ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

Σχετικά έγγραφα
NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA

ZAVARENI SPOJEVI. Definicija (DIN 1910 HRN C.T3001): zavarenih dijelova: zavareni sklop.

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

NERASTAVLJIVE VEZE I SPOJEVI. Zakovični spojevi

PRORAČUN GLAVNOG KROVNOG NOSAČA

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

Zadatak 4b- Dimenzionisanje rožnjače

BETONSKE KONSTRUKCIJE 2

VIJČANI SPOJ VIJCI HRN M.E2.257 PRIRUBNICA HRN M.E2.258 BRTVA

PROSTA GREDA (PROSTO OSLONJENA GREDA)

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

PROSTORNI STATIČKI ODREĐENI SUSTAVI

18. listopada listopada / 13

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

ZAKOVIČNI SPOJEVI su nerastavljivi spojevi dvaju ili više strojnih dijelova ostvareni pomoću zakovica. Zakovice su normirani elementi.

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD

ELEKTROTEHNIČKI ODJEL

ISPIT GRUPA A - RJEŠENJA

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

PRORAČUN ČVRSTOĆE POSUDE POD TLAKOM. Marina MALINOVEC PUČEK

METALNE KONSTRUKCIJE ZGRADA

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

OTPORNOST MATERIJALA 1

Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ )

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

Kaskadna kompenzacija SAU

Grafičko prikazivanje atributivnih i geografskih nizova

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

3.1 Granična vrednost funkcije u tački

Ispitivanje toka i skiciranje grafika funkcija

σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA

Poglavlje

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12.

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

Za torziju: b1 τ 0,575 b1 + 0,425 = σ Utjecaj veličine konstrukcijskog elementa b 2 : Veći elementi imaju manji faktor b 2, tj. manje opušteno napreza

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

numeričkih deskriptivnih mera.

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

Računarska grafika. Rasterizacija linije

BETONSKE KONSTRUKCIJE. Program

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN

( , 2. kolokvij)

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

7 Algebarske jednadžbe

Opšte KROVNI POKRIVAČI I

Krute veze sa čeonom pločom

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

( ) p a. poklopac. Rješenje:

1.4 Tangenta i normala

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija,

IZVODI ZADACI (I deo)

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

STATIČKI ODREĐENI SUSTAVI

Operacije s matricama

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Vedran Grzelj. Zagreb, 2011.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

TRIGONOMETRIJA TROKUTA

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

4. STATIČKI PRORAČUN STUBIŠTA

Linearna algebra 2 prvi kolokvij,

BETONSKE KONSTRUKCIJE. Program

BIPOLARNI TRANZISTOR Auditorne vježbe

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

Funkcije dviju varjabli (zadaci za vježbu)

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SPOJEVI S GLAVINOM. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2006./07.

Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2

Eliminacijski zadatak iz Matematike 1 za kemičare

41. Jednačine koje se svode na kvadratne

20 mm. 70 mm i 1 C=C 1. i mm

SRĐAN PODRUG ELEMENTI STROJEVA

Transcript:

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez njega. Nakon hlađenja i skrućivanja materijala dijelovi ostaju spojeni. lice šava 1 = zona taljenja (šav), 2 = zona utjecaja topline, 3 = zona nepromijenjenoga osnovnog metala korijen šava Međusobno se zavarivati mogu: - metali: čelik do 0,3% C (iznad toga uz određene uvjete), bakar, mjed, aluminij - plastomeri (ABS, PA, POM ). Zavarivanje je gotovo u potpunosti istisnulo zakovične spojeve u strojarstvu i građevinarstvu. Zakivanje se zadržalo kod spajanja aluminijskih limova kod trupova aviona i kabina žičara.

Zavar = materijal nanesen na mjestu spajanja zavarivanjem u jednom prolazu. Šav = materijal nanesen zavarivanjem na mjestu spajanja; može se sastojati od jednog ili više zavara. Zavareni spoj = spoj dobiven zavarivanjem. Zavareni dio = više pojedinačnih dijelova međusobno povezanih zavarivanjem (sa ili bez dodatnog materijala) Zavareni sklop = više zavarenih dijelova međusobno povezanih zavarivanjem

Ležaj Šav Kotač Poluga Vijak zavaren za pločicu

Automobilska karoserija (Mazda) Brodsko kormilo ( Uljanik ) Brodski trup

Nosači krova bazena na Kantridi Kabine skijaških žičara

Zavareni spojevi su prikladni za: - prijenos sila, momenata savijanja i momenata uvijanja - jeftino povezivanje elemenata konstrukcija, naročito za mali broj izradaka - upotrebu na visokim temperaturama - izradu nepropusnih spojeva. Prednosti zavarenih konstrukcija u odnosu na odljevke: - težina manja i do 50% jer stjenke mogu biti tanje - nisu potrebni modeli ili kalupi - veća krutost jer sivi lijev ima oko 2 puta manji E - koriste se jeftini poluproizvodi: limovi, profili i cijevi. [Rollof/Matek: Maschinenelemente, Vieweg, 2003]

Prednosti zavarenih spojeva u odnosu na vijčane i zakovične: - manja težina jer nema preklapanja limova - manja težina jer nema glava vijaka ili zakovica i matica - struktura se ne oslabljuje rupama - lakše čišćenje zbog glatkih površina. Nedostaci spajanja zavarivanjem: - uglavnom za iste/slične materijale - nije pogodno za vrlo složene oblike - taljenje na mjestu zavarivanja dovodi do promjene strukture i povećanja krhkosti - zaostala naprezanja i/ili deformacije konstrukcije - kvaliteta ovisi o vještini zavarivača - zavarivanje na gradilištu je često teže nego spajanje vijcima ili zakovicama.

Zaostale deformacije nakon zavarivanja: Najčešći postupci zavarivanja: 1. Zavarivanje taljenjem: - Elektrolučno zavarivanje

- Plinsko (autogeno) zavarivanje

2. Zavarivanje pod tlakom: - Točkasto zavarivanje a) obostrano, b) jednostrano - Bradavičasto zavarivanje

Najčešći oblici zavarenih spojeva: Vrste šavova prema DIN 1912: Nije var nego šav, nije tupi nego čelni.

OSNOVE OBLIKOVANJA ZAVARENIH KONSTRUKCIJA 1. Izbjegavati koncentraciju naprezanja (zarezno djelovanje): loš spoj osnovnog i dodatnog materijala može prouzročiti veliku koncentraciju naprezanja u korijenu šava, pa se kod dinamičkih opterećenja posebno zavaruje korijen (ili se izvodi dvostrani šav). Nejednolično ili valovito vučeni zavari isto djeluju kao zarezi, kao i krateri na početku i kraju zavara. V-šav, loše provaren korijen šava V-šav, dobro provaren korijen šava V-šav, pročišćen i zavaren korijen Dvostrani V-šav [Decker: El. str., Golden Marketing + Teh. knjiga, 2006]

2. Izbjegavati skretanje toka sila u zoni zavarivanja: skretanje u zoni šava uzrokuje lokalnu koncentraciju (porast) naprezanja pa se kod dinamičkih opterećenja smanjuje dinamička čvrstoća. Bolje čelni nego preklopni spoj Bolje udubljeni nego izbočeni kutni šav Loše Dobro

3. Izbjegavati vlačna naprezanja u korijenu šava: izdržljivost materijala kod vlačnog opterećenja je najčešće manja nego kod tlačnog, a korijen šava je posebno osjetljiv zbog mogućih nepravilnosti (koncentracija naprezanja) pa ga po mogućnosti treba staviti u zonu tlačnih opterećenja: korijen šava

4. Izbjegavati gomilanje zavara: Lokalno zagrijavanje kod zavarivanja i zatim hlađenje dovode do deformacija. Što se veći broj zavara sastaje u jednoj točki i što su zavari deblji, to je i vitoperenje jače. Izvitoperene zavarene dijelove treba izravnati zagrijavanjem i kovanjem. dobro

5. Dati prednost poluproizvodima: poluproizvodi su relativno jeftini pa se prednost daje plosnatim i profilnim čelicima, cijevima, limovima itd.

6. Izbjegavati skupe pripremne radove jer poskupljuju konstrukciju: valja izbjegavati tokarena smanjenja promjera, kose ili okrugle rubove itd. Savijanjem limova često se mogu uštedjeti zavareni šavovi: Zavareni zupčanik Mnogo dijelova i šavova Savinut lim malo dijelova i šavova Tokareni vijenac i glavina; rebro kompliciranog oblika Vijenac, glavina i rebra jednostavnog oblika

7. Paziti na pristupačnost šavova: šav mora biti pristupačan alatu za zavarivanje! Korijen šava je nepristupačan Dobro

PRORAČUN ZAVARENIH SPOJEVA Preporuke za proračun i konstrukciju dijele se na sljedeća područja: 1. Strojogradnja: kućišta, postolja, poluge, zupčanici, remenice i sl. 2. Tlačne posude, kotlovi, cijevi 3. Čelične konstrukcije: visokogradnja, mostogradnja, dizalice Zavarene konstrukcije podliježu i posebnim propisima. Brodogradnja ima posebne propise klasifikacijskih društava (Hrvatski registar brodova, Lloyd s Register of Shipping, Det Norske Veritas ).

STROJOGRADNJA ZAVARENI SPOJEVI DOBIVENI TALJENJEM Računska debljina šava a) Čelni šav, b) ravni kutni šav, c) izbočeni kutni šav, d) udubljeni kutni šav, e) nejednoliki kutni šav Kod kutnih šavova a mora biti najmanje 3 mm. Općenito debljina šava ne treba biti veća od 0,7 t (t = debljina najtanjeg dijela); veća debljina šava znači veliko zagrijavanje koje mijenja strukturu materijala i oslabljuje ga. Računska duljina šava Budući da su krajevi šavova nepravilni (krateri, koncentracija naprezanja), kod kratkih šavova čija je duljina manja od 15 a, poželjno je (ali se ne mora) računati s malo manjom računskom duljinom šava l = stvarna duljina šava - 2 a

Normalno naprezanje pri vlaku ili tlaku - okomito na šav σ v,t Čelni šav Kutni šav l = (d+a). π Kod ovakvog vlačnog opterećenja se naprezanje izračunava kao omjer sile i površine presjeka šava. Ukupna računska površina presjeka opterećenih šavova koja preuzima opterećenje A w = Σ(a l) Općenito će i za vlak i za tlak naprezanje biti σ v,t = F ( a l) Oznake: = okomito na šav = paralelno sa šavom

Čelni šav: Kutni šav: presjek se zarotira

Normalno naprezanje pri vlaku ili tlaku - paralelno sa šavom σ II v, t Sila F može djelovati i uzduž šava i onda opterećuje zavarene dijelove kao cjelinu. U tom je slučaju normalno naprezanje paralelno sa šavom i jednako normalnom naprezanju u poprečnom presjeku A zavarenih dijelova, pri čemu se površina poprečnog presjeka šava zanemaruje: σ F A IIv, t = A = A1 + A2 A 2 A 1 A 2 Ova se naprezanja u praksi ne kontroliraju! A 1

Normalno naprezanje pri savijanju - paralelno sa šavom (šavovi idu uzduž savinutog nosača) σ II s M s U poprečnom presjeku šavova se u tom slučaju javlja naprezanje jednako onome u međusobno zavarenim dijelovima: σ IIs M I = s y = udaljenost od neutralne linije do korijena šava I = moment tromosti poprečnog presjeka zavarenog dijela pri proračunu koristiti Steinerovo pravilo (vidi primjer u knjizi) Niti ova naprezanja se u praksi ne kontroliraju! y

Normalno naprezanje pri savijanju - okomito na šav (šavovi se nalaze u poprečnom presjeku nosača) Nosač koji se sastoji od međusobno zavarenih limova opterećen je momentom savijanja M s. nosač (greda) σ s M s σ s - Najprije treba odrediti položaj težišta T svih šavova (Steinerovo pravilo knjiga primjer str. 201). - Radi pojednostavljenja, umjesto do težišta šavova, udaljenosti y 2 i y 3 se računaju do korijena šavova. - Računa se ukupni moment tromosti I x uk = suma momenata tromosti pojedinih šavova, uzimajući u obzir Steinerovo pravilo.

2 3 3 3 3 3 3 2 2 2 2 3 2 2 2 1 1 1 3 1 1 uk 12 12 2 12 2 y l a a l y l a a l y a l a l I x + + + + + = M s Dva donja vertikalna šava Dva gornja kratka šava Gornji dugi šav Zanemaruju se izrazi u kojima se pojavljuju male veličine a 2 3 i a 33 : 2 3 3 3 2 2 2 2 2 1 1 1 3 1 1 uk 2 12 2 y l a y l a y a l a l I x + + + = σ s

Najveće vlačno naprezanje M s σ s Naprezanje je jednako σ s = M I s x uk y Najveće naprezanje σ s1 javit će se na donjem kraju vertikalnih šavova jer su ta mjesta najudaljenija od osi x-x koja prolazi kroz težište. Naravno, uputno je provjeriti i najveće vlačno naprezanje σ s3. Najveće naprezanje

Tangencijalno naprezanje pri smicanju (sila djeluje u ravnini u kojoj su šavovi) τ Ukupna duljina šavova (a. l) = a (2 l 1 +l 2 ) F Sila F djeluje: - paralelno sa šavovima duljine l 1 u kojima izaziva tangencijalno naprezanje τ II - okomito na šav duljine l 2 u kojemu izaziva tangencijalno naprezanje τ. Budući da su τ II i τ zapravo međusobno paralelni, može ih se aritmetički zbrojiti pa je ukupno tangencijalno naprezanje: τ = F ( a l) Ako bi na jedan šav djelovale dvije međusobno okomite sile koje bi izazivale τ II i τ, ova bi naprezanja trebalo zbrojiti vektorski, tj. bilo bi 2 2 τ = τ + τ II F

U nekim slučajevima se tangencijalna naprezanja τ II ili τ mogu javiti i u čelnim šavovima: F F τ II τ τ = F ( a l)

Tangencijalno naprezanje pri torziji paralelno sa šavom τ II (a. l) = 2. a. (d+a). π Moment torzije T se može zamisliti kao djelovanje obodne sile F na polumjeru r pa će sila koja djeluje uzduž šava biti F = Naprezanje: τ II = T r F ( a l)

Tangencijalno naprezanje pri savijanju nosača τ II (normalno naprezanje ne treba računati već objašnjeno) U uzdužnom smjeru nosača opterećenog na savijanje poprečnom silom Fq nastaju u šavu i posmična naprezanja; pojasni limovi se međusobno žele pomaknuti u uzdužnom smjeru: τ II = F q I S a S = statički moment površina presjeka pojasnih limova: S (mm 3 ) = A 0. y 0 I = moment tromosti čitavog presjeka konstrukcijskog dijela (mm 4 ) a ukupna debljina svih zavarenih šavova (mm); na slici je a = 2 a 1

Istodobno djelovanje normalnog i tangencijalnog naprezanja M s Na zavareni spoj vratila i glavine djeluju moment savijanja M s i moment torzije T. Normalno naprezanje u šavu uslijed savijanja jednako je naprezanju na površini vratila: σ s = M W s = M s 3 d π 32 Tangencijalno naprezanje τ II izazvano torzijom već je izračunato. Ukupno djelovanje naprezanja σ i τ s II izražava se ekvivalentnim naprezanjem: σ e 2 = σ s + 2 τ 2 II 2 U nekom općem slučaju je σ e = σ + 2 τ gdje σ može biti i zbroj normalnih naprezanja izazvanih vlakom i savijanjem, a τ može biti τ II ili τ. 2

Kriterij čvrstoće Mora biti ispunjeno: σ σ dop τ τ dop σ e σ dop Orijentacijski podaci za dopuštena naprezanja σ dop i τ dop u zavarenim šavovima dani su u tablici.

Orijentacijski podaci za dopuštena naprezanja σ dop i τ dop u N/mm 2 u zavarenim šavovima Opterećenje Šav Naprezanje Kvaliteta zavara Statičko Ishodišno dinamičko Materijal spojenih dijelova Izmjenično dinamičko S235 (Č0361) S355 (Č0561) S235 (Č0361) S355 (Č0561) S235 (Č0361) S355 (Č0561) Čelni sa zavarenim korijenom Vlak, tlak, savijanje, ekvivalentno naprezanje Smicanje I II III I II III 160 130 110 100 80 70 220 175 155 140 110 100 110 85 75 70 55 50 130 105 90 80 65 55 55 45 40 35 30 25 65 50 45 40 32 28 Čelni bez zavarenog korijena Vlak, tlak, savijanje, ekvivalentno naprezanje I II III 140 110 100 180 145 125 95 75 65 100 80 70 45 35 32 50 40 35 Kutni ravni Svako I II III 90 70 60 110 85 75 60 50 40 70 55 50 30 25 20 35 30 25 Kutni udubljeni Svako I II III 120 95 85 150 120 100 75 60 50 90 70 60 40 30 25 45 35 30 Dvostruki kutni ravni Svako I II III 140 110 100 190 150 130 90 70 60 120 95 85 50 40 35 55 45 40

Kvalitete zavara:

STROJOGRADNJA ZAVARENI SPOJEVI DOBIVENI ZAVARIVANJEM POD TLAKOM Točkasto i bradavičasto zavareni spojevi Posebnost točkasto i bradavičasto zavarenih spojeva je ta da se točka zavara pri proračunu čvrstoće zamišlja kao posmično opterećeni zatik za koji se onda vrši proračun. Specifični pritisak σ 1 u zamišljenom provrtu jednoreznog spoja Specifični pritisak σ 1 u zamišljenom provrtu dvoreznog spoja Jednorezni spoj Dvorezni spoj Broj rezova m = 1 m = 2 d = promjer točke zavara

n broj točaka zavara s = debljina lima n = 3 zavara m = 1 rez Površina presjeka zavara: A = d 2 Posmično naprezanje u točki zavara: 4 π τ = F n m Budući da se koristi analogija sa zatikom, treba proračunati i specifični pritisak na stjenke zamišljenog provrta u limu: σ l = A F n d s

Iako je možda promjer točke zavara veći, najveća vrijednost promjera d s kojom se smije kontrolirati naprezanje je d = 5 s min (mm) gdje je s min (mm) debljina najtanjeg lima u spoju. Smjernice za točkasto zavarene spojeve: Debljina lima (mm) 0,5...1 1...1,5 1,5...2 2...3 3...5 Promjer točkastog zavara d (mm) 4...8 6...10 8...10 10...12 10...14 Razmak točkastih zavara (3...6) d

Kriterij čvrstoće za točkasto zavarene spojeve Treba biti: τ τ dop σ 1 σ l dop Jednorezan spoj Dvorezan spoj τ dop σ l dop σ l dop Vlačna čvrstoća R m (N/mm 2 ) 250 300 350 400 450 500 550 600 Statičko opterećenje Ishodišno dinamičko optereć. Izmjenično dinamičko optereć. Statičko opterećenje Ishodišno dinamičko optereć. Izmjenično dinamičko optereć. Statičko opterećenje Ishodišno dinamičko optereć. Izmjenično dinamičko optereć. 60 40 20 165 110 55 275 180 90 75 50 25 200 130 65 335 215 110 90 55 30 235 150 75 390 250 125 100 65 35 265 175 90 445 285 145 110 70 35 300 195 100 500 320 160 125 80 40 335 215 110 555 355 180 135 90 45 365 240 120 610 390 195 150 95 50 400 260 130 665 425 215

TLAČNE POSUDE, KOTLOVI, CIJEVI ZAVARENI SPOJEVI DOBIVENI TALJENJEM Ova vrsta spojeva je detaljno obrađena na konstrukcijskim vježbama o tlačnim spremnicima. Ovdje se samo ponovno ističu najvažnije postavke. - Spojevi moraju biti nepropusni i vrlo čvrsti - Veći otvori se pojačavaju - Valja izbjegavati gomilanje šavova.

Najmanja potrebna debljina stjenke s e1 za cilindrične plašteve tlačnih posuda pod unutarnjim pretlakom pri D v /D u 1,2 u v s e1 + c1 + c2 + c3 = + c1 + c2 + 2 D K S p ν p D p c3 K 2 ν + p S s e1 = najmanja potrebna debljina stjenke (mm) D u, D v = unutarnji i vanjski promjer plašta (mm) p = najviši dopušteni pogonski tlak (N/mm 2 ) K = proračunska čvrstoća (N/mm 2 ) - iz tablice prema debljini s e1 i temperaturi S = faktor sigurnosti (σ dop = K/S) - iz tablice ν = faktor oslabljenja zbog zavara (0,8... 1) c 1, c 2, c 3 (mm) = dodaci na debljinu stijenke zbog odstupanja stvarne debljine lima (c 1 ), korozije (c 2 ) i obzidavanja tj. težina zida (c 3 ).

Proračunska čvrstoća K (N/mm 2 ) čelika stijenki tlačnih posuda i parnih kotlova: Faktor sigurnosti S za tlačne posude i parne kotlove

Najmanja potrebna debljina stjenke s e2 bombiranih dna: D v s e2 + 1 + 2 + 3 + 4 + 4 p β K ν S c c c c c 5 β = faktor oblika dna tlačnih posuda - iz tablice c 4, c 5 (mm) dodatak na debljinu stijenke zbog vanjskog tlaka (mogućeg splošnjavanja ili utisnuća) (c 4 ) odnosno konstrukcijski dodatak (c 5 ). Plašteve i dna izložena vanjskom tlaku treba računati prema gornjim izrazima uz ν = 1.

Tlačni spremnici se ispituju pod ispitnim tlakom p max = 1,3 p i pri tome faktori sigurnosti plašta i dna S moraju biti veći od 1,1. Sigurnost plašta: S 2 K Du pmax s c c 20 C = > e1 Sigurnost dna: S 1 2 v + 4 K C v pmax β + p c c p max 20 = > Du max se2 1 2 1,1 1,1

Najmanja potrebna debljina stjenke s za cijevi pod unutarnjim ili vanjskim pretlakom pri D v 200 mm i D v /D u 1,7 u s + c1 + 2 d K S p ν p s = najmanja potrebna debljina stjenke (mm) d u = unutarnji promjer cijevi (mm) p = najviši dopušteni pogonski tlak (N/mm 2 ) c 2 K = proračunska čvrstoća cijevi (N/mm 2 ) - iz tablice prema s i temperaturi S = faktor sigurnosti (σ dop = K/S) - iz tablice ν = faktor oslabljenja zbog zavara (0,8... 1) c 1, c 2 (mm) = dodaci na debljinu stjenke zbog odstupanja stvarne debljine lima (c 1 ) i korozije (c 2 ).

Proračunska čvrstoća K (N/mm 2 ) bešavnih čeličnih cijevi:

Priključci: izmjere šavova moraju zadovoljiti sljedeće uvjete: d u p 1000 N/mm d u p 1000 N/mm