ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5 d cosd / sc tdt u du Απάντησεις: (β) 5/9. Να υπολογιστούν τα ολοκληρώματα: d (β) d sc tan d d ln d Απάντησεις: 6 C (β) ( ) C sc ( ) C ln( ) C ln( ) C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: 5 d (β) 5 d d ln /6 tan tdt /6 u u du Απάντησεις: 6 6 5 (β) 6 6 arctan().7975. Να υπολογιστούν τα πιο κάτω: cos(5 ) d (β) d cos ln d ln d ln du Απάντησεις: (/ 5) cos(5 ) (/ 5) sin(5 ) C (β)
C cos ln( ) sin ln( ) 6 /5 ( / 5)ln() (6 / 5)ln() ln( ) C 9. Να υπολογιστούν τα πιο κάτω: (θ) Λύσεις: 5 cos ( )sin ( ) d (β) cos 6 sc ( ) tan( ) d (ζ) cos( ) sin( ) d (ι) sin( ) d tan d cos ( )sin( ) d (η) 9 d (κ) tan ( ) sc ( ) d (λ) 9 d tan ( )sc ( ) 5 5 5 cos ( )sin ( ) cos ( )sin ( )cos( ) sin ( ) sin ( )cos( ) d d d Θέτουμε u = sin() du = cos()d και έχουμε ή στην αρχική μεταβλητή, 6 u u u u du u u du C 6 5 5 7 6 sin ( ) sin ( ) (β) cos cos cos C. 6 6 cos( ) cos( ) d d d cos( ) cos ( ) cos( ) d cos( ) cos( ) cos ( ) cos ( ) cos ( ) d cos( ) cos ( ) cos ( ) d sin( ) cos ( ) d cos ( ) d sin( ) cos( ) d cos 6 ( )cos( ) d sin( ) sin( ) sin ( ) cos( ) 6 d 5 sin( ) sin( ) sin ( ) cos( ) d 6 6 Απομένει το τελευταίο ολοκλήρωμα, στο οποίο κάνουμε την αντικατάσταση u = sin() d d du = cos() και έτσι sin ( ) cos( ) d u du u u C ή
6 5 cos d sin( ) sin( ) sin( ) sin ( ) C 6 6 5 sin( ) sin( ) sin ( ) C 6 6 sin cos tan d d d d sc ( ) d cos cos cos tan( ) C tan ( )sc ( ) tan ( )sc ( )sc ( ) tan ( ) tan ( ) sc ( ) d d d Θέτουμε u = tan() du = sc ()d και έχουμε u u d u u du u u du C C 7 5 7 5 7 5 7 5 6 tan ( ) tan ( ) tan ( )sc ( ) Θέτουμε u = tan() du = sc ()d και έχουμε u sc ( ) tan( ) d udu C tan ( ) C (ζ) Χρησιμοποιούμε την τριγωνομετρική ταυτότητα sin() = sin()cos() και έχουμε cos ( )sin( ) d cos ( )sin( )cos( ) d cos ( )sin( ) d. Στη συνέχεια κάνουμε την αντικατάσταση u = cos() du = sin()d και έχουμε u cos ( )sin( ) d cos ( )sin( ) d u du C cos ( ) C. sin ( ) cos ( ) sin ( ) tan ( ) cos ( ) cos ( ) d d d d sc ( ) (η) cos ( ) sin ( ) cos ( ) cos ( ) Χρησιμοποιούμε την τριγωνομετρική ταυτότητα cos ( ) sin ( ) cos( ) και έχουμε tan ( ) sin( ) d cos ( ) sin ( ) d cos( ) d C. sc ( ) (θ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) d d d sin( ) sin( )cos( ) sin( )cos( ) sin( )cos( ) cos( ) sin( ) d d csc( ) sc( ) d sin( )cos( ) sin( )cos( ) sin( ) cos( )
ln csc( ) cot( ) ln sc( ) tan( ) C. (ι) Θέτουμε = sin(θ) d = cos()dθ και έχουμε 9 9 9sin ( ) sin ( ) cos( ) d cos( ) cos( ) cos( ) d d d sin ( ) sin ( ) sin ( ) cos ( ) sin ( ) d d d csc ( ) d sin ( ) sin ( ) sin ( ) cot( ) C. Τώρα, = sin(θ) arcsin και από το τριγωνάκι βρίσκουμε ότι 9 cos( ), άρα cot( ) 9. Επομένως, 9 9 d arcsin C. (κ) Θέτουμε = tan(θ) d sc ( ) d και έχουμε tan ( ) tan ( ) tan ( ) d sc ( ) d sc ( ) d sc ( ) d sc( ) 9 9 9 tan ( ) tan ( ) tan ( )sc( ) d tan ( ) tan( )sc( ) d sc ( ) tan( )sc( ) d. Τώρα, θέτουμε u = sc(θ) du sc( ) tan( ) d και έχουμε u u sc ( ) sc( ) sc ( ) tan( )sc( ) d u du C C. 9 9 Τέλος, μια και = tan(θ) έχουμε tan( ) sc( ) tan ( ) / / d C 9 9. (λ) Θέτουμε = tan(θ) d sc ( ) d και έχουμε tan( ) tan( ) d sc ( ) d sc ( ) d tan ( ) tan ( ) tan( ) d d C sc( ). sc ( ) tan( )sc( ) sc( )
5 Μια και = tan(θ), έχουμε tan( ) sc( ) tan ( ) και έτσι d C.. Να βρεθεί η μορφή των μερικών κλασμάτων (χωρίς να υπολογίσετε τους αριθμητές) ( )() (β) Απάντησεις: A B ( )( ) (β) A B C A B C A B C A B C D. Να υπολογιστούν τα ολοκληρώματα: r dr (β) r ( t)( t) dt d ( )( ) d ( )( 9) d (ζ) d (η) r dr (θ) r s ( s) ds Απάντησεις: r r 6 ln( r ) C (β) ln( t ) ln( t ) C 5 5 ln( ) ln( ) C 6 ln( ) 9 ln( ) C 5 5 5( ) C (ζ) ln( ) ln( ) C ln( ) ln( 9) arctan( / ) r ln( r ) ln r r arctan (r ) C 6 (η) (θ) ln( s ) ln s C s s. Να υπολογιστούν τα γενικευμένα ολοκληρώματα:
( ) d (β) 5 d d d arctan( ) d 6 (ζ) d (η) sc( ) d Απάντησεις: Συγκλίνει στο / (β) Αποκλίνει Αποκλίνει Συγκλίνει στο π/ Συγκλίνει στο π/ (ζ) Αποκλίνει (η) Αποκλίνει. Να αποφασίσετε αν τα γενικευμένα ολοκληρώματα συγκλίνουν ή αποκλίνουν (χωρίς κατ ανάγκη να βρείτε την τιμή στην οποία συγκλίνουν, αν συγκλίνουν). d (β) d 6 d Λύσεις: Έχουμε ότι για, d d. Τώρα, το ολοκλήρωμα d μπορεί να δειχτεί ότι συγκλίνει (κάντε το!) στο /, άρα το δοθέν ολοκλήρωμα επίσης συγκλίνει (αλλά όχι κατ ανάγκη στο /). 6 6 6 6 (β) Για, ισχύει 6 6 d d 6 άρα και το δοθέν ολοκλήρωμα συγκλίνει. ί ) Για, ισχύει d d d άρα το ί δοθέν ολοκλήρωμα επίσης αποκλίνει.. Να βρείτε το εμβαδό που σχηματίζουν οι πιο κάτω καμπύλες. y sin( ), y,, / (β) y y /, /, Απαντήσεις: / (β) / ln() 5. Να βρεθεί ο όγκος του στερεού που σχηματίζεται αν περιστρέψουμε το εμβαδό κάτω από τη καμπύλη y, από = μέχρι =, γύρω από τον άξονα των. Απάντηση: /5
6. Να βρεθεί ο όγκος του στερεού που σχηματίζεται αν περιστρέψουμε το εμβαδό μεταξύ 7 των καμπυλών y y,, γύρω από τον άξονα των. Απάντηση: /5 7. Αν η f είναι συνεχής και μία φορά στο διάστημα [, ]. f ( ) d, να δείξετε ότι η f παίρνει την τιμή τουλάχιστον Λύση: Η μέση τιμή c της f() στο διάστημα [, ] δίδεται από c f ( ) d f ( ) d. Μια και f ( ) d έχουμε ότι c (). Αφού η f είναι συνεχής με μέση τιμή c τότε υπάρχει τουλάχιστον ένα [, ] τέτοιο ώστε f( ).