ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

Σχετικά έγγραφα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

. Σήματα και Συστήματα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

HMY 220: Σήματα και Συστήματα Ι

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

HMY 220: Σήματα και Συστήματα Ι

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Σήματα και Συστήματα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εφαρμογή στις ψηφιακές επικοινωνίες

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

Τηλεπικοινωνιακά Συστήματα Ι

Θεώρημα δειγματοληψίας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

HMY 220: Σήματα και Συστήματα Ι

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Εισαγωγή στις Τηλεπικοινωνίες

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

X(e jω ) = x[n]e jωn (1) x[n] = 1. T s

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

y[n] ay[n 1] = x[n] + βx[n 1] (6)

Ο μετασχηματισμός Fourier

Ψηφιακή Επεξεργασία Σημάτων

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1 / 55

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΕΑΠ/ΠΛΗ-22/ΑΘΗ.3 1 η τηλεδιάσκεψη 03/11/2013. επικαιροποιημένη έκδοση Ν.Δημητρίου

Τηλεπικοινωνίες. Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

HMY 220: Σήματα και Συστήματα Ι

Δειγματοληψία και ανακατασκευή αναλογικών σημάτων

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Καθηγητής Τσιριγώτης Γεώργιος

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Κλασσική Θεωρία Ελέγχου

{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n

Συστήματα Επικοινωνιών Ι

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Ψηφιακή Επεξεργασία Σημάτων

1. Τριγωνοµετρικές ταυτότητες.

A 1 y 1 (t) + A 2 y 2 (t)

Σήματα και Συστήματα. Νόκας Γιώργος

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

Επικοινωνίες στη Ναυτιλία

X k e j2πkf0t = x(t) = x(t)e j2πkf0t dt (6.2)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουμε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήματος.

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

Ο μετασχηματισμός Fourier

Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1

Ο μετασχηματισμός z αντιστοιχεί στην ακολουθία συνάρτηση: Xz ()

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

HMY 220: Σήματα και Συστήματα Ι

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier

Ψηφιακή Επεξεργασία Σημάτων

Transcript:

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν λάβουμε υπόψη ότι οι συναρτήσεις βάση είναι ορθογώνιες Δηλαδή ισχύει η σχέση: j(-l) ω, για = t e dt =, για Με χρήση αυτής είναι δυνατό να αποδειχθεί ότι: -jωt C = x(t)e dt μιγαδικοί αριθμοί

Σειρές Fourier με ημίτονα και συνημίτονα Ένα περιοδικό σήμα, κάτω από προϋποθέσεις οι οποίες συνδέονται με την σύγκλιση των σειρών να γραφεί υπό τη μορφή: a x(t)= + Σacos(ω t)+ Σbsin(ωt) = = Ενδιαφέρον έχει να προσπαθήσει κανείς να υπολογίσει του όρους a και b του αναπτύγματος με cos( lω t) και ολοκλήρωση σε μία περίοδο (Τ) : a x(t)cos(lωt)dt= cos(lωt)dt+ a cos( t)cos(l t)dt+ bsin( t)cos(l t)dt ω ω ω ω = = Στην συνέχεια πρέπει να χρησιμοποιηθούν σχέσεις ορθογωνιότητας των τριγωνομετρικών συναρτήσεων sin( x) και cos( x ). Υπάρχει ποικιλία τέτοιων σχέσεων όπως π.χ., l sin( ωt)sin(lω t)dt =, =l `, l cos( ωt)cos(lωt)dt =, =l sin(ω t)cos(l ω tdt ) = Αν ληφθούν υπόψη οι σχέσεις ορθογωνιότητας προκύπτει:

a = x(t)cos( ω) dt b = x(t)sin(ω t)dt a = x(t)dt

Σειρές Fourier μόνο με συνημίτονα Πρόκειται για μία παραλλαγή του αναπτύγματος που εξετάστηκε προηγούμενα.. Το σήμα συνεχούς χρόνου x(t) αναπτύσσεται στην εξής σειρά: x(t) = A + A cos( t+φ ) = ω ο Παρατηρεί κανείς την εμφάνιση μιας γωνίας φάσης αντί του ημιτονικού όρου. Με βάση γνωστή τριγωνομετρική ταυτότητα προκύπτουν οι εξής σχέσεις: a A = A = a +b tan Φ b =- a Μιγαδική μορφή των σειρών Fourier x(t) = = 8 c j t e ω c = (a-jb ) Για πραγματικά σήματα x(t) μπορεί να αποδειχθεί πολύ εύκολα ότι: c - = (a +jb )=c

Φυσικά για πραγματικά σήματα τόσο το a όσο και τα b είναι πραγματικά A = c, A = c =, Φάσμα πλάτους c Φ Φάσμα Φάσης Διπλευρικό και Μονοπλευρικό φάσμα περιοδικού σήματος Γραμμωτά Φάσματα

Σειρές Fourier σημάτων με συμμετρίες και συμμετρίες σειρών Fourier Σε πολλές περιπτώσεις στην πράξη τα περιοδικά σήματα είναι άρτιες συναρτήσεις του χρόνου, δηλαδή ισχύει η σχέση: x(t) = x( t) ότε μπορεί να αποδειχθεί εύκολα ότι: b 4 και a x(t)cos( ω tdt ) Επίσης αποδεικνύεται ότι για άρτια σήματα: c R και Α = a = c Τα άρτια σήματα αντιστοιχούν σε Φ. Άρτιο σήμα: ο περιοδικός τετραγωνικός παλμός διάρκειας d, πλάτος Α. c Ad/ = A/ c Ad = πω d πω d sin[ ] [ ] - - 3 4 5 6 Φάσμα πλάτους περιοδικού τετραγωνικού παλμού με duty cycle /.

Περιττά Σήματα: x(t) = x( t) Με χρήση των σχέσεων ορισμού καταλήγει κανείς στο εξής αποτέλεσμα: a A b c c = jb Φ = 9 4 b x(t)sin( ω t ) dt Ενα παράδειγμα περιττής συνάρτησης δίνεται στο σχήμα A π 4 A sin = π ( ) Α = Το c είναι άρτια συνάρτηση του, ενώ το Φ είναι περιττή συνάρτηση του.

Συμπίεση Αριθμού Γεννητριών Περιοδικών Σηματών M x( % t ) = A + A cos( ω t + Φ ) = E = x ( t ) dt Την προηγούμενη σχέση μπορούμε να χρησιμοποιήσουμε E x % M = ( t ) dt Με χρήση της και των βασικών σχέσεων ορθογωνιότητας στην E A = A + = Προφανώς E > E, Μ Επιλογή της φειδωλής τιμής του Μ, Μ φ, βάση την μέση ενέργεια.

Τετραγωνική μορφή και προσέγγιση σε μικρό αριθμό γεννητριών Το Θεώρημα του Parseval : Για Μ A E = A + = x () t dt =

Φάσματα τετραγωνικών παλμών για (α) Τ =d, Τ =4d, 3 =8d

Mετασχηματισμός Fourier Αναλογικών Σημάτων Ο γενικός όρος της σειράς Fourier δίνεται από την σχέση c x(t)e jω t = dt Στην περίπτωση μη περιοδικών σημάτων Τ και παρατηρουμε αμέσως ότι c, επομένως οι σειρές Fourier δεν είναι το κατάλληλο εργαλείο για την περιγραφή μη περιοδικών σημάτων στον χώρο της συχνότητας. Στην περίπτωση μη περιοδικών σημάτων Τ το γραμμωτό φάσμα δεν έχει πλέον νόημα. Θα έχουμε να κάνουμε με ένα συνεχές φάσμα και θα υπάρχουν άπειρες συχνότητες μεταξύ δύο συχνοτήτων. Η απόσταση μεταξύ δύο συχνοτήτων ήταν στην περίπτωση του τετραγωνικού περιοδικού παλμού: ω = π Τ Στην περίπτωση Τ (ένας μόνο παλμός) τόσο το c όσο και το Δω. Το ( c ) μέγεθος που ίσως τώρα έχει νόημα έιναι το f που πιθανόν να παραμείνει διάφορο του μηδενός και αντιστοιχεί σε μία πυκνότητα πλάτους ανά μονάδα συχνότητας: c = c = f Στο όριο θα έχουμε : Αλλά: x(t)e jω t dt li( ) = li x( ) π ω = = ω jω c te dt li( ω ) = ω. Τ και

Eπομένως: li( ) x(t)e j ω c t = dt H συνάρτηση (σήμα) X( ω) = x(t)e jωt dt Μπορεί να ονομαστεί πυκνότητα φάσματος Επομένως το ζευγάρι μετασχηματισμού Fourier είναι το εξής: jω t x(t) = Χ ( ω ) e dω π Aντίστροφος Μετασχηματισμός Fourier j Χ ( ω) = x(t)e ωt dt Mετασχηματισμός Fourier

Βασικές Ιδιότητες του Μετασχηματισμού Fourier Με την υπόθεση της υπάρξης του ζευγαρίου x(t) X(ω) ο πίνακας συνοψίζει τις βασικές ιδιότητες. ax() t + ax() t a X( ω) + a X ( ω). Γραμμικότητα:. Χρονική Κλιμάκωση: ω x(at) X ( ) a a 3. Συμμετρία μεταξύ των χώρων ορισμού: Xt () πx( ω) 4.Χρονική Μετάθεση: 5.Μετάθεση Συχνότητας: Διαμόρφωση: 6.Παραγώγιση: 7.Συνέλιξη: jt ω x(t t) e X() ω j t e ω x(t) X( ω ω) x(t)cos ωt [ X ( ω ω) +Χ ( ω + ω)] n d x(t) n ( jω) X ( ω) n dt x()*x t () t X ( ω) Χ ( ω) x ( t)x () t Χ ( ω)* Χ ( ω) π

Μετασχηματισμός Fourier Σημάτων Ισχύος Ο μετ/σμος Fourier ενός σταθερού σήματος x(t)=k, t, μπορεί να προσδιοριστεί χρησιμοποιώντας ένα παράγοντα σύγκλισης: + + at at jωt at jωt X( ω) = Fx(t) { } =F li( e K) = li( e K) e dt lik e e dt a = = a a + (a j ω) t (a + jω) t (a jω) t (a + jω) t e e = li K [ e dt+ e dt] = li K [ ] a j ω (a + jω) a a + o ak = li K [ + ] = li( ) a a j ω a + jω a a + ω Χ ( ω) =, ω Χ ( ω) =, ω= + + Για την άρση της αοριστίας μπορεί να γίνει εφαρμογή του κανόνα L Hospital οπότε: a Κ K li( ) = li( ) = a + ω a a a ω = Επομένως η τιμή του μετασχηματισμού Fourier απειρίζεται στην μηδενική συχνότητα. Παράλληλα όμως παρατηρούμε ότι η επιφάνεια Ε κάτω από την ak συνάρτηση παραμένει σταθερή και ανεξάρτητη του α. a + ω + + ak a tan( ) ( ( )) ( ) d d ω + π π ω ω K π K π a + ω a + ω a Ε= =Κ =Κ = =Κ =

που αντιστοιχεί στον κρουστικό παλμό (συνάρτηση δέλτα) στην αρχή των αξόνων(ω=) με μέγεθος K π. F{x(t)} = FK {} = X() ω = π Κ δω () =Κ δ() f διότι δ (at) = δ (), t a επομενως: δ ( ω ) = δ ( π f ) = δ ( f ). π Με τον ίδιο τρόπο αντιμετωπίζουμε τη συνάρτηση προσήμου ( /jω )

Μετασχηματισμοί Fourier ημιτονοειδών σημάτων Γενικά ισχύει: δ (at) = δ (), t a Επομένως: δ ( ω ) = δ ( π f ) = π δ ( f ). Και δ a t a (a t t) = δ( t ) Οπότε t = e + e F t F e F e jω t jω t cos( ω ) ( ) αλλά : jω t jω t { cos( ω )} = { } + { } jωt jωt { } F{ e } F e = = π δω ( ω ) διότι λόγω της γνωστής ιδιότητας της διαμόρφωσης του μετ/σμου Fourier ισχύει: F jωt x( t) X( ω) e x(t) X( ω ω ) F Τελικά: jωt jω t F{ cos( ωt} = F{ e } + F{ e } = [ πδ( ω ω) + πδ( ω+ ω)]

Αρα F{ cos( ωt} = πδω [ ( ω) + δω ( + ω)] = [ δ( f f) + δ( f + f)] Ομοίως: F { sin( t π ω } = [ δω ( ω) δω ( + ω)] = [ δ( ) ( )] j j f f δ f + f Ενώ για το βηματικό παλμό: F{ ut ()} = F + sgn( t) = F + F sgn( t) = π δω ( ) + = δ( f) + 443 jω jπ f ut () Διαμόρφωση κατά πλάτος [ t ] π x(t) = A + ()cos( ft) όπου (t) είναι το διαμορφώνον σήμα με t () και f είναι η συχνότητα του φέροντος σήματος (σε τιμή αρκετά υψηλότερη από τις συχνότητες του διαμορφώνοντος σήματος). το γινόμενο στον χρόνο είναι συνέλιξη στην συχνότητα ως εξής: { } { π } X( f ) = F x(t) = F A[ + t ()]cos( ft = A F{ + t ()} F{cos( π ft)} = = A[ δ( f) + M( f )] [ δ( f + f) + δ( f f)] = A Α = [ δ( f + f) + δ( f f)] + [ Μ ( f + f) + M( f f)] (όπου Μ(f)=F{(t)} ).

Το φάσμα του διαμορφωμένου σήματος x(t) αποτελείται από δύο «διακριτές συνιστώσες» στις συχνότητες του φέροντος ±f γύρω από την συχνότητα, όπως φαίνεται στο σχήμα M ( f ) = Φάσμα διαμορφούντος σήματος (t) Φάσμα φέροντος (carrier)

ΣΥΝΟΨΗ Αν x(t)=u(t), τότε X( ω) = πδ( ω) + ή jω X( f) = δ ( f) + jπ f Μετασχηματισμός Fourier βηματικής Συνάρτησης Αν x(t)=sin(ω t), τότε : X(ω)=jπ[δ(ω+ω )-δ(ω-ω )] j ( ) [ ( ) ( )] ή X f = δ f + f δ f f Μετασχηματισμός Fourier σήματος x(t)=sin(ω t).

Αν + x(t) = δ ( t n), n= τότε + π π x( ω) = δω ( n ) Τ Τ (ή n= + n X( f) = δ( f )) Τ n= Mετασχηματισμός Fourier Σήματος x(t) δ ( t n) + n= Αν jωt x(t) = e, τότε: X ( ω) = πδ( ω ω ) ( ή X( f ) = δ( f f )) Μετασχηματισμός Fourier σήματος x(t) = e jω t

Το θεώρημα της Δειγματοληψίας Έτσι θα έχουμε st = δ t n = ce ω = ω = = π f + j () ( ) ω t π, Τ s n s s s = όπου: s jωt jωt c = st () e dt () t e dt = δ = Aρα : s < s> s s s c =, Z. s

Αλλά o κρουστικός παλμός είναι το ταυτοτικό στοιχείο της συνέλιξης: x(t) * δ(t-t o ) = x(t-t o ) οπότε:

Χρήση βαθυπερατού φίλτρού σύμφωνα με το θεώρημα της Δειγματοληψίας

Ανακατασκευή του σήματος x(t) από τα δείγματα x s (t) Εφαρμογή ιδανικού κατωδιαβατού φίλτρου f s s f H( f ) = f s, f > Επομένως, η κρουστική του απόκριση, h(t)=f - {Η(f)} θα δίνεται από την σχέση: t ht = F H f = c π t R () { ( )} sin ( ), ( ) s σύμφωνα με την γνωστή ιδιότητα του μετ/σμου Fourier : F x(t) X( f) X() t x( f). F Eπομένως, ή έξοδος του βαθυπερατού φίλτρου, y(t), θα προσδιορίζεται με την χρήση του συνελικτικού αθροίσματος ως εξής: + t yt () = x() s t ht () = [ x( ns) δ( t ns)] sin c( π ) = n= 4444443 s x() t + π = x(n s)sin c[ ( t ns)] Τ n= s s Σε περίπτωση που έχουμε επιλέξει s = =, f B s τότε: + n yt () = x( )sin c[ π Β ( t n )], fs = B B B n=

Παρατήρηση : Σε περίπτωση που το προς δειγματοληψία σήμα x(t) είναι ζωνοπερατό (Band Pass) σήμα, δηλ. X(f)= για f <B και f <B, τότε ότι η συχνότητα δειγματοληψιας f s, μπορεί να είναι μικρότερη από Β. Μπορεί να αποδειχθεί ότι τότε έχουμε : B f s <4B, όπου Β=Β -Β.