ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών ) Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών w ) Να βρείτε το μιγαδικό 0 για τον οποίο ισχύουν : : 0- = + Im(0) και 0 v) Αν για τους μιγαδικούς u C ισχύει : ( ) u ( ) u 4, να αποδείξετε ότι οι εικόνες τους βρίσκονται πάνω στην ευθεία (ε) : x - y - = 0 και ότι : u Έστω οι ρίζες της εξίσωσης : a 0, όπου a R και, R ) Να βρείτε τα, και τις δυνατές τιμές του α ) Αν ισχύει:, να βρείτε το α ) Για α = 0, να βρείτε το γεωμετρικό τόπο των μιγαδικών w C για τους οποίους ισχύει: 6 w - l - w- =, με Im( ) > 0 και στη συνέχεια να αποδείξετε ότι: w v) Για τους μιγαδικούς w του ερωτήματος () να βρείτε το γεωμετρικό τόπο των μιγαδικών w 4 α) Να λυθεί στο C η εξίσωση : 0 () και να αποδείξετε ότι οι ρίζες της είναι 6 5 4 και ρίζες της εξίσωσης: 0 () β) Αν, C είναι ρίζες της () και, I, να αποδείξετε ότι: ) ), 000 996 ) 0 γ) Αν Α, Β, Γ, Δ είναι οι εικόνες των μιγαδικών αριθμών u, u, u, u4 C, οι οποίοι είναι διαφορετικοί ανά δύο στο μιγαδικό επίπεδο να αποδείξετε ότι: u u ) R τα σημεία Α, Β, Γ είναι συνευθειακά u u u u ) I u4 u δ) Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών w, για τους οποίους οι εικόνες των αριθμών w, w, w είναι σημεία συνευθειακά * ε) Αφού αποδείξετε ότι ο αριθμός R,όπου,β,γ C,να αποδείξετε ότι η ευθεία που συνδέει στο επίπεδο τις εικόνες των μιγαδικών αριθμών ( ),( ) διέρχεται από την αρχή των αξόνων Ο(0,0)
4 Θεωρούμε την εξίσωση : a a 0, όπου C, α R της οποίας οι ρίζες είναι οι μιγαδικοί αριθμοί, με Im( ) Im( ) α) ) Να αποδείξετε ότι: 0 ) Αν ισχύει w a, να αποδείξετε ότι: w β) Αν επιπλέον ισχύει: 6, τότε : ) να αποδείξετε ότι: α = ) να βρείτε τις ρίζες, γ) Αν και, τότε να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών u C για τους οποίους ισχύει: u u 8 δ) Να αποδείξετε ότι για τους μιγαδικούς uc του ερωτήματος (γ) ισχύουν : ) u ) u u 4 4 ε) Αν για τους μιγαδικούς w,w να αποδείξετε ότι: w w w w C ισχύουν: w w, w w και Im( w ) 0 * 5 Α) Θεωρούμε τους μιγαδικούς w C: w, όπου C {}, * Αν για τον μιγαδικό C ισχύει, όπου C {}, τότε: α) να βρείτε τον γεωμετρικό τόπο των εικόνων του β) να αποδείξετε ότι : ) ()( ) ( )( ) 0 ) w R B) Δίνεται η συνάρτηση f ( ) ( ) ( ) α) Να λύσετε την εξίσωση f ( ) () β) Έστω w η ρίζα της () και Α,Β,Γ οι εικόνες στο μιγαδικό επίπεδο των αριθμών,f() και w αντίστοιχα ) Να αποδείξετε ότι : f ( ) w ( ) ( w) ) Να αποδείξετε ότι : f ( ) ( w) ) Να βρείτε το είδος του τριγώνου ΑΒΓ Γ) Έστω, οι ρίζες της εξίσωσης : a 0,όπου αr και, R α) Να αποδείξετε ότι α>0 β) Αν ισχύει : ) να υπολογίσετε τον αριθμό α ) να λύσετε την εξίσωση ) να βρείτε τον γεωμετρικό τόπο των μιγαδικών u C για τους οποίους ισχύει : 5 5 (u ) (u ) 0
6 Έστω οι μιγαδικοί αριθμοί w, C με w για τους οποίους ισχύουν : w () και 5 5 w w ( ) ( ) (), όπου λ, μ R α)να αποδείξετε ότι οι εικόνες των w, στο μιγαδικό επίπεδο κινούνται σε κύκλους C, C με κέντρο το 0(0,0) και ακτίνες και αντίστοιχα w β) Να υπολογίσετε την τιμή της παράστασης : w ν Ν γ) Να αποδείξετε ότι η εικόνα Α του μιγαδικού αριθμού uc,ο οποίος ικανοποιεί τη σχέση : u u και έχει το ελάχιστο δυνατό μέτρο βρίσκεται πάνω στον κύκλο C για τις διάφορες τιμές του γ) Αν η εικόνα Β του μιγαδικού αριθμού w, στο μιγαδικό επίπεδο είναι σημείο του κύκλου C, με w u και w u, καθώς και Γ είναι η εικόνα του μιγαδικού -w, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ορθογώνιο 7 Θεωρούμε τους μιγαδικούς w, C για τους οποίους ισχύουν οι επόμενες σχέσεις : 0 w () και (),όπου και w w α) Να αποδείξετε ότι ο κινείται στον άξονα των φανταστικών αριθμών β) Να αποδείξετε ότι ο γεωμετρικός τόπος των μιγαδικών w στο μιγαδικό επίπεδο είναι μία ευθεία παράλληλη στον άξονα των πραγματικών αριθμών γ) Αν επιπλέον ισχύει: Re( w) να βρείτε την ελάχιστη απόσταση των εικόνων των μιγαδικών και w στο επίπεδο καθώς και τις εικόνες των και w που αντιστοιχούν στην ελάχιστη αυτή απόσταση δ) Για τους μιγαδικούς αριθμούς και w που επαληθεύουν τις σχέσεις (), () και Im()>0 να αποδείξετε ότι: w 8 α) Έστω C και η συνάρτηση f με τύπο : f () ) Να αποδείξετε ότι: Re( f ( )) Re( ) [ Im( )] ) Αν οι εικόνες του f () κινούνται στον άξονα y'y, να βρείτε τον γεωμετρικό τόπο των εικόνων του )Αν ν Ν * και ισχύει: f ( ) ( ), να βρείτε την ελάχιστη τιμή του ν ( )( ) β) Έστω η συνάρτηση g με τύπο g( ),όπου C και Re( ) 0 ) Να αποδείξετε ότι : g g( ) ) Να αποδείξετε ότι : g R ) Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών για τους οποίους ισχύει : Re g Im g Re( )
9 Δίνεται ο μιγαδικός αριθμός C - { 4} ο οποίος ικανοποιεί τη σχέση : 6 ( 4 )( 4) 5 v 4, καθώς και η εξίσωση : 4, όπου v N *, άρτιος φυσικός αριθμός 4 ( ) α) Να αποδείξετε ότι ν = β) Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών στο επίπεδο είναι η έλλειψη x y και ότι 4 9 9 5 γ) Για κάθε μιγαδικό αριθμό του παραπάνω γεωμετρικού τόπου να υπολογίσετε την τιμή της παράστασης A 4 4 δ) Να αποδείξετε ότι : 6 5 ε) Να βρείτε τους μιγαδικούς, του παραπάνω γεωμετρικού τόπου για τους οποίους ισχύει : 5 5 Re( ) 9 8 09 0 και να αποδείξετε ότι αποτελούν ρίζες της εξίσωσης : 0 Θεωρούμε τους μιγαδικούς αριθμούς,w C, οι οποίοι ικανοποιούν τις σχέσεις: 5 5 () και () w όπου λ R 4 α) Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών β) Να αποδείξετε ότι οι εικόνες των μιγαδικών uc : u βρίσκονται σε ένα ευθύγραμμο τμήμα του πραγματικού άξονα γ) Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών w και την ελάχιστη τιμή του w δ) Να αποδείξετε ότι: 5 w 5 Θεωρούμε τους μιγαδικούς αριθμούς, w C για τους οποίους ισχύουν: () όπου λ R και () w =- α) Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών β) Να αποδείξετε ότι: 0 γ) Εάν w, w είναι δύο από τους παραπάνω μιγαδικούς w, να αποδείξετε ότι w w ο αριθμός u w w είναι πραγματικός και στη συνέχεια ότι: u Re w w δ) Εάν, είναι δύο από τους παραπάνω μιγαδικούς με =, να βρείτε το + Θεωρούμε τον μιγαδικό αριθμό 0 C για τον οποίο ισχύουν : () 0 4 και () 0 όπου ν Ν* και οι μιγαδικοί C για τους οποίους ο αριθμός w είναι φανταστικός 0 α) Να βρείτε τον μιγαδικό 0 C και τον φυσικό αριθμό ν Ν* β) Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών γ) Αν ο μιγαδικός αριθμός δεν είναι φανταστικός, να βρείτε που ανήκουν οι εικόνες των μιγαδικών αριθμών u = w--
δ) Αν u, u, u είναι τρεις από τους παραπάνω μιγαδικούς u του ερωτήματος γ),να αποδείξετε ότι : u u u 0 και στη συνέχεια ότι: 4 u u u Θεωρούμε τους μιγαδικούς αριθμούς, w, u C για τους οποίους ισχύουν : 4 () ( )( ) ( ) w 6,() u, όπου λ,μ, Θεωρούμε επίσης τους μιγαδικούς αριθμούς u, u C για τους οποίους ισχύουν : Η εικόνα του μιγαδικού u, κινείται στην ευθεία (ε):0 x-y+5 = 0 u ( ) u u α) Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών, w, u β) Να αποδείξετε ότι: u u 6 0 γ) Να βρείτε τη μεγίστη και την ελάχιστη απόσταση του μέτρου - w δ) Να βρείτε την ευθεία (ε ) πάνω στην οποία κινείται η εικόνα του μιγαδικού u ε) Να βρείτε τη σχετική θέση των γεωμετρικών τόπων των μιγαδικών, w με το γεωμετρικό τόπο του μιγαδικού u στ) Να βρείτε την ελάχιστη τιμή των μέτρων u και w u και 4 Δίνονται οι μιγαδικοί αριθμοί, w C για τους οποίους ισχύουν : w () και 4 () α) Να βρείτε τον γεωμετρικό τόπο των εικόνων του β) Να αποδείξετε ότι η εικόνα του w κινείται σε ευθεία (ε) w w w w γ) Αν ισχύει: Re(w) Im(w) 0, τότε θεωρούμε το μιγαδικό : u w w ) Να αποδείξετε ότι η εικόνα του u κινείται κι αυτή στην ευθεία (ε) )Αν Re(w) Ζ και οι εικόνες των μιγαδικών w και u απέχουν απόσταση,τότε να βρείτε τους μιγαδικούς w και u 5 Θεωρούμε τους μιγαδικούς αριθμούς,u οι οποίοι ικανοποιούν τις επόμενες σχέσεις : Re() (), όπου Re() Im()>0 () και u u () 4 4 α) Να αποδείξετε ότι οι εικόνες του μιγαδικού είναι σημεία της παραβολής y x, όπου x > 0 και να βρείτε την εικόνα Μ () του παραπάνω γεωμετρικού τόπου για την οποία το τρίγωνο ΟΜΕ είναι ισόπλευρο, όπου O(0,0) και Ε η εστία της παραβολής β) Αν επιπλέον ισχύει: ( ) ( ), να βρείτε το μιγαδικό αριθμό γ) Για κάθε μιγαδικό αριθμό που ικανοποιεί την εξίσωση () να αποδείξετε ότι: 5 δ) Να αποδείξετε ότι οι εικόνες του μιγαδικού αριθμού w για τον οποίο ισχύει η σχέση : w w wu wu 0 βρίσκονται σε κύκλο με κέντρο την εικόνα του μιγαδικού -u
6 Θεωρούμε τους μιγαδικούς αριθμούς, w για τους οποίους γνωρίζουμε ότι: = και ότι: w α) Να αποδείξετε ότι οι γεωμετρικοί τόποι των εικόνων των μιγαδικών, w ταυτίζονται και στη συνέχεια ότι: w β) Αν για τον μιγαδικό αριθμό u C ισχύει: u =, όπου u w u και -w =, να αποδείξετε ότι: + w - u = a γ) Αν w R, να υπολογίσετε τον αριθμό a R,έτσι ώστε : w R w δ) Αν, C είναι δύο μιγαδικοί του παραπάνω γεωμετρικού τόπου με, να αποδείξετε ότι: ε) Να αποδείξετε ότι: w 4 w 5 7 Θεωρούμε τους μιγαδικούς αριθμούς, w C για τους οποίους ισχύουν : =, w = και + w = 4 α) Να αποδείξετε ότι: w = 9 β) Να αποδείξετε ότι: ( w ) 5 w γ) Να βρείτε τον γεωμετρικό τόπο των μιγαδικών u C για τους οποίους ισχύει: Re( u ) w δ) Για τους μιγαδικούς uc του προηγούμενου ερωτήματος να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών u ν, όπου ν Ν είναι ο ελάχιστος φυσικός αριθμός για τον οποίο ισχύει η σχέση : 8 Έστω οι μιγαδικοί αριθμοί C και η συνάρτηση f με τύπο: f() α) Να βρείτε για ποιους μιγαδικούς C ορίζεται ο τύπος f () β) Να αποδείξετε ότι: f() γ) Να αποδείξετε ότι: f ( ) f ( ) 0 δ) Αν f () =, τότε : ) να αποδείξετε ότι: -l + Re() = ) να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών 9 Έστω οι μιγαδικοί αριθμοί, w C για τους οποίους ισχύουν : 05 05 w ν Ν* () και ( ) ( ) 0 () α) Να αποδείξετε ότι w R και να βρείτε τον γεωμετρικό τόπο των εικόνων του w β) Να αποδείξετε ότι : ) = και ) 5 γ) Να αποδείξετε ότι η εξίσωση : = w έχει ακριβώς δύο λύσεις τις οποίες και να υπολογίσετε δ) Να λύσετε στο σύνολο C την εξίσωση : u- + = u () ε) Αν u 0 είναι η μοναδική λύση της εξίσωσης () να βρείτε τις εξισώσεις των εφαπτομένων που άγονται από την εικόνα του u 0 προς τον γεωμετρικό τόπο του 5 στ) Να αποδείξετε ότι: 5 I και στη συνέχεια ότι: Im( k)
ζ) Να αποδείξετε ότι: και στη συνέχεια ότι : 0 Θεωρούμε το μιγαδικό αριθμό C για τον οποίο ισχύει: 4 6 α) Να αποδείξετε ότι: 4 6 β) Να αποδείξετε ότι: 4 6 γ) Εάν ισχύουν : = και - = 4, τότε να υπολογίσετε το μέτρο - δ) Να βρείτε τον μιγαδικό αριθμό εάν ισχύουν : 4 5και 4