OTPORNOST MATERIJALA industrijsko inženjerstvo decembar, 2012. Dimenzionisanje lakih vratila opterećenih na uvijanje Sizing light shafts loaded in twist Milan Georgiev, student Visoke tehničke škole strukovnih studija u Nišu, Aleksandra Medvedeva 20, Niš. Sadržaj: U ovom radu cemo bliže upoznati sa dimenzionisanjem lakih vtarila koja su opterećena na uvijanje. Videćemo primere za uvijanje vratila kružnog i kružno-prstenastog poprečnog preseka. Ključne reči: Uvijanje, moment uvijanja, napon, deformacija, klizanje, naprezanje na savijanje i uvijanje. Key words: Twisting, twisting moment, stress, strain, slip, bending and twisting. Uvod: U mašinstvu se pravi razlika između osovina i vratila. Osovine su nosači elemenata koji se obrću, ali ne prenose snagom, pa su izložene savijanjem. Međutim, vratila prenose snegu, pa se izložena složenom naprezanju na svaijanje i uvijanje. Za razliku od njih laka vratila su izložena samo uvijanju. Dimenzionisanje lakih vratila: Ako na element koji se obrće dejstvuje sila, onda na pomeranju ds=rdα vrši rad da=f R dα=mt dα. Kako je snaga rad u jedinici vremena, to je P= da dt = Fv = F R ω = Mt ω = Mt πn 30 Gde je ω ugaona brzina obrtanja, (ω=πn/30), a n broj obrtanja u minutu (minutni broj obrtaja, o min ). Kada se snaga izrazi u konjskim snagama ili u kilovatima, tada između obrtnog momenta, snage i broja obrtaja postoje ovi odnosi: Pks = Mt ω 75, Pkw = Mt ω 102.
Laka transmisiona vratila dinenzionišu se ili prema dopuštenoj deformaciji ili prema dopuštenom naponu. Pri dimenzionisanju lakog vratila treba uzrti veći prečnik, odnosno njegovu standardnu vrednost. Uvijanje vratila kružno-prstenastog poprečnog preseka: U mašinstvu se mnogo primenjuju ova vratila zbog toga što su vlakna bliska osi vratila, pa su malo napregnuta i malo se deformišu. Od praktičnog interesa je saznati koliku nam uštedu u materijalu pružaju vtarila prstenastog preseka, pod uslovom istog opterećenja i iste dužine vratila. Neka vratila prenose isti moment uvijanja i neka im je isti najveći napon, τ1 = Mt R (lo)k = Mt R (lo)p ; Onda između poluprečnika kružnog i prstenastog preseka preseka postoji, odnos R = (lo)k = R (lo)p R 4 (1 ψ 4 ) ; tj. R3 = (1 ψ 4 ) R 3
Uvijanje vratila kružnog poprečnog preseka: Kada je vratilo AB, kružnog poprečnog preseka, poluprečnika R, uklešteno osnovom (A), a na slobonom kraju (B) opterećeno spregom, koji dejstvuje u samoj ravni poprečnog preseka, onda je izloženo uvijanju usled momenta uvijanja (obrtnog momenta) Mt. Zbog dejstva sprega vlakno ab na omotaču cilinra zaokrenuće se oko tačke a za mali ugao γ, i preći će u položaj ab. Pretpostavljajući da su deformacije vrlo male i da poprečni preseci i posle deformacije ostaju ravni i upravni na osu vratila, poluprečnik Ob zaorenuće se oko ose za mali ugao i upravni na osu vratila, poluprečnik Ob zaorenuće se oko ose za mali ugao Θ koji se zove ugao uvijanja vratila. Vlakno cd na rastojanju r od geometriske ose Az vratila zaokrenuće se tako za neki mali ugao γ, kome odgovara luk dd slobodne osnove vratila (B). Kako su deformacije male možemo smatrati da će vlakne i posle deformacije ostati prava. γ = r γ 1 R Da bismo uspostavili odnosizmeđu napona i deformacija zamislimo da smo iz vratila isekli element dužine dz ograničen dvama koaksijalnim cilindrima, poloprečnika r i r + dr, i dvema bliskim meridijanskim ravnima. Vlakna AB i CD, koja su paralelna osi vratila, posle deformacije preći će u položaje A'B' i C'D', pa će pravougaonik ABCD preći u paralelogram A'B'C'D'. Ugao γ biće klizanje ovog pravougaonika, pa je isti napregnut na smicanje. Prema tome će u u bočnim ravnima ABFG dejstvovati tangencijalni naponi (τ). Po zakonu konjugovanosti, tangencijalnih napona, isti će toliki tangencijalni napon (smicajni naponi) dejstvovati i u ravnima osnova ovog elenemta (ABDF) sa
smerom ka pravoj AF kao presečnoj ivici tih dveju ravni. Na ovaj se način problem uvijanja sveo na problem čistog smicanja, pa između napona i klizanja postoji odnos τ = G γ, gde je G modul klizanja. Pravougaoniku ABCD na omotaču cilindra odgovarao bi tangencijalni napon τ 1 i klizanje γ 1, pa je τ 1 = G γ, te između napona i klizanja postoji odnos: γ = τ = r γ 1 τ 1 R Najveći tangencijalni napon: τ 1 = τ max = Mt R lo
Deformacija (ugao uvijanja) srazmerna je momentu uvijanja (spoljašnjem opterećenju) i dužini vratila, a obrnuto srazmerna torziskoj krutosti bratila. Ova krutost predstavlja otpor deformaciji i to otpor oblika preseka (polarni moment inrcije preseka) i otpor materijalnosti tela (modul klizanja koji karakteriše hemijski sastav materijala I tehnološki proces kojim je dobiven materijal). Literatura: Rašković D., Otpornost materijala, Naučna knjiga Beograd, IX izmenjeno izdanje, Beograd, 1980,