f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

Σχετικά έγγραφα
f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους

[Κεφάλαιο 1 Μέρος Β' του σχολικού βιβλίου] x είναι συνεχής στο σαν άθροισμα συνεχών συναρτήσεων. για x. άρα g(x) 0 και αφού είναι συνεχής

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

f (x) 2e 5(x 1) 0, άρα η f

x, οπότε για x 0 η g παρουσιάζει

1. Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής και τεχνολογικής Κατεύθυνσης», σελίδα

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

x είναι f 1 f 0 f κ λ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

Απαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03/11/2018

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις)

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

2 ο Διαγώνισμα Ύλη: Συναρτήσεις

lim f ( x ) 0 gof x x για κάθε x., τότε

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

f ( x) f ( x ) για κάθε x A

Να χαρακτηρίσετε ως σωστές (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις :

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

αβ (, ) τέτοιος ώστε f(x

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

Κεφάλαιο 4: Διαφορικός Λογισμός

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Μονοτονία - Ακρότατα Αντίστροφη Συνάρτηση

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

M z ισαπέχουν από τα 4,0, 4,0

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

Α4. δ. Α5. (i) Λάθος (ii) Λάθος (iii) Λάθος (iv) Σωστό (v) Λάθος. Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 1. g x. και. f x g x έχουμε: Για την συνάρτηση

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

2 (1) 1 0 ln( (2)) 3 (2) 3 0. e f και f f. f( g( x)) 3x 4, για κάθε x. συνx 5. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ου ΚΕΦΑΛΑΙΟΥ

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΘΕΡΙΝΩΝ ΤΜΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μαθηματικά προσανατολισμού

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΜΑΘΗΜΑ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Α4. α) Λάθος. Το θεώρημα ισχύει για διάστημα και όχι για ένωση διαστημάτων που είναι το σύνολο Α. Π.χ.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

Συνέχεια συνάρτησης σε κλειστό διάστημα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Πανελλαδικές εξετάσεις 2017

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

Πανελλαδικές εξετάσεις 2015

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο,

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

Θεώρημα Βolzano. Κατηγορία 1 η Δίνεται η συνάρτηση:

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

f(x) x 3x 2, όπου R, y 2x 2

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Transcript:

ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ A Βλέπε Σχολικό βιβλίο σελίδα 76 A2 Βλέπε Σχολικό βιβλίο σελίδα 74 2 Βλέπε Σχολικό βιβλίο σελίδες 7-7 Α α) Λ, β) Σ, γ) Σ, δ) Λ, ε) Λ ΘΕΜΑ Β Έστω,2 με Παίρνουμε τη διαφορά f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) g( ) g( ) 2 2 2 2 f ( 2) f ( ) f ( ) f ( 2) f ( ) f ( ) f ( )f ( ) f ( ) f ( ) f ( ) f ( ) f ( )f ( ) 2 f ( ) f ( 2) f ( ) f ( 2) αν η συνάρτηση f είναι γνησίως αύξουσα στο και 2 θα έχουμε: f( 2) f( ) f( 2) f( ), επίσης έχουμε f ( ), f( 2) f( )f( 2), οπότε η διαφορά f( 2) f ( ) f( 2)f ( ) g( ) g( ) g( ) g( ) f ( ) f ( 2) 2 Άρα η συνάρτηση g είναι γνησίως αύξουσα στο Oμοίως αν η συνάρτηση f είναι γνησίως φθίνουσα στο, η συνάρτηση g είναι γνησίως φθίνουσα στο Άρα έχουν οι f,g το ίδιο είδος μονοτονίας στο Σελίδα από 6

2 Έστω ότι οι συναρτήσεις f,g, έχουμε: g f είναι γνησίως αύξουσες στο Tότε αν 2,2 g g f g f g fog fog με Άρα η fog είναι γνησίως αύξουσα στο Έστω ότι οι συναρτήσεις f,g,2 R 2, έχουμε: g f είναι γνησίως φθίνουσες στο Tότε αν g( ) g( ) f (g( )) f(g( )) (fog)( ) (fog)( ) 2 Άρα η fog είναι γνησίως αύξουσα στο Αφού η fog είναι γνησίως αύξουσα στο θα είναι και - Η εξίσωση f (g( )) f (g(4 2)) γίνεται f g:' ' (f g)( ) (f g)(4 2) 4 2 4 2 Θεωρούμε τη συνάρτηση πολυωνυμική Εφαρμόζουμε το Θ Bolzano στο διάστημα, h ή [,] ( ή) h(), h( ) 2 h() 4 2, η οποία είναι συνεχής στο σαν Bolzano υπάρχει τουλάχιστον ένα (,) : h( ) Εφαρμόζουμε το Θ Bolzano στο διάστημα, h ή [,] ( ή) h(), h() 4 Bolzano υπάρχει τουλάχιστον ένα 2 (,) : h( 2) Εφαρμόζουμε το Θ Bolzano στο,5 h ή [,5] ( ή) h() 4, h(5) 6 Bolzano υπάρχει τουλάχιστον ένα (,5) : h( ) και επειδή η εξίσωση h() 4 2 είναι πολυωνυμική ου θα έχει το πολύ τρεις ρίζες, άρα έχει ακριβώς τρεις τις, 2, Σελίδα 2 από 6

Επίσης έχουμε 2 5, δηλαδή έχουμε δύο θετικές και μια αρνητική Σχόλιο: ένας τρόπος για την επιλογή των κατάλληλων διαστημάτων είναι με δοκιμές 4 Από το ερώτημα (2) η συνάρτηση fog είναι γνησίως αύξουσα, οπότε η ανίσωση γίνεται: f g: 2 2 fog 4 fog 4 4 2 Άρα, 2 2, ΘΕΜΑ Γ Πρέπει: Άρα A f (, ) 2 f () ln( ) ln( ) ln ln( ) ln ln f () ln Όμως ln ln f (), για κάθε (, ) Από τα προηγούμενα έχουμε: Έστω, 2(, ) Τότε: f () ln, για κάθε (, ) ln ln f ( ) f ( 2) Άρα η συνάρτηση f είναι γνησίως αύξουσα στο (, ) 4 Επειδή η συνάρτηση f σημαίνει ότι είναι αντιστρέψιμη με είναι γνησίως αύξουσα στο (, ) θα είναι -, που f : f (A) A H συνάρτηση f είναι συνεχής ως σύνθεση των συνεχών συναρτήσεων ln και στο A (, ), οπότε το σύνολο τιμών της (πεδίο ορισμού της f f ) είναι: Σελίδα από 6

f (A) lim f (), lim f () (,) γιατί: Θέτουμε Τότε u και έχουμε lim u lim lim f () lim ln lim ln u u Θέτουμε u και έχουμε Τότε lim u lim lim f () lim ln lim ln u u Mε y (,) η εξίσωση y y y ln ln y y y y ln ln Άρα f () ln, 5 Θεωρούμε τη συνάρτηση t() f() h() ln ln ln ln, t Η συνάρτηση είναι συνεχής, ως άθροισμα των συνεχών f (), ln και γνησίως αύξουσα στο (, ), οπότε το σύνολο τιμών της θα είναι t( ) lim t(), lim t() (, ) γιατί: lim t() lim f () ln ( ) ( ) και lim t() lim f () ln ( ) Επειδή το (, ) t(b) υπάρχει τέτοιο ώστε t( ) f( ) h( ) 6 Από το 2 ο ερώτημα έχουμε f() για κάθε (, ) Τότε f (), αφού f() και f(2) f (2) f () 2 f () f () f () lim lim lim ( ) f (2) f (2) f (2) f (2) 2 2 Σελίδα 4 από 6

ΘΕΜΑ Δ 2, (2), Έστω,2 με f( ) f( 2) 2f( ) 2f( 2), () και f ( ) f ( ) προσθέτουμε τις () και (2), έτσι έχουμε 2 2, άρα η συνάρτηση f 2 Θα αποδείξουμε ότι η ευθεία y δηλαδή η εξίσωση f() 2 f ( ) 2f ( ) f ( ) 2f ( ), οπότε έχει με τη έχει για κάθε είναι - C f ένα τουλάχιστον κοινό σημείο, λύση στο f () f() f () f () f() 2 f () 2f () 2 f () 2 f() 2 2 2 δηλαδή για κάθε έχουμε λύση, άρα το σύνολο τιμών είναι το Θέτουμε όπου Άρα f () y y 2y y 2y f () 2, ος τρόπος: Στην f () 2, για έχουμε f () f () f( ) 2 ος τρόπος: Αφού η συνάρτηση f έχει σύνολο τιμών το και είναι - θα υπάρχει μοναδικό :f( ) έχουμε: Θέτουμε στην f 2f όπου και f 2f 2, οπότε f( ) Άρα η C f τέμνει τον άξονα στο σημείο A(,) 4 ος τρόπος: Έστω ότι υπάρχουν,2 με 2 και έστω f( ) f( 2) Τότε: f( ) f( 2) 2f( ) 2f( 2) () και Προσθέτοντας τις (), (4) έχουμε: 2 (4) f ( ) f ( ) f ( ) 2f ( ) f ( 2) 2f ( 2) 2 2 Άτοπο γιατί 2 Άρα για κάθε 2 f( ) f( 2), δηλαδή η f είναι γνησίως αύξουσα στο 2 ος τρόπος: Η συνάρτηση αυξουσών συναρτήσεων Οι συναρτήσεις f, f () 2 είναι γνησίως αύξουσα σαν άθροισμα των, 2 f είναι συμμετρικές ως προς την ευθεία y, άρα έχουν το ίδιο είδος μονοτονίας, δηλαδή η f είναι γνησίως αύξουσα στο Σελίδα 5 από 6

2 f 2 5 f 2f f f 2 f f, 2 f 2 έτσι έχουμε f() f() και επειδή lim ( ) lim, από το κριτήριο της παρεμβολής έχουμε: lim f f, άρα συνεχής στο 6 Έστω Έχουμε Αρκεί να αποδείξουμε ότι f () 2 f(), (5) και lim f () f( ) f ( ) 2f( ), (6), αφαιρούμε κατά μέλη τις σχέσεις (5) και (6) Έτσι έχουμε f f 2 f f f f f f f f 2 f f f f f f f f 2 f f f f f f 2 f f f f f f 2 f f f f και επειδή lim ( ) lim, τότε από το κριτήριο παρεμβολής lim f f lim f f, άρα η συνάρτηση f είναι συνεχής στο Η επιμέλεια των θεμάτων πραγματοποιήθηκε από τους Κωνσταντόπουλο Κωνσταντίνο και Μοτσάκο Βασίλειο Σελίδα 6 από 6