VJEŽBE IZ MATEMATIKE 1

Σχετικά έγγραφα
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

VJEŽBE IZ MATEMATIKE 1

Funkcije dviju varjabli (zadaci za vježbu)

Lokalni ekstremi funkcije vi²e varijabla

VJEŽBE IZ MATEMATIKE 1

Derivacija funkcije Materijali za nastavu iz Matematike 1

Ispitivanje toka i skiciranje grafika funkcija

5 Ispitivanje funkcija

1.4 Tangenta i normala

Riješeni zadaci: Limes funkcije. Neprekidnost

( , 2. kolokvij)

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

radni nerecenzirani materijal za predavanja

Matematička analiza 1 dodatni zadaci

ELEKTROTEHNIČKI ODJEL

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

3.1 Granična vrednost funkcije u tački

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

18. listopada listopada / 13

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

FUNKCIJE DVIJU VARIJABLI (ZADACI)

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

TRIGONOMETRIJSKE FUNKCIJE I I.1.

VJEŽBE IZ MATEMATIKE 1

Obi ne diferencijalne jednadºbe

VVR,EF Zagreb. November 24, 2009

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

Osnovne teoreme diferencijalnog računa

ELEMENTARNA MATEMATIKA 1

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Na grafiku bi to značilo :

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

4. DERIVACIJA FUNKCIJE 1 / 115

2. KOLOKVIJ IZ MATEMATIKE 1

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu

3. poglavlje (korigirano) F U N K C I J E

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Diferencijalni račun

4 Funkcije. 4.1 Pojam funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Seminar 11 (Ispitivanje domene i globalnih svojstava funkcije)

5. PARCIJALNE DERIVACIJE

1 Limesi, asimptote i neprekidnost funkcija

41. Jednačine koje se svode na kvadratne

Linearna algebra 2 prvi kolokvij,

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

C# APLIKACIJA ZA CRTANJE MATEMATIČKIH FUNKCIJA I ODREĐIVANJA TIJEKA

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

3 Funkcije. 3.1 Pojam funkcije

Matematika 1 - vježbe. 11. prosinca 2015.

IZVODI ZADACI (I deo)

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

LEKCIJE IZ MATEMATIKE 2

2.7 Primjene odredenih integrala

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Uvod u diferencijalni račun

( pol funkcije), horizontalna ili kosa.

Uvod u teoriju brojeva

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u okolini tocke, i aplikate, tocke, : Uvede li se zamjena: i dobije se:

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

I Pismeni ispit iz matematike 1 I

4.1 Elementarne funkcije

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

1.3. Rješavanje nelinearnih jednadžbi

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Linearna algebra 2 prvi kolokvij,

Operacije s matricama

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

TRIGONOMETRIJA TROKUTA

1 Pojam funkcije. f(x)

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

3. DIFERENCIJALNI RAČUN I PRIMJENE

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

SISTEMI NELINEARNIH JEDNAČINA

Matematka 1 Zadaci za drugi kolokvijum

Elementi spektralne teorije matrica

4. poglavlje (korigirano) LIMESI FUNKCIJA

Osnovni teoremi diferencijalnog računa

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

PRVI IZVOD. f x0 x f x0. y x. ) lim lim ( ) ( ) x. Neka je y f(x) funkcija definisana na intervalu [a,b], x 0

Transcript:

VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija

Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije i ekstremi funkcija 1.0.1 Rast, pad i ekstremi funkcija Pad i rast funkcije: Neka je zadana funkcije f, zanima nas gdje je podru je pada, odnosno rasta. Kao ²to smo vidjeli na predavanjima, to moºemo odrediti koriste i prvu derivaciju. Prva derivacija u nekoj to ki je ujedino i koecijent smjera tangente na graf krivulje u toj to ki pa jasno da funkcija raste u okolini x 0 ako je f (x 0 ) > 0 odnosno pada ako je f (x 0 ) < 0. Primjer 1 Nažite podru je pada i rasta funkcije f(x) = 1 x 4x. Rje²enje: Traºimo prvo derivaciju zadane funkcije: f (x) = x 4. Rje²avamo nejednadºbu f (x) > 0 x 4 > 0 x > 4 pa funkcija raste na intervalima (, ) (, + ). Funkcija pada tamo gdje je f (x) < 0, odnosno gdje vrijedi x < 4 pa je jasno da pada na intervalu (, ). Zadatak Nažite podru je pada i rasta funkcije f(x) = e x x. Zadatak Nažite podru je pada i rasta funkcije f(x) = sin(x) na intervalu ( π, π). Zadatak 4 Nažite podru je pada i rasta funkcije f(x) = 1 x + 4. Ekstremi funkcije: Neka je zadana funkcija f. Ako postoji okolina to ke x 0 takva da za svaku to ku x x 0 te okoline vrijedi nejednakost f(x) > f(x 0 ) (f(x) < f(x 0 )), onda to ku x 0 nazivamo lokalnim minimumom (maksimumom) funkcije f. To ku lokalnog minimuma ili maksimuma funckije nazivamo to kom lokalnog ekstrema. Ako je x 0 to ka lokalnog ekstrema funkcije f, onda je nuºno ili f (x 0 ) = 0 (stacionarna to ka) ili f (x 0 ) ne postoji. Obrat ne vrijedi, to ke u kojima f (x 0 ) = 0 ili f (x 0 ) ne postoji (kriti ne to ke) nisu uvijek to ke 1

ekstrema (vidi npr to ke ineksije). Zato, ukolio nažemo to ku kandidata za ekstrem (tj onu u kojoj je prva derivacija jednaka nuli ili ne postoji) treba ili provjeriti da prve derivacija u toj to ki kandidatu mijenja predznak ili ispitati drugu derivaciju u to ki kandidatu jer vrijedi sljedece: a) ako je f (x 0 ) = 0 i f (x 0 ) > 0 u to ki x 0 je lokalni minimum b) ako je f (x 0 ) = 0 i f (x 0 ) < 0 u to ki x 0 je lokalni maksimum c) ako je f (x 0 ) = 0 i f (x 0 ) = 0 u to ki x 0 ne znamo ²to je nego su potrebna daljnja ispitivanje Primjer 5 Nažite lokalne ekstreme te podru ja pada i rasta funkcije f(x) = x + x 1x + 5. Rje²enje: Prvo ispitujemo koje to ke zadovoljavaju nuºan uvjet, tj. za koje to ke je f (x 0 ) = 0: f (x) = 6x + 6x 1 = 0. Rje²imo gornju kvadratnu jednadºbu i dobivamo kandidate za ekstreme: x 1 = 1 i x =. Provjeravamo vrijednost druge derivacije od f u tim to kama. f (x) = 1x + 6 pa f (x 1 ) = 18, f (x ) = 18. Zaklju ujemo da f ima lokalni minimum u x 1 = 1 i lokalni maksimum u x =. Ispitujemo podru ja pada i rasta: f (x) > 0 6x + 6x 1 > 0 x + x > 0. Znamo da su nulto ke x 1 = 1 i x = a po²to gornja nejednakost ima pozitivan koecijent uz x, f (x) > 0 na intervalima (, ) (1, + ) to jest na tim intervalima funkcija raste. Sada je jasno da funkcija pada na intervalu (, 1). Iz injenice da f mijenja predznak u to kama x 1 = 1 i x =, tj. da u njima iz pada prelazi u rast i obratno mogli smo takožer zaklju iti da su to to ke ekstrema bez ispitivanja druge derivacije u tim to kama. 1. Istraºite ekstreme slijede ih funkcija: (a) f(x) = x (x 1) (d) f(x) = x ln(1 + x) (b) f(x) = 4 x +8 (e) f(x) = x e x (c) f(x) = sin x + sin 4x (f) f(x) = x arctan x. Zadatak 6 U skupu nenegativnih realnih brojeva odredite onaj koji zbrojen sa svojom recipro nom vrijedno² u daje minimalan zbroj. Odredite taj zbroj! Rje²enje: Formiramo funkciju iji minimum ºelimo na i: f(x) = x + 1 x. Traºimo kandidate za ekstreme f (x) = 0 1 1 x = 0 x = 1 pa su kandidati x 1 = 1 i x = 1. Ispitujemo drugu derivaciju u tim to kama: f (x) = x f (1) = > 0, f ( 1) = < 0 O ito je traºeni nenegativni minimum u x 1 = 1 i iznosi f(1) =.

1.0. Konkavnost, konveksnost i to ke ineksije funkcija Konkavnost i konveksnost: Za funkciju kaºemo da je konveksna u okolini x 0 ako se tangenta na graf funkcije u x 0 nalazi ispod grafa funkcije. Ukoliko je iznad, govorimo o konkavnosti. Kriterij za ispitivanje je druga derivacija u to ki x 0 : ako je ona ve a od nule, funkcija je tu konveksna a ako je manja od nule, funkcija je konkavna. Primjer 1 Odredite podru je konveksnosti i konkavnosti funkcije f(x) = 1 x 4x. Rje²enje: Kao ²to smo za pad i rast ispitivali prvu derivaciju, tako ovdje ispitujemo drugu. f (x) = x 4 f (x) = x O ito je f (x) > 0 za x > 0 i f (x) < 0 za x < 0 pa je podru je konkavnosti (, 0) a konveksnosti (0, + ). 1. Istraºite podru je konveksnosti i konkavnosti slijede ih funkcija: (a) f(x) = e x x (b) f(x) = sin x 4x (c) f(x) = 1 x x To ke ineksije: To ke u kojima funkcija prelazi iz konkavne u konveksnu ili obratno nazivaju se to ke ineksije. Druga derivacija u tim to kama je ili jednaka nuli ili nije denirana. Mežutim, sli no kao kod traºenja ekstrema, nije dovoljno provjeriti samo drugu derivaciju jer nam ona daje tek kandidate. Moramo se jo² uvjeriti da funkcija u tim to kama stvarno prelazi iz konveksne u konkavnu (ili obratno) tako ²to emo ispitati drugu derivaciju lijevo i desno od kandidata pa vidjeti da ona ima suprotan predznak. Ako je kojim slu ajem i prva derivacija u tom kandidatu jednaka nuli, onda umjesto ispitivanja predznaka druge derivacije lijevo i desno od to ke, moºemo jednostavno izra unati tre u derivaciju u toj to ki i ako je ona razli ita od nule, to je to ka ineksije. Primjer Ispitajte konkavnost i konveksnost te nažite to ke ineksije funkcije f(x) = e x. Rje²enje: Traºimo drugu derivaciju: f (x) = xe x f (x) = e x + 4x e x = e x (x 1) pa je f (x) > 0 ako je x 1 > 0 jer e x 0 za svako x (analogno za f (x) < 0). Stoga je f (x) > 0 na intervalu (, 1 ) ( 1, + ) i f (x) < 0 na intervalu ( 1, 1 ) pa su to podru ja konveksnosti, odnosno konkavnosti. To ke ineksije su o ito x 1 = 1 i x = 1 jer je tu druga derivacija jednaka nuli i funkcija se mijenja iz konveksne u konkavnu u x 1, odnosno iz konkavne u konveksnu u x. Primjer Nažite to ke ineksije funkcije f(x) = (x 1) + 5. Rje²enje: Traºimo drugu derivaciju: f (x) = (x 1) f (x) = 6(x 1)

i odmah vidimo da je jedini kandidat x 1 = 1. No, za njega je o ito i prva derivacija jednaka nuli, tj f (x 1 ) = 0 pa provjeravamo trecu derivaciju umjesto da gledamo predznak druge derivacije lijevo i desno od x 1. pa je tu to ka ineksije. Zadatak 4 f (x) = 6 f (1) = 6 0 1. Istraºite podru je konveksnosti i konkavnosti te nažite to ke ineksije slijede ih funkcija: (a) f(x) = (x + 1) 4 (c) f(x) = 1 x+ (b) f(x) = x sin x (d) f(x) = (1 + x )e x Imamo sljede e denicije: Ubrzani rast: podru je na kojem funkcija raste i konveksna je Usporeni rast: podru je na kojem funkcija raste i konkavna je Ubrzani pad: podru je na kojem funkcija pada i konkavna je Usporeni pad: podru je na kojem funckija pada i konveksna je Primjer 5 Odredite podru ja ubrzanog i usporeng pada, odnosno rasta funkcije f(x) = 1 x 4x. Rje²enje: Ve znamo da je prva derivacija (vidi Primjer 1) jednaka f (x) = x 4 pa funkcija raste na intervalu (, ) (, + ) odnosno pada na (, ). Provjeravamo drugu derivaciju na tim intervalima: f (x) = x f (x) > 0 za x > 0, f (x) < 0 za x < 0. O ito je to ka ineksije x 0 = 0 i zaklju ujemo: a) na intervalu (, ) funkcija raste i konkavna je pa imamo usporeni rast b) na intervalu (, 0) funkcija pada i konkavna je pa imamo ubrzani pad c) na intervalu (0, ) funkcija pada i konveksna je pa imamo usporeni pad d) na intervalu (, + ) funkcija raste i konveksna je pa imamo ubrzani rast 1.0. Ispitivanje toka funkcije i crtanje grafa Kod crtanja grafa funkcije moramo prvo u nekoliko koraka odrediti sljede e parametre: (1) domena funkcije, () nulto ke, () asimptote, 4

(4) kandidate za ekstreme (prva derivacija), (5) ekstreme i to ke ineksije (druga derivacija), (6) tok (prva derivacija). Asimptote : vertikalne asimptote: to ke prekida funkcije horizontalne asimptote: lim x f(x) lim x + f(x) lijeva horizontalna asimptota, desna horizontalna asimptota kosa asimptota: y = kx+l gdje je k = lim x f(x) x, l = lim x (f(x) kx). Ekstremi : f (x 0 ) = 0 x 0 je kandidat; f (x 0 ) > 0 lokalni minimum, f (x 0 ) < 0 lokalni maksimum To ke ineksije : f (x 0 ) = 0 ili f (x 0 ) ne postoji: x 0 je to ka ineksije ako f Tok : f (x) > 0 f (x) < 0 funkcija raste, funkcija pada. u intervalima (x 0 δ, x 0 ) i (x 0, x 0 + δ) za neko δ zadrºava konstantne predznake i ako su ti predznaci suprotni. Primjer 1 Ispitajte tok i nacrtajte graf funkcije f(x) = x x Rje²enje: Jednostavno slijedimo upute: x x. (1) Domena: x x = 0 x = 0, pa je domena D = R\{0, }. () Nulto ke: f(x) = 0 x x = 0 x 1, = ± 4+1 = 1 ± x 1 = 1 ( 1, 0), x = (, 0). () Asimptote: V.A. x = 0, x = x H.A. lim x x x x = 1 pa je horizontalna asimptota y = 1. K.A. nema (4) Kandidati za ekstreme: f (x) = = 6x+6 (x x ) pa f (x) = 0 x = 1. (5) Ekstremi i to ke ineksije: f (x) = = 6 ( 6x+6)(x x )( x) (x x ) 4. Sada imamo (6) Tok: f (1) = 6 < 0 pa je u x = 1 lokalni maksimum. f (x) < 0 x (1, + ) pa tu funkcija pada, f (x) > 0 x (, 1) pa tu funkcija raste. 5

Slika 1.1: Graf funkcije f(x) = x x x x Na temelju gornjih opaºanja sada je lako nacrtati graf: Primjer Ispitajte tok i nacrtajte graf funkcije f(x) = x e x. Rje²enje: (1) Domena: D = R () Nulto ke: x = 0 () Asimptote: V.A. nema x H.A. lim x = L x H = lim e x x = 0 pa je horizontalna xe x asimptota u oba smjera y = 0. f(x) x K.A. lim x x = lim x = L x H = lim e x x = 0 pa kosih xe x asimptota nema. (4) Kandidati za ekstreme: f (x) = x e x + x e x ( x) = 0 pa su kandidati x 1 = 0 i x, = ±. (5) Ekstremi i to ke ineksije: f (x) = = xe x (4x 4 14x + 6). Sada imamo f (0) = 0 pa je x = 0 to ka ineksije, ( ) f < 0 pa je u x = lokalni maksimum, ) f ( > 0 pa je u x = lokalni minimum. 6

(6) Tok: f (x) < 0 x < 0 x > a f (x) > 0 x < Crtamo graf: pa tu funkcija pada, pa na tom intervalu funkcija raste. Zadaci sa rokova: Slika 1.: Graf funkcije f(x) = x e x 1. Odredite kvalitativni graf funkcije f(x) = e sin x.. Ispitajte tok i nacrtajte graf funkcije f(x) = 1 1+x.. Ispitajte tok i nacrtajte graf funkcije f(x) = arctan ( 1 + 1 x). 4. Odredite graf funkcije f(x) = x x 1. 5. Odredite kvalitativni graf funkcije f(x) = ( 1 + x ) 1. 6. Odredite kvalitativni graf funkcije f(x) = arctan x x. 7. Odredite kvalitativni graf funkcije f(x) = x 6 x 4 + x 5. 8. Odredite kvalitativni graf funkcije f(x) = ln (x 4x + 5) ln. 9. Odredite kvalitativni graf funkcije f(x) = x x. 10. Nacrtajte kvalitativni graf funkcije f(x) = 1 e cosx. 11. Ispitajte tok i nacrtajte graf funkcije f(x) = x +8x +7x+7 (x+). 1. Ispitajte tok i nacrtajte graf funkcije: f(x) = x 1 + e 1 1 x. 7

1. Ispitajte tok i nacrtajte graf funkcije: f(x) = arctan(1 1 x ). 14. Odredite kvalitativni graf funkcije f(x) = x (x 1) 1. 15. Ispitajte tok i nacrtajte graf funkcije f(x) = x e 1 x. 16. Ispitajte tok i nacrtajte graf funkcije f(x) = (x 1) 1/ ln (x 1). 17. Ispitajte tok i nacrtajte graf funkcije f(x) = ln x x. 18. Odredite kvalitativni graf funkcije f(x) = x 8 x. 19. Odredite kvalitativni graf funkcije f(x) = x +x +7x x. 8