1 ο κύκλος C με κέντρο την αρχή των αξόνων και ακτίνα ρ = 2



Σχετικά έγγραφα
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. y > x + (y - 1) = 1 + y x + (y - 1) = (y + 1) = y + 2y + 1. B2. w(w + 3i) = i(3w + i) ww + 3wi = 3wi - 1

1 1 1 (x yi) x yi = = = 2 (x - 1) + y 2

z - 3i + z + 3i = 2 z - 3i + z - 3i = 2 2 z - 3i = 2 z - 3i = 1 άρα ο γ.τ. των εικόνων του z είναι

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

y > x + (y - 1) = 1 + y x + (y - 1) = (y + 1) = y + 2y + 1 w(w + 3i) = i(3w + i) ww + 3wi = 3wi - 1

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

Πανελλαδικές εξετάσεις 2015

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Τομέας Mαθηματικών "ρούλα μακρή"

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ & ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ (ΟΜΑΔΑ Β )

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

( ) ( ) ΘΕΜΑ Β Β1. Θέτουμε z = x + yi, x, y ΙR Είναι: 2 x + y + 2xi 4 2i = 0 2x + 2y 4 + (2x 2)i = 0. 2y = 2 y = 1 ήy= 1 = = = Άρα = 1+ i, z2. z 1 Β2.

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΘΕΜΑ Α : Α1. Σχολικό βιβλίο σελίδα 253. Α2. Σχολικό βιβλίο σελίδα 191. Α3. Σχολικό βιβλίο σελίδα 150. Α4. Α)Σ β)σ γ)λ δ)λ ε)λ ΘΕΜΑ Β : Β1.

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

Λύσεις θεμάτων πανελληνίων εξετάσεων Γ Λυκείου Κατεύθυνσης Δευτέρα, 27 Μαΐου 2013

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ Α2 Σχολικό βιβλίο σελ. 28 Α3. α σωστό, β σωστό, γ λάθος, δ λάθος, ε σωστό. ΘΕΜΑ Β

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό.

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 28 ΜΑΪΟΥ 2012

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ( ) ( ) ( ) ( )

55 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γ. τ. των εικόνων των μιγαδικών z είναι ο κύκλος κέντρου Ο(0,0) κι ακτίνας ρ=2. 4 z. 4 w 4 w 4. Πράγματι: w (1 1) 4

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Πανελλαδικές εξετάσεις 2017

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

Κατεύθυνσης. Απαντήσεις Θεμάτων Επαναληπτικών Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Μαθηματικά προσανατολισμού

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 16 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 8 IOYNIOY 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

άρα ο γεωµετρικός τόπος είναι κύκλος µε κέντρο την αρχή Ο (0,0) και ακτίνα ρ = 2. αυτό σηµαίνει ότι οι εικόνες των µιγαδικών w

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη την ύλη)

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

Γ. Να δοθεί ο ορισμός του μέτρου ενός μιγαδικού αριθμού z x yi. Δ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,γράφοντας στο γραπτό σας

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

ΛΥΣΕΙΣ. f(x) = g(x)+c. Α2. ί. Ποια είναι η γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής του διαφορικού λογισμού;; (Να κάνετε πρόχειρο σχήμα).

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

Μεθοδικό Φροντιςτήριο Βουλιαγμένησ & Κύπρου 2, Αργυρούπολη, Τηλ:

M z ισαπέχουν από τα 4,0, 4,0

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

x (x ) (x + 1) - x (x + 1)

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

Transcript:

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελίδα 63 Α. Σχολικό βιβλίο σελίδα 9 Α3. Σχολικό βιβλίο σελίδα 33 Α4. α. Σωστό, β. Σωστό, γ. Λάθ, δ. Λάθ, ε. Σωστό. ΘΕΜΑ Β B. τρόπ w w = -w z - i z - i z + i -z + i = - = z + i z + i z - i z + i (z + i) (z + i) = (z - i) (-z + i) 4zz + zi + zi - = -4zz + zi + zi zz = z = z = 4 4 Επομένως ο ζητούμεν γ.τ. είναι + 8zz = ο κύκλ C με κέντρο την αρχή των αξόνων και ακτίνα ρ = Εξαιρείται το σημείο Μ, - i διότι z - Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

B. τρόπ z - i z = + yi ( + yi) - i + yi - i z + i, yir ( + yi) + i + yi + i w = = = ( + yi - i) ( - yi - i) = ( + yi + i) ( - yi - i) = 4-4 yi - i + 4yi + 4y + y - i - y () + (y + ) 4 + 4y - 4 = - i () + (y + ) () + (y + ) 4 + 4y - w I R(w) = = () + (y + ) 4 + 4y - = 4 + 4y = + Επομένως ο ζητούμεν γ.τ. είναι i Εξαιρείται το σημείο Μ, - διότι z - - y = 4 ο κύκλ C με κέντρο την αρχή των αξόνων και ακτίνα ρ = B. oς τρό π z - i z - i w = = = z + i z + i z - i = z + i z - i = z + i (z - i)(z + i) = (z + i)(z - i) 4zz + zi - zi + = 4zz - zi + zi + z = 4zi = 4zi z = z z IR z = ± Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

B. τρόπ z - i z - i w = = = z + i z + i z - i = z + i z - i = z + i z - i = z + i άρα η εικόνα του z με Α, και Β, -, δηλαδή τον άξονα. Επομένως z IR βρίσκεται στη μεσοκάθετο του ΑΒ z = z = ± B3. Για z = είναι : τρόπ - i ( - i) - i w = = = = - i + i ( + i)( - i) τρό π - i -i - i w = = = + i + i -i ( + i) = - i + i Για w = - i έχουμε : 4 7 4 7 4 8 w + iw = (-i) + i(-i) = i - i = - = Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

ΘΕΜΑ Γ Γ. im f () = im n n θέτω u = με im = im n = - + + διότι im = + και im n = -, άρα + + + + n u im f ( ) = im = im = = f () + + n u- επομένως η f είναι συνεχής στο = Γ. Για > είναι f () = n f () = = = - n n - n f () = = - n = n = = f () > n n n n n - n > - n > n < < < + f () + - f () Δ = [, ] H f είναι συνεχής και γνησίως αύξουσα στο Δ f () = και f () =, f (Δ ) =, Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

Δ = (, + ) H f είναι συνεχής και γνησίως φθίνουσα στο Δ + f σχης im f () = f () = im f () = im + + θέτω u = n n με im + n + + = im = + DL'H n άρα im f () = im u = im = = + + u f (Δ ) =, Τέλ f (A) = f (Δ ) f (Δ ) =, n n 4 "-" n n4 4 Γ3. i) f () = f (4) = = 4 n "-" 4 4 4n = n4 n = n4 = 4 Γ3. ii) 4 Οι εξισώσεις f () = f (4) και = 4 είναι ισοδύναμες. 4 Η εξίσωση = 4 έχει προφανείς ρίζες τις = και = 4, άρα η εξίσωση f () = f (4) έχει ρίζες τις = και = 4. Η f είναι γν. αύξουσα στο Δ, άρα η εξίσωση f () = f (4) έχει μοναδική ρίζα στο Δ την =. Η f είναι γν. φθίνουσα στο Δ, άρα η εξίσωση μοναδική ρίζα στο Δ την = 4. f () = f (4) έχει Επομένως η εξίσωση 4 = 4, >, έχει ακριβώς δύο ρίζες, τις = και = 4. Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

Γ4. Θεωρούμε τη συνάρτηση g, με g () = f () - g συνεχής στο [, 4] ως πράξεις συνεχών f (t) dt g παραγωγίσιμη στο (, 4) ως πράξεις παραγωγισίμων με g () = f () f (t) dt + f () - f () g () = f () - f (t) dt = g (4) = f (4) - f (t) dt =, διότι n 4 n n 4 4 f (4) = = = = ξ 4 n =. από Θ.Roll υπάρχει ένα τουλάχιστον ξ (, 4), τέτοιο ώστε g (ξ) = f (ξ) f (t) dt + f (ξ) - f (ξ) = f (ξ) f (t) dt = - f (ξ) - f (ξ) ξ f ( ξ) f (t) dt = f (ξ) - f (ξ) ΘΕΜΑ Δ Δ. τρόπ : Παραγωγίζουμε κατά μέλη τη σχέση f () f () - f () + 3 =, για κάθε > () και έχουμε : f () f () - f () + 3 = () f () f () - f () + 3 + f () - f () + 3 = f ( ) f () f () f () f () - f () + 3 + f () f () - f () = f () f () f () f () - f () + 3 + f () f ξ () - = f () f () f () - f () + 3 + f () - = f () f () f () + = f () = f () f () + Είναι f () >, άρα η f είναι γνησίως αύξουσα στο (, + ), άρα η f είναι -, άρα η f αντιστρέφεται. Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

Δ. oς τρόπ f () f () - f () + 3 =, για κάθε > f ( ) f ( ) = () Έστω f ( ) = f ( ) f ( ) = f ( ) -f ( ) = -f ( ) f ( ) = f ( ) -f ( ) = -f ( ) (+) ( ) () f ( ) - f ( ) = f ( ) - f ( ) f ( ) - f ( ) + 3 = f ( ) - f ( ) + 3 (3) f ( ) f ( ) (),(3) f ( ) - f ( ) + 3 = f ( ) () = άρα η f είναι -, άρα η f αντιστρέφεται. - f ( ) + 3 Στην σχέση () αν θέσουμε όπου f () = y, θα έχουμε y - y y - y + 3 =, άρα f (y) = y - y + 3 ή - f () = - + 3, IR - Δ. f () = - + 3, IR = f (A) - f () = - + 3 = - + 3 + - = - + 3 + - = + - f () = + = + + = + + = + και το "=" ισχύει μόνο για = - - Άρα η f είναι κυρτή στο IR. Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

- f () = - + 3 = 3 f () = + = - - - ε : y - f () = f () - y - 3 = y = + 3 η εφαπτομένη της C στο σημείο της Α (, 3) f - - Η f είν f - - Ε = f () - ( + 3) d = - + 3 - ( + 3) d = - + 3 d - ( + 3) d αι κυρτή στο IR, άρα η C βρίσκεται πάνω από την (ε) με εξαίρεση το σημείο επαφής Α. = - + 3 d - + 3 = - + 3 - - + 3 d - - 3 = - 3 - - d - - 3 = - 3 - - d - - 3 = - 3 - - + - d - - 3 = - 3 - + - - 3 = - 3 - + - - 3 = - 3 - + - - - 3 = 4 - τ.μ. Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

Δ3. i) τρόπ λ = f () = + - - λ = f f () = = f f () - + Επομένως τρόπ - Είναι f f () =, - f f () + λ = λ για κάθε IR Παραγωγίζουμε κατά μέλη και έχουμε : - - f f () f () = () λ λ = - - - Δ3. ii) (AB) = d () = - f () + f () - = f () - τρόπ - Έχουμε αποδείξει ότι f () - ( + 3), για κάθε IR - f () - 3, για κάθε IR και το "=" ισχύει μόνο για = - - (AB) = d () = f () - = f () - 3 τρόπ - Θεωρώ τη συνάρτηση g, με g () = f () -, - Eίναι g () = f () - IR - και g () = f () και το "=" ισχύει μόνο για = - άρα η g είναι γνησίως αύξουσα και επειδή g () = η g έχει μοναδική ρίζα το. g g () > g () > g () > Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639

- + g () - + g () Eίναι g () g () g () 3 άρα (ΑΒ) = d () = g () = g() 3 Eπομένως η απόσταση ΑΒ γίνεται ελάχιστη όταν = και η ελάχιστη αυτή απόσταση είναι d = 3 min Επιμέλεια απαντήσεων: Φροντιστήρια «Κελάφας» Ιατροπούλου 3 & Χρυσ. Παγώνη - Καλαμάτα τηλ.: 7-9535 & 9639