Διαγώνισμα 2016

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

Λύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 2015

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x.

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

Α1. Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού. (3 µονάδες)

Προτεινόμενες λύσεις ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 25/5/2015. ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

1 ο Τεστ προετοιμασίας Θέμα 1 ο

Transcript:

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β] και f f, τότε να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένας τουλάχιστον ( αβ, ), τέτοιος ώστε f η. Μονάδες 7 Α. Έστω μια συνάρτηση f και ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο ; Μονάδες 4 Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α. Πότε λέμε ότι η f παρουσιάζει στο A τοπικό ελάχιστο; Μονάδες 4 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Αν για δύο συναρτήσεις f, g ορίζονται οι συναρτήσεις f g και g f, τότε ισχύει πάντοτε ότι f g g f. β) Η διανυσματική ακτίνα της διαφοράς των μιγαδικών α βi και γ δi είναι η διαφορά των διανυσματικών ακτίνων τους. γ) Για κάθε ισχύει ότι ( συν) ημ. δ) Έστω f μία συνεχής συνάρτηση σε ένα διάστημα [α,β]. Αν ισχύει ότι f() για κάθε [ αβ, ] και η συνάρτηση f δεν είναι παντού μηδέν στο διάστημα β αυτό, τότε f d. α ε) Αν lim f και f κοντά στο, τότε lim. f ΘΕΜΑ Β Θεωρούμε τους μιγαδικούς αριθμούς z για τους οποίους ισχύει: z 4 z. Μονάδες Β. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων αυτών των μιγαδικών αριθμών Ζ είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ=. Μονάδες 7 z z Β. Έστω w z z, όπου z, z δύο μιγαδικοί αριθμοί του ερωτήματος Β. Να αποδείξετε ότι: ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ α) Ο w είναι πραγματικός και (μονάδες 4) β) 4 w 4. (μονάδες 7) Μονάδες Β. Αν w 4, όπου w είναι ο μιγαδικός αριθμός του ερωτήματος Β, να βρείτε τη σχέση που συνδέει τους μιγαδικούς αριθμούς z, z και να αποδείξετε ότι το τρίγωνο ΑΒΓ με κορυφές τις εικόνες A( z ), B( z ), Γz ( ) των μιγαδικών αριθμών z, z και z, με z iz, είναι ισοσκελές. Μονάδες 7 ΘΕΜΑ Γ Δίνεται η συνάρτηση f,. Γ. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (, ). Μονάδες 6 Γ. Να αποδείξετε ότι η εξίσωση f έχει στο σύνολο των πραγματικών αριθμών μία ακριβώς ρίζα. Μονάδες 5 8 Γ. Να αποδείξετε ότι f f t dt για κάθε. Μονάδες 4 f t dt, g, Να αποδείξετε ότι η συνάρτηση g είναι γνησίως αύξουσα στο [, ). Μονάδες 7 Γ4. Δίνεται η συνάρτηση ΘΕΜΑ Δ Έστω η παραγωγίσιμη συνάρτηση f : για την οποία ισχύουν: f f f για κάθε και f. Δ. Να αποδείξετε ότι f ln,. Μονάδες 5 Δ. α) Να βρείτε τα διαστήματα στα οποία η συνάρτηση f είναι κυρτή ή κοίλη και να προσδιορίσετε το σημείο καμπής της γραφικής παράστασης της f. (μονάδες ) β) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f, την ευθεία y και τις ευθείες και. (μονάδες 4) Μονάδες 7 Δ. Να υπολογίσετε το όριο: lim f t dt ln f. Μονάδες 6 ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ f t dt 8 f t dt Δ4. Να αποδείξετε ότι η εξίσωση: έχει μία τουλάχιστον ρίζα στο (,). Μονάδες 7 ΘΕΜΑ Α Α. Θεωρία, σχολικό βιβλίο σελ. 94. Α. Θεωρία, σχολικό βιβλίο σελ. 88. Α. Θεωρία, σχολικό βιβλίο σελ. 59. Α4. α Λ, β Σ, γ Λ, δ Σ, ε Σ ΘΕΜΑ Β Β. Είναι z 4 z ΑΠΑΝΤΗΣΕΙΣ άρα z 4 4 z z 4z 4 4z z zz 4z 4z 6 4zz 4z 4z 4 zz zz 4 άρα z 4 z. Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι κύκλος με κέντρο Ο(,) και ακτίνα. Β. α) Οι εικόνες των z, z ανήκουν στον παραπάνω κύκλο, άρα και z z 4 z z 4 z z z 4 z z 4 z 4 z 4 z. 4 4 z z z z Είναι w z z 4 4 z z w z z z z αφού w w ο w είναι πραγματικός αριθμός (γιατί w w w w i Im w Im w w ). ος τρόπος z z z Είναι w z z z z z 4 4 Άρα ο w. z z z z z z z z R z z R z z ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ β) Αρκεί να δείξουμε ότι w 4 w 4 w 4 z z z z z z z z Είναι από την τριγωνική ανισότητα 4 z z z z z z. z z z z z z z z z z Β. Αν w 4 τότε 4 z z z z z z z z z z. Άρα z z () A(z ). Είναι Γ(z ) Β(z ) () AB z z z z 4. ΑΓ z z z iz z i z 4 5. ΒΓ z z iz z z i z i 5. Είναι (ΑΓ)=(ΒΓ) άρα το τρίγωνο ΑΒΓ είναι ισοσκελές. ΘΕΜΑ Γ f,. Γ. Η f ως πηλίκο συνεχών και παραγωγίσιμων συναρτήσεων (εκθετικής, πολυωνυμικής) είναι συνεχής και παραγωγίσιμη στο με f f, f Για (, ) είναι f() και η f συνεχής στο,. f f + + + ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Για (, ) είναι f() και η f συνεχής στο,. αύξουσα στο,. Επομένως η f γνησίως αύξουσα στο είναι το γιατί αφού και lim f, lim f, lim f lim lim lim και lim lim f lim lim lim DLH DLH Γ. Είναι f Άρα η f γνησίως και συνεχής, άρα το σύνολο τιμών της, άρα η εξίσωση γίνεται 5 f f f f. ά Η f στο είναι συνεχής και γνησίως αύξουσα. Το,, που είναι το σύνολο τιμών της. Επομένως η εξίσωση έχει ακριβώς μία πραγματική ρίζα. Γ. Είναι f t dt f, f t dt f t dt α α f u Θεωρούμε τη συνάρτηση Η f είναι συνεχής στο f t dt f,. κ α f t dt, u, α. άρα ορίζεται στο η κ και είναι παραγωγίσιμη με κu f u,. Η κ στο διάστημα,, α ως παραγωγίσιμη είναι συνεχής. Στο (,) είναι παραγωγίσιμη. Επομένως ικανοποιούνται οι προϋποθέσεις του θεωρήματος Μέσης Τιμής του Διαφορικού Λογισμού, δηλαδή υπάρχει ένα τουλάχιστον, κ κ f t dt f t dt α α κ f () f Είναι f f f () ώστε ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ f tdt f t dt f f t dt f t dt f f t dt f, ος τρόπος f Είναι για κάθε με t f t f Άρα f tdt f dt f tdt f,. Γ4. Από το ερώτημα Γ είναι g f t dt f t,, Για η g ως αποτέλεσμα πράξεων συνεχών και παραγωγίσιμων είναι συνεχής και παραγωγίσιμη με κ 4 κ κ κ g 4f f f t dt f tdt α α f f f tdt f t dt f f γιατί από το Γ ερώτημα, σχέση (), έχω: f άρα f f και f t dt f t dt f f t dt 4f f lim g lim lim DLH,, g στο,. 4f f f g Άρα η g συνεχής στο Επομένως η g γνησίως αύξουσα στο,. f συν. f ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΘΕΜΑ Δ Δ. Είναι f f f f f f f f,. Άρα από συνέπεια θεωρήματος Μέσης Τιμής είναι f f f Για δίνει c c. f f Επομένως,. f f c,. f f f f f f f, ( ) Έστω Τότε έχουμε f H,. H Υποθέτουμε ότι υπάρχει Η () για δίνει: Επομένως Όμως, ( ) ώστε H. αδύνατη στο. H για κάθε και συνεχής, άρα διατηρεί σταθερό πρόσημο. f δηλαδή H για κάθε. H, f H, f ln,. δηλαδή Παρατήρηση: Είναι, ισχύει,, ισχύει Δ. α) Η f ως σύνθεση συνεχών και παραγωγίσιμων συναρτήσεων είναι συνεχής και παραγωγίσιμη στο με f,. Η f ως πηλίκο συνεχών και παραγωγίσιμων συναρτήσεων είναι συνεχής και παραγωγίσιμη στο με ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ f, f f Είναι f στο,. Η f συνεχής στο,, άρα η f γνησίως αύξουσα στο,, δηλαδή η f κυρτή στο,. Και f στο,, η f συνεχής στο,, άρα η f γνησίως φθίνουσα στο,, δηλαδή η f κοίλη στο,. Στο ως παραγωγίσιμη η f δέχεται εφαπτομένη, άρα το σημείο, f, δηλαδή η αρχή των αξόνων, είναι Σημείο Καμπής της f. β) Η εξίσωση της εφαπτομένης στην C στο Σ.Κ. είναι f y f f y. Η f στο [,] είναι συνεχής και κοίλη, άρα f εφ f (η ισότητα ισχύει στο σημείο επαφής, δηλαδή για ). Λ f,, Έστω Η Λ συνεχής στο [,] και Λ, άρα E Λ d f d d f d f d f d f f d f d d ln ln ln ln τμ.. f f + + ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ f Δ. Είναι άρα γιατί αφού f f f t dt lim f ln f f f tdt f tdt f lim lim o DLH f f f t dt lim, f συν. και lim f συν. lim o f f και f f f u ln f ln f lim lim lim DLH u u u το u f u u lim f ln lim στο u u u Δ4. Θεωρώ τη συνάρτηση Λ f t dt 8 f tdt για,. Η Λ είναι ως αποτέλεσμα πράξεων συνεχής στο [,]. και Λ f tdt, : Λ f t dt 8 Είναι από το Δβ ερώτημα για κάθε t (η ισότητα μόνο για t ) άρα άρα t 8 f t dt t dt δηλαδή, : f t t f t dt 8, και για κάθε t άρα Λ f t t f t t (η ισότητα μόνο για t ) t f t dt t dt άρα Επομένως Λ Λ. f t dt f t dt Λ. ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr

5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Εφαρμόζεται για τη Λ στο [,] το θεώρημα Bolzano, άρα υπάρχει ένα τουλάχιστον, ώστε Λ. Επιμέλεια: Σ. ΚΟΥΤΣΟΥΒΕΛΗΣ Π. ΛΥΓΚΩΝΗΣ Μ. ΣΙΜΙΤΖΟΓΛΟΥ Δ. ΣΤΡΟΥΖΑΚΗΣ Δ. ΝΤΖΟΥΡΟΠΑΝΟΣ ΠΕΙΡΑΙΑΣ: Αγ. Κωνσταντίνου (5 ος όροφος), τηλ.: 45 ΜΑΡΟΥΣΙ: Δ. Ράλλη ( ος όροφος), τηλ.: 6458 thsmos@otnt.gr