Βελτίωση - Φιλτράρισμα εικόνας



Σχετικά έγγραφα
Βελτίωση - Φιλτράρισμα εικόνας

ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ)

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50

Digital Image Processing

Ψηφιακή Επεξεργασία Σημάτων

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Παρουσίαση του μαθήματος

Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Advances in Digital Imaging and Computer Vision

Digital Image Processing

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Ενότητα 4: Φιλτράρισµα στο Πεδίο Συχνοτήτων (ΙΙ)

Νοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5

Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ψηφιακή Επεξεργασία Σημάτων

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ψηφιακή Επεξεργασία Σημάτων

Α.Τ.Ε.Ι. Κ ΑΒΑΛΑΣ ΤΜΗΜΑ ΒΙΟΜ ΗΧΑΝΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΑΝΙΧΝΕΥΤΕΣ ΑΚ Μ Ω Ν ΤΑΣΟΣ ΕΥΑΓΓΕΛΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΡΙΝΙΔΗΣ ΣΤΕΛΛΙΟΣ

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57

FFT. εκέµβριος 2005 ΨΕΣ 1

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων

Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ4 -1- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION)

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Digital Image Processing

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ Κεφ. 10.3, ) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ανάλυση ΓΧΑ Συστημάτων

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform

Τηλεπισκόπηση - Φωτοερμηνεία

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Ψηφιακή Επεξεργασία Εικόνας

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Advances in Digital Imaging and Computer Vision

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων

2. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ

HMY 220: Σήματα και Συστήματα Ι

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn

Παρουσίαση Νο. 5 Βελτίωση εικόνας

Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς

3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n]

Ψηφιακή Επεξεργασία Εικόνας

Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT. Σ.

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Συστήματα Επικοινωνιών ΙI

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Μετασχηµατισµός Ζ (z-tranform)

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

Ψηφιακή Επεξεργασία Σήματος

y[n] ay[n 1] = x[n] + βx[n 1] (6)

FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες

Ψηφιακά Φίλτρα. Κυριακίδης Ιωάννης 2011

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5γ. Σημειώσεις μαθήματος: E mail:

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

Ασκήσεις Επεξεργασίας Εικόνας

3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ψηφιακή Επεξεργασία Σημάτων

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ο μετασχηματισμός Fourier

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης

Εργαστήριο ADICV3. Image filtering, Point Processing and Histogram Equalisation. Κώστας Μαριάς 20/3/2017

Transcript:

Βελτίωση - Φιλτράρισμα εικόνας /7

Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται παράθυρο ή μάσκα. Τα παράθυρα αυτά είναι συνήθως τετραγωνικά και οι συντελεστές συμμετρικοί. /7

Φιλτράρισμα - Συνέλιξη h(n,n ) x(n,n y(n, n ) = M N k = 0k = 0 x(k, k ) h(n -k, n -k ) y(n, n )= x(n, n )* *h(n, n ) 3/7

Η διδιάστατη συνέλιξη - γραφικά 4/7

Συνέλιξη υλοποίηση A B C To αποτέλεσμα της συνέλιξης για την τιμή της εικόνας στη θέση n,n δηλ. στο p 5 είναι: D E F G H I p p p 3 p 4 p 5 p 6 p 7 p 8 p 9 y(n,n )=Ap +Bp +Cp 3 +Dp 4 +Ep 5 +Fp 6 Gp 7 +Hp 8 +Ip 9 5/7

Συνέλιξη υλοποίηση A B C D E F G H I p p p 3 p 4 p 5 p 6 p 7 p 8 p 9 Το παράθυρο (A,B,C,D,E,F,G,H,I) διατρέχει την εικόνα και κάθε φορά υπολογίζεται το γινόμενο του παραθύρου με τα αντίστοιχα pixel της εικόνας. Στην εικόνα εξόδου το αποτέλεσμα της συνέλιξης αποδίδεται στο κεντρικό pixel του παραθύρου. 6/7

Συνέλιξη στο πεδίο της συχνότητας 7/7

Μετασχηματισμός Fourier Μετασχηματισμός Fourier DFT-FFT 8/7

-D DFT και IDFT Γιά N image : M f ( x, y) O DFT ορίζεται: F ( u, v ) for = u MN = 0, M N x = 0 y = 0 f ( x,,, L, M y ) e j π ( ux / M + vy / N ) v = 0,,, L, N Και ο IDFT: f ( x, y ) = M N u = 0 v = 0 F ( u, v ) e j π ( ux / M + vy / N ) for x = 0,,, L, M y = 0,,, L, N 9/7

Μετασχηματισμός Fourier Διαχωρίσιμη πράξη Μιγαδικός αριθμός (μέτρο φάση) Oι τιμέςu,v κοντά στο 0,0 αντιστοιχούν σε χαμηλές συχνότητες. F( 0, 0) MN M N = x= 0 y = 0 f (x, y) = μέση τιμ ή του f(x, y) 0/7

Τι είναι πιο σημαντικό? Μέτρο ή φάση α β Πρόσθεση: φάσμα πλάτους της εικόνας (α) και φάσμα φάσης της εικόνας (β) /7

Μετασχηματισμός Fourier Παράδειγμα 0 0 /7

Filtering στο πεδίο της συχνότητας Βασικές έννοιες: low frequency : μικρές μεταβολές στα χαρακτηριστικά της εικόνας high frequency : απότομες μεταβολές όπως θόρυβος ή περιγράμματα αντικειμένων F( u, v) high frequency low frequency F(0,0) 3/7

Συνέλιξη μέσω FFT Βασική ιδιότητα: η πράξη του πολλαπλασιασμού στο πεδίο της συχνότητας ισούται με την συνέλιξη στο χρόνο και αντιστρόφως f(x, y)**h(x,y) F(u, v)h(u, v) ΠΡΟΣΟΧΗ ΣΤΙΣ ΔΙΑΣΤΑΣΕΙΣ 4/7

Συνέλιξη μέσω FFT Αρχική εικόνα Filter Mask FFT FFT «φιλτραρισμένη» εικόνα Πολλαπλασιασμός αντίστοιχων pixels Inverse FFT Το «φιλτραρισμένο» φάσμα 5/7

Α. Βαθυπερατά φίλτρα Ιδιότητες Φιλτράρουν τις υψηλές συχνότητες (σήματα θορύβου). Λειαίνουν απότομες μεταβολές στην ένταση Θολώνουν την εικόνα (blurring). Απόκριση συχνότητας 6/7

Βασικές Κατηγορίες βαθυπερατών φίλτρων Φίλτρα μέσης τιμής (mean filters). Φίλτρα Gaussian μορφής (Gaussian filters). Φίλτρα Butterworth Φίλτρα διάμεσης τιμής (median filters). 7/7

Βαθυπερατά φίλτρα - Κατηγορίες βαθυπερατών φίλτρων Φίλτρα μέσης τιμής (averager) Απόκριση συχνότητας ( διαστάσεων) γιατοφίλτρομέσηςτιμής. Στις χαμηλές συχνότητες - γύρωαποτοσημείο(0,0) το πλάτος είναι μεγάλο. Οι συχνότητες - και αντιστοιχούν στο f s / 8/7

Θόλωση (blurring) Αρχική εικόνα Εφαρμογή 3x3 averager Εφαρμογή 7x7 averager 9/7

Ελάττωση θορύβου επίδραση μήκους παραθύρου Αρχική εικόνα Εικόνα με θόρυβο Ν(0,0.05) Εφαρμογή averager 3x3 0/7

Ένα φίλτρο μέσης τιμής με προσαρμογή των συντελεστών Χρησιμοποιείται η αντίστροφη βάθμωση -inverse gradient δ(i,j,m,m)=/ g(m,n)-g(i,j) Εάν g(m,n)=g(ι,j) ορίζουμε δ= (και όχι ) h ij h( i, j) = 0.5 δ ( i, j, m, n) δ ( i, j, m, n) m, n /7

Μέση τιμή με περιστρεφόμενη μάσκα Με την διαδικασία αυτή αποφεύγεται η θόλωση Η έξοδος στο φίλτρο αυτό υπολογίζεται ως η μέση τιμή από τα pixel μίας περιστρεφόμενης μάσκας που έχουν την μεγαλύτερη ομογένεια Η ομογένεια υπολογίζεται από την τιμή της διακύμανσης /7

Μέση τιμή σε πολλά frames (averaging) Χαρακτηριστική εφαρμογή: μείωση θορύβου αρχική τελική s=imread('saturn.tif'); i=imnoise(s,'gaussian');i=double(i)/55; i=imnoise(s,'gaussian');i=double(i)/55; i3=imnoise(s,'gaussian');i3=double(i3)/55; i4=imnoise(s,'gaussian');i4=double(i4)/55; i=(i+i+i3+i4)/4; figure(); imshow(s) figure(); imshow(i) 3/7

Gaussian φίλτρα Οι συντελεστές των Gaussian φίλτρων δίνονται από τη μορφή της Gaussian συνάρτησης: g(x)=exp(-x /σ ) σε μία διάσταση g(i, j)=exp(-(i +j )/σ ) σε δύο διαστάσεις 4/7

Ιδιότητες Gaussian συνάρτησης. Είναι ανεξάρτητη της διεύθυνσης.. Έχει μόνο έναν λοβό, δηλαδή οι συντελεστές του αντίστοιχου φίλτρου ελαττώνονται μονότονα με την απόσταση. 3. Ο μετασχηματισμός Fourier της Gaussian συνάρτησης είναι επίσης Gaussian, με αποτέλεσμα οι ανεπιθύμητες υψηλές συχνότητες να μην ενισχύονται. g(i, j)=exp(-(i +j )/σ G(u, v)=exp(-(u +v ) σ / 5/7

Ιδιότητες Gaussian συνάρτησης (συνέχεια) 5. Η παράμετρος σ δίνει τη δυνατότητα ελέγχου του βαθμού φιλτραρίσματος. 6. Είναι διαχωρίσιμη σε οριζόντια και κάθετη διαδικασία. λεπτομέρειες 7. Διαδοχικό φιλτράρισμα με Gaussian φίλτρο διακύμανσης σ είναι ισοδύναμο με ένα φιλτράρισμα από Gaussian διακύμανσης / σ. 6/7

7/7

ΔΠΜΣ Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ 8/7 Σχεδιασμός Gaussian φίλτρων Μία προσέγγιση δίνεται από τους συντελεστές δυωνυμικής κατανομής: π.χ. Για 5 σημεία οι συντελεστές είναι: 4 6 4 Προφανώς η άμεση προσέγγιση γίνεται από τησχέσηορισμού: ) g( ), g( e e j) g(i, j i ρ = θ ρ = = = σ ρ σ + n n x n n... x n x n 0 n x) ( + + + + = +

Για n=7 και σ =, η σχέση () δίνει: Παρατηρούμε πως οι συντελεστές είναι συμμετρικοί και φθίνουν μονότονα με την απόσταση από τοpixel (i, j)= (0, 0) 9/7

Gaussian φίλτρα παράδειγμα Αρχική σ= σ= σ=4 30/7

Gaussian φίλτρα παράδειγμα 3/7

Ιδανικά φίλτρα -IIR φίλτρα Ένα ιδανικό βαθυπερατό φίλτρο θα είχε μία απόκριση συχνότητας που θα ήταν μηδενική για συχνότητες μεγαλύτερες από μία δοθείσα «ακτινική» ήτετραγωνική συχνότητα ω C H(ω,ω ) =, 0 έαν ω + ω διαφορετικά ω C H 0.5 H(ω,ω, ) = έαν ω ω C 0 διαφορετικά,ω Απόκριση : h(m,n)=aω C ω C sinc(ω C m)sinc(ω C n) ω C 0 00 ω 0-00 ω C -50 ω 0 50 00 3/7

H(ω Butterworth φίλτρα Μία προσέγγιση της ιδανικής συνάρτησης γίνεται με συναρτήσεις Butterworth:,ω ) = ω + + ω C Σε μία διάσταση η απόκρισή τους έχει την παρακάτω μορφή: ω k Μέτρο Butterworh 5 ης τάξεως ω C =0. 0 0 0. 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Συχνότητα x π 33/7

Butterworth φίλτρα H ( u, v ) = + [ D ( u, v ) / D ] n 0 34/7

Butterworth φίλτρα Παράδειγμα Υλοποίηση στο πεδίο των συχνοτήτων Αρχική εικόνα (α) (β) (γ) Φιλτράρισμα με τρία διαφορετικά φίλτρα Butterworth α) ω C =4 β )ω C =6, και γ)ω C =8 35/7

ΜΗ ΓΡΑΜΜΙΚΑ Φίλτρα διάμεσης τιμής (Median filters) 0 5 0 50 30 60 7 5 0 5 0 50 30 60 7 5 Διάταξη σύμφωνα με την τιμή του pixel 0 5 7 0 διάμεση 5 τιμή 30 50 60 Η υλοποίησή τους γίνεται με καθορισμό ενός παραθύρου (μάσκας) που διατρέχει όλη την εικόνα και επιλέγεται ως έξοδος η μεσαία (median) τιμή. 36/7

Φίλτρα διάμεσης τιμής (median) Ιδιότητες Είναι ΜΗ ΓΡΑΜΜΙΚΑ median {x,x,x3} +median{y,y,y3} median{x+y,x+y,x3+y3} Επανειλημμένη εφαρμογή του median φίλτρου καταλήγει σε εικόνες που δεν μεταβάλλονται. Αυτά είναι τα Σήματα - ρίζες 37/7

Σημεία στα άκρα της εικόνας Είναι ουσιώδης η διαδικασία στα σημεία που βρίσκονται στο άκρο της εικόνας. 38/7

Σήματα Ρίζες (μία διάσταση) 0.5 0 0 5 0 Αρχικό σήμα 0.5 0.5 0.5 0 0 5 0 0 0 5 0 0 0 5 0 ο φιλτράρισμα (Ν=3) ο 3 ο Μετά το δεύτερο φιλτράρισμα το σήμα ΔΕΝ αλλάζει τιμή 39/7

Φίλτρα διάμεσης τιμής (median) Απόκριση σε ακμή α διάσταση: φίλτρο μέσης τιμής median (n=3) και διαστάσεις -εικόνα Η αρχική εικόνα ακμή μένει αμετάβλητη στην εφαρμογή median ενώ «λειαίνεται» από φίλτρο μέσης τιμής 40/7

Φίλτρα διάμεσης τιμής (median) Aπόκριση σε παλμό (salt & pepper, impulsive). 0.5 0 0 5 0 0 5 0 Εικόνα με ένα παλμό 0.5 0 0 5 0 0 5 0 0.5 0 0 5 0 0 5 0 Εξοδος Median φίλτρου (3x3) Εξοδος averager (3x3) Eίναι εμφανής η εξάπλωση του παλμού. 4/7

Φίλτρα διάμεσης τιμής παράδειγμα Aρχική εικόνα Εικόνα με κρουστικό θόρυβο 0% median φίλτρο φίλτρο μέσης τιμής Έξοδος median φίλτρου. Ο κρουστικός θόρυβος είναι 0% και εξαλείφεται εντελώς. Αντίστοιχα το φίλτρο μέσης τιμής έχει πολύ φτωχή συμπεριφορά. 4/7

Median filtering Συμπερασματικά : Τι θα γίνει στην ακμή και τι γύρω από το λευκό pixel?? 43/7

Αλγόριθμος υλοποίησης median φίλτρων Γενίκευση: φίλτρα σωρού (stack filters) 44/7

Φίλτρα σωρού (stack filters) Φίλτρα σωρού stack filters. Στην είσοδο το σήμα αποσυντίθεται με κατωφλιοποίηση και προστίθενται οι έξοδοι. Εάν κάθε γραμμή πραγματοποιεί median πράξη το άθροισμα των δυαδικών εξόδων θα είναι το median φιλτρο 45/7

Θετική συνάρτηση Boole Positive boolean function PBF για median φιλτρο 3 σημείων med{x,x,x3 } η ισοδύναμη δυαδική Boolean συνάρτηση: f(x; x; x3) = xx + xx3 +xx3 Γενικά: f(x, x, x3, x4 x5) = xx + xx3x4 + x4x5 Max-min 46/7

ΔΠΜΣ Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ 47/7 Β. Υψιπερατά φίλτρα Ιδιότητες: Εξασθενούν τις χαμηλές συχνότητες σε μία εικόνα και τονίζουν τις υψηλές. Τονίζουν τις μεταβολές της εικόνας (contrast). Δίνουν έμφαση στις λεπτομέρειες. Ενισχύουν τον θόρυβο. 4 υψιπερατές μάσκες 3x3 : (4) (3) 5 () 9 () 0 0 5 0 0 9 9 9 9 9 8 9 9 9 9

Παράδειγμα Αρχική εικόνα (α) (β) (γ) Ηεικόνα(α) έχει προέλθει με εφαρμογή του υψιπερατού φίλτρου (4) στην αρχική εικόνα. Επίσης έχει γίνει κλιμάκωση ώστε και οι αρνητικές τιμές να μετατοπισθούν στο διάστημα 0-. Η (β) έχει προέλθει με εφαρμογή αντίστοιχα του φίλτρου (3) χωρίς καμία κλιμάκωση των τιμών, ενώ στο (γ) έχει γίνει κλιμάκωση. 48/7

Α πλάτος Βαθυπερατό φίλτρο Υψιπερατό φίλτρο Γενικά: 0 Συχνότητα H hp (ω,ω )=-Η lp (ω,ω ) 49/7

Unsharp masking Από ένα κλάσμα α της αρχικής εικόνας f(k, k ) αφαιρείται το αποτέλεσμα εξόδου βαθυπερατού φίλτρου f L (k, k ). Η έξοδος g(k, k ) είναι: g(k, k ) = αf(k, k ) - f L (k, k ) Αν α=, το αποτέλεσμα είναι υψιπερατό φίλτρο. Αν α>, τότε ένα βαθυπερατό τμήμα της εικόνας προστίθεται στο αποτέλεσμα (high boost filter) Μία υλοποίηση: -/9 -/9 -/9 -/9 w/9 -/9 -/9 -/9 -/9 Όπου w = 9α - 50/7

Unsharp masking = αφαίρεση της «θολωμένης» εικόνας Παράδειγμα ο Εικόνα εισόδου Εικόνα εξόδου Unsharp masking με α> 5/7

Παράδειγμα ο RGB εικόνα Εφαρμογή στην συνιστώσα της έντασης 5/7

Διανυσματικές και βαθμωτές επεξεργασίες Στις βαθμωτές διαδικασίες επεξεργασίας εφαρμόζονται οι μέθοδοι για γκρίζες (gray scale) εικόνες με δύο τρόπους: α) ξεχωριστά σε κάθε κανάλι της εικόνας β) στη συνιστώσα φωτεινότητας (Υ) Στις διανυσματικές διαδικασίες οι τρεις τιμές R,G,B θεωρούνται συνιστώσες ενός διανύσματος και οι μέθοδοι που χρησιμοποιούνται είναι βέβαια μέθοδοι διανυσματικής ανάλυσης. Μία κλασσική τέτοια μέθοδος είναι η διαδικασία του διανυσματικού διάμεσου. 53/7

Διανυσματικός διάμεσος Vector median Πώς διατάσσονται N διανύσματα?. Υπολογίζονται οι αποστάσεις d(x i x j ) κάθε διανύσματος x i από όλα τα υπόλοιπα. Υπολογίζεται η συνολική απόσταση: d i = n j= d(x i,x j ) d(x 4 x 3 ) 4 5 3 3. Ο διανυσματικός διάμεσος - Vector Median Filter VMFαντιστοιχεί στο μικρότερο d i 54/7

Median και διεκθετική κατανομή Σ x-x i =min e x x e x x e x x 3...e x x Ν = e i x x ι = max Εκτιμητής μέγιστης πιθανοφάνειας Maximum likelihood estimator 55/7

Vector Directional Filters - VDF α i = όπου n j= A(x A(x i i,x,x j j ) ) = cos x x i i x t j x j 4 5 3 A 3, Ο VD διανυσματικός διάμεσος αντιστοιχεί στο μικρότερο a i 56/7

Vector median filters παράδειγμα (a) Η εικόνα Peppers, 56x56, 4-bit per pixel, (b)noisy Image, (c) Η έξοδος του VMF. Ο Θόρυβος στην αρχική εικόνα είναι gaussian(0,5 ) και κρουστικός(%) σε κάθε κανάλι. 57/7

Ομομορφική επεξεργασία i(n,n ) i(n,n ) f(n,n )=i(n,n ) r(n,n ) f(n,n )=i(n,n ) r(n,n ) r(n,n ) r(n,n ) 58/7

Ομομορφική επεξεργασία α< βαθυπερατό φίλτρο log i(n,n ) f(n,n ) log exp p(n,n ) Υψιπερατό φίλτρο log r(n,n ) β> 59/7

παράδειγμα H ( u, v) = ( γ L = 0.5, ( γ γ H H γ L =.0) [ ] c( D ( u, v)/ D ) e ) 0 + γ, L Αρχική και επεξεργασμένη εικόνα 60/7

μ = σ ΝΜ = ΝΜ n, n Wiener φίλτρα Βασίζονται στον τοπικό (παράθυρο η) υπολογισμό της μέσης τιμής μ και διακύμανσης σ. Δίνεται και η διακύμανση ν του θορύβου α( n η n, n [ α η, n ( n ), n ) μ ] Η «έξοδος» του φίλτρου b δίνεται από την σχέση: σ ν (n,n ) = μ + [α(n,n ) μ] σ b Σε περιοχές όπου σ>>ν προστίθεται στη μέση τιμή μ το τοπικό contrast α-μ 6/7

Wiener φίλτρα -παράδειγμα Η αρχική εικόνα Η εικόνα με θόρυβο-'speckle' Ηέξοδος του φίλτρου wiener για παράθυρο 7x7. 6/7

Φίλτρα ανισοτροπικής διάχυσης Αναφέρονται σε γκρίζες (gray scale) εικόνες Προσομοιάζουν την ανισοτροπική διάχυση της θερμότητας Σχετίζονται με τα Gaussian φίλτρα αλλά, Η θόλωση της εικόνας ΔΕΝ είναι σε όλες τις κατευθύνσεις ίδια (ανισοτροπική). Προσαρμόζεται στα τοπικά χαρακτηριστικά της εικόνας (όρια αντικειμένων). 63/7

Τι είναι διάχυση 0.5 0 0 5 0 0 5 0 Διάχυση 0.5 0 0 5 0 0 5 0 64/7

εξίσωση διάχυσης: t I(x, y, t) = ( c(x, y, t) I) = c(x, y, t) I + c I συνάρτηση διάχυσης c(x,y,t)=g( I(x,y,t) ) g I K ( I) = e g g g ( I) = α > + α I + Κ 0 65/7

συνάρτηση ροής Φ = c(x, y, t) I(x, y, t) = I K e Ι ή Ι + α I + Κ 66/7

t I(x, y,t) = ( c(x, y,t) I) Διακριτή (ψηφιακή) υλοποίηση. Στο διακριτό χώρο η βάθμωση μπορεί να προσεγγισθεί σαν διαφορά στην ένταση μεταξύ γειτονικών pixels. Η συνάρτηση ροής μπορεί να υπολογισθεί ανεξάρτητα για κάθε γειτονικό pixel. 3. Το φίλτρο είναι επαναληπτικό. Το δεξιό μέρος της εξίσωσης περιγράφει την μεταβολή στην ένταση που παράγεται σε μία επανάληψη του φίλτρου 67/7

I Βασική επαναληπτική σχέση t+ t t i,j = I i,j + λ[c N Δ ΝI + cs ΔSI + ce ΔΕI + c W Δ WI] i,j 0 λ /4 Δ Ν I i,j Ii,j Ii,j Δ S I i,j I i+,j I i, j Δ E I i,j Ii,j+ Ii,j ΔWIi,j Ii,j Ii, j t t c = g ( I ) t t c = g ( I ) t t c = g ( I ) t c = g ( I ) Ni,j i+,j Si,j i,j Ei,j i,j+ Wi,j t i,j 68/7

(α) (β) (γ) (δ) (ε) α) Αρχική εικόνα β) μετά από N=0, K=0 (ανισοτροπική θόλωση) γ) μετά από N=0, K=0 ( «) δ) μετά από N=0, K=30 ( «) ε)εικόνα μετά από N=0, (Gaussian θόλωση) Ν=αριθμός επαναλήψεων 69/7

Λογικές πράξεις AND ΟR -XOR x AND y = εάν x και y είναι =0 διαφορετικά x ΟR y = εάν x ή y είναι =0 διαφορετικά x y x XOR y 0 0 0 0 0 0 AND εφαρμογή για εντοπισμό ενός τμήματος εικόνας 70/7

Διαδικασία «απόκρυψης» encryption Βασίζεται στην ταυτότητα: (a XOR b) XOR b=α Step Boolean Expression Binary Comments. ASCII "A" a 000 000 Original "message:. "Random" Bits b 0 00 Pseudo-random value from "random" number generator 3. XOR to encrypt 4. "Random" Bits 5. XOR to decrypt a XOR b 00 0 Encrypted "message" b 0 00 (a XOR b) XOR b 000 000 Same "Random bits" as above Decrypted "message" (same as original) 7/7

ασκήσεις 3. Να υλοποιηθεί συνέλιξη με διαδικασία Μετασχ. Fourier 3. Να υλοποιηθεί ο Διανυσματικός διάμεσος - εφαρμογή σε έγχρωμη εικόνα 3.3 Να υλοποιηθεί vector directional filter - εφαρμογή σε έγχρωμη εικόνα 3.4 Να υλοποιηθεί η ομομορφική επεξεργασία- εφαρμογή σε έγχρωμη εικόνα 3.5 Unsharp masking υλοποίηση εφαρμογή σε gray scale εικόνα 3.6 Φιλτράρισμα με Butterworth φίλτρα - εφαρμογή σε gray scale εικόνα 3.7 Anisotropic diffusion (Perona Malic) υλοποίηση 3.8 Να υλοποιηθεί η διαδικασία encryption σε μία εικόνα 7/7