Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Σχετικά έγγραφα
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika. October 26, Počeci logike i matematičke logike

Osnovno svojstvo iskaza, ma kako složen bio, jeste da je on ili tačan, ili netačan.

Matematička logika. novembar 2012

Diskretna matematika. Prof. dr Olivera Nikolić

Operacije s matricama

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

Teorijske osnove informatike 1

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Matematička logika. Madarász Sz. Rozália. Departman za matematiku i informatiku Prirodno-matematički fakultet Univerzitet u Novom Sadu

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

3.1 Granična vrednost funkcije u tački

1.1 Iskazni (propozicioni) račun

Diskretna Matematika

Predikatska logika - III deo. Jelena Ignjatović

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Zadaci iz Osnova matematike

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Napravimo neformalnu rekapitulaciju osnovnih pojmova koje smo obradili na prethodnom predavanju.

1 ISKAZNA I PREDIKATSKA LOGIKA Zadaci Rešenja SKUPOVI Zadaci RELACIJE Zadaci Rešenja...

Bulove jednačine i metodi za njihovo

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

18. listopada listopada / 13

SISTEMI NELINEARNIH JEDNAČINA

8 Predikatski račun kao deduktivni sistem

Osnovne teoreme diferencijalnog računa

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

[1] Formalni jezik iskazne logike

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

10 Iskazni račun - deduktivni sistem za iskaznu logiku

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Sintaksa i semantika u logici

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

LEKCIJE IZ DISKRETNE MATEMATIKE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Biblioteka Prirodno - matematičkih nauka

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

2. Tautologije; Bulove funkcije (SDNF, SKNF)

5. Karakteristične funkcije

Predikatska logika. January 8, 2012

numeričkih deskriptivnih mera.

Ispitivanje toka i skiciranje grafika funkcija

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Automatsko rezonovanje beleške sa predavanja Rezonovanje u logici prvog reda

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Elementi spektralne teorije matrica

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

Rezolucija u predikatskoj logici

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

MATEMATIKA 1 skripta za studente fizike

Automatsko rezonovanje beleške sa predavanja Rezonovanje u logici prvog reda

KURS IZ MATEMATIKE I

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

radni nerecenzirani materijal za predavanja

Arhitektura računara

Vremenske i prostorne klase složenosti

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Geometrija (I smer) deo 1: Vektori

ELEKTROTEHNIČKI ODJEL

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Dijagonalizacija operatora

Skupovi, relacije, funkcije

IZVODI ZADACI (I deo)

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije.

6 Preneksna forma i skolemizacija

Arhitektura računara. Bulova algebra. Elementi logike. Logičke funkcije. Potpuni sistemi logičkih funkcija. Uvod u organizaciju računara 1.

7 Algebarske jednadžbe

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

SKUPOVI I SKUPOVNE OPERACIJE

Tautologije i valjane formule kao principi

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Iskazna logika. 1 Semantika iskazne logike

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

Zadaci iz trigonometrije za seminar

Automatsko rezonovanje beleške sa predavanja Iskazno rezonovanje

Predikatska logika - II deo. Jelena Ignjatović

Elementi matematičke logike

Relacije poretka ure denja

1 Aksiomatska definicija skupa realnih brojeva

Automatsko rezonovanje beleške sa predavanja. Uvod. Filip Marić. Matematički fakultet, Univerzitet u Beogradu. Proletnji semestar 2011.

Matematička analiza 1 dodatni zadaci

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Funkcije. Predstavljanje funkcija

1 Algebarske operacije i algebraske strukture

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

DISKRETNA MATEMATIKA

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

1.4 Tangenta i normala

ν nu ξ xi π pi σ, ς sigma τ tau υ upsilon φ, ϕ phi ψ psi ω omega

III VEŽBA: FURIJEOVI REDOVI

Ово дело је заштићено лиценцом Креативне заједнице Ауторство некомерцијално без прерадa 1.

APROKSIMACIJA FUNKCIJA

MATEMATIKA 1 za studente tehničkih smerova. dr Snežana Matić Kekić

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

Transcript:

Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012

Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno.

Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno. Iskaze ćemo obeležavati slovima, recimo p, q, r,.... Umesto iskaz koji je obeležen slovom p, mi ćemo kraće reći iskaz p.

Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno. Iskaze ćemo obeležavati slovima, recimo p, q, r,.... Umesto iskaz koji je obeležen slovom p, mi ćemo kraće reći iskaz p. Ako iskaz p ima istinitosnu vrednost tačan, onda kažemo i da je iskaz p tačan (i analogno za istinitosnu vrednost netačan ).

Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno. Iskaze ćemo obeležavati slovima, recimo p, q, r,.... Umesto iskaz koji je obeležen slovom p, mi ćemo kraće reći iskaz p. Ako iskaz p ima istinitosnu vrednost tačan, onda kažemo i da je iskaz p tačan (i analogno za istinitosnu vrednost netačan ). Logički veznici služe da od polaznih iskaza dobijemo složenije iskaze.

Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno. Iskaze ćemo obeležavati slovima, recimo p, q, r,.... Umesto iskaz koji je obeležen slovom p, mi ćemo kraće reći iskaz p. Ako iskaz p ima istinitosnu vrednost tačan, onda kažemo i da je iskaz p tačan (i analogno za istinitosnu vrednost netačan ). Logički veznici služe da od polaznih iskaza dobijemo složenije iskaze. Logički veznici koje ćemo ovde razmatrati su: i, ili, ako...onda, ako i samo ako (binarni veznici), i nije (unarni veznik):

Složeni iskazi konjunkcija iskaza p i q je iskaz p i q,

Složeni iskazi konjunkcija iskaza p i q je iskaz p i q, disjunkcija iskaza p i q je iskaz : p ili q,

Složeni iskazi konjunkcija iskaza p i q je iskaz p i q, disjunkcija iskaza p i q je iskaz : p ili q, implikacija iskaza p i q je iskaz : ako p onda q,

Složeni iskazi konjunkcija iskaza p i q je iskaz p i q, disjunkcija iskaza p i q je iskaz : p ili q, implikacija iskaza p i q je iskaz : ako p onda q, ekvivalencija iskaza p i q je iskaz : p ako i samo ako q,

Složeni iskazi konjunkcija iskaza p i q je iskaz p i q, disjunkcija iskaza p i q je iskaz : p ili q, implikacija iskaza p i q je iskaz : ako p onda q, ekvivalencija iskaza p i q je iskaz : p ako i samo ako q, negacija iskaza p je iskaz : nije p.

Istinitosna vrednost složenog iskaza Istinitosna vrednost složenog iskaza zavisi od istinitosnih vrednosti iskaza od kojih se taj iskaz sastoji, i to na sledeći način: iskaz p i q je tačan ako i samo ako su i p i q tačni, iskaz p ili q je netačan ako i samo ako su i p i q netačni, iskaz ako p onda q je netačan ako i samo ako je p tačan a q netačan, iskaz p ako i samo ako q je tačan ako i samo ako iskazi p i q imaju istu istinitosnu vrednost, iskaz nije p je tačan ako i samo ako je iskaz p netačan.

Sintaksa iskazne logike Azbuka iskazne logike se sastoji od sledećih simbola: skup iskaznih slova S, simboli logičkih operacija:,,,,, pomoćni znaci: (, ).

Sintaksa iskazne logike Azbuka iskazne logike se sastoji od sledećih simbola: skup iskaznih slova S, simboli logičkih operacija:,,,,, pomoćni znaci: (, ). Skup iskaznih formula je najmanji skup reči nad azbukom L tako da Sva iskazna slova su iskazne formule; Ako su A i B iskazne formule, onda su to i sledeći izrazi: (A B), (A B), (A B), (A B), ( A)

Indukcija po složenosti formula Teorema Neka je O neki podskup skupa svih iskaznih formula Form tako da važe sledeći uslovi S O, Ako formule A i B pripadaju skupu O, tada i formule A B, A B, A B, A B, A pripadaju skupu O. Tada je O = Form.

Iskazna algebra Iskazna algebra je algebra I = {, },,,,,, gde su operacije,,, binarne, a unarna operacija, definisane svojim Cayleyevim tablicama na sledeći način: p p

Interpretacija iskazne formule Valuacija u iskaznoj logici je svako preslikavanje τ : S {, }. Interpretacija iskaznih formula za datu valuaciju τ jeste preslikavanje v τ : Form {, } tako da ako je p S iskazno slovo, onda v τ (p) = τ(p), v τ (A B) = v τ (A) v τ (B), v τ (A B) = v τ (A) v τ (B), v τ (A B) = v τ (A) v τ (B), v τ (A B) = v τ (A) v τ (B), v τ ( A) = v τ (A). Za v τ (A) kažemo da je vrednost formule u valuaciji τ (ili u interpretaciji v τ ). Ukoliko je v τ (A) =, kažemo da je formula A u toj valuaciji (interpretaciji) tačna, a ako je v τ (A) =, da je netačna.

Istinitosna funkcija Teorema Vrednost iskazne formule A u nekoj valuaciji zavisi samo od vrednosti onih iskaznih slova koja figurišu u formuli A.

Istinitosna funkcija Teorema Vrednost iskazne formule A u nekoj valuaciji zavisi samo od vrednosti onih iskaznih slova koja figurišu u formuli A. Definicija Istinitosna funkcija je svaka funkcija f : {, } n {, }, gde n 1. Ako je A = A(p 1, p 2,..., p n ) neka formula, onda istinitosna funkcija indukovana sa A jeste funkcija f A : {, } n {, } takva da za sve a 1, a 2,..., a n {, } važi f A (a 1, a 2,..., a n ) = v τ (A), gde je τ valuacija u kojoj je τ(p i ) = a i, za sve i {1, 2,..., n}. Primer... Test A...

Vrste iskaznih formula Definicija Kažemo da je iskazna formula A zadovoljiva ako postoji valuacija u kojoj je vrednost te formule tačna, oboriva ako postoji valuacija u kojoj je vrednost te formule netačna, tautologija ili valjana formula je tačna za sve valuacije, kontradikcija ako je njena vrednost netačna za sve valuacije. Test A...

1. p p Zakon dvojne negacije 2. p p Tertium non datur 3. (p p) Zakon neprotivrečnosti 4. (p (p q)) q Modus Ponens 5. ((p q) q) p Modus Tollens 6. (p q) ( q p) Kontrapozicija 7. (p q) p q De Morganov zakon za 8. (p q) p q De Morganov zakon za 9. ((p q) (q r)) (p r) Zakon silogizma 10. ( p (q q)) p Reductio ad absurdum 11. p (p q) Ex falso quolibet 12. p (q p) Verum ex quolibet 13. ((p r) (q r)) ((p q) r) Zakon nabrajanja 14. (p q) ((q r) (p r)) Tranzitivnost za 15. ((p q) (q r)) (p r) Tranzitivnost za 16. ((p q) p) p Pierceov zakon

Zamena, logička ekvivalentnost Neka je A = A = A(p 1, p 2,..., p n ), i neka su B 1, B 2,..., B n neke formule. Sa A(B 1, B 2,..., B n ) označimo formulu koja nastaje simultanom zamenom formule B i umesto iskaznog slova p i (i {1, 2,..., n}).

Zamena, logička ekvivalentnost Neka je A = A = A(p 1, p 2,..., p n ), i neka su B 1, B 2,..., B n neke formule. Sa A(B 1, B 2,..., B n ) označimo formulu koja nastaje simultanom zamenom formule B i umesto iskaznog slova p i (i {1, 2,..., n}). Teorema Neka je A = A = A(p 1, p 2,..., p n ) neka tautologija. Tada za proizvoljne formule B 1, B 2,..., B n važi da je A(B 1, B 2,..., B n ) takodje tautologija.

Zamena, logička ekvivalentnost Neka je A = A = A(p 1, p 2,..., p n ), i neka su B 1, B 2,..., B n neke formule. Sa A(B 1, B 2,..., B n ) označimo formulu koja nastaje simultanom zamenom formule B i umesto iskaznog slova p i (i {1, 2,..., n}). Teorema Neka je A = A = A(p 1, p 2,..., p n ) neka tautologija. Tada za proizvoljne formule B 1, B 2,..., B n važi da je A(B 1, B 2,..., B n ) takodje tautologija. Definicija Za dve formule A i B kažemo da su logički ekvivalentne ako je formula A B tautologija. U tom slučaju pišemo A B.

Najlakše tautologije 1. A A A Idempotentnost konjunkcije 2. A A A Idempotentnost disjunkcije 3. A B B A Komutativnost konjunkcije 4. A B B A Komutativnost disjunkcije 5. A B B A Komutativnost ekvivalencije 6. (A B) C A (B C) Asocijativnost konjunkcije 7. (A B) C A (B C) Asocijativnost disjunkcije 8. (A B) C A (B C) Asocijativnost ekvivalencije 9. A (A B) A Apsorpcija prema 10. A (A B) A Apsorpcija prema 11. A (B C) (A B) (A C) Distributivnost prema 12. A (B C) (A B) (A C) Distributivnost prema

Odnos medju veznicima A B A B A B (A B) A B A B A B (A B) A B ( A B) A B ( A B) A B (A B) (B A) A B ( A B) ( B A)

Potformule ekvivalencijska transformacija formula: postupak kada se od jedne formule konstruiše lanac ekvivalentnih formula...

Potformule ekvivalencijska transformacija formula: postupak kada se od jedne formule konstruiše lanac ekvivalentnih formula... Definicija Neka je F neka formula. Skup potformula formule F definišemo kao najmanji skup formula koji zadovoljava sledeća dva uslova: svaka formula je sama sebi potformula; ako je F jednaka nekoj od formula A B, A B, A B, A B, onda je svaka od podformula formula A i svaka potformula formule B ujedno i potformula od F; ako je F = A, onda je svaka potformula formule A ujedno i potformula od F.

Potformule ekvivalencijska transformacija formula: postupak kada se od jedne formule konstruiše lanac ekvivalentnih formula... Definicija Neka je F neka formula. Skup potformula formule F definišemo kao najmanji skup formula koji zadovoljava sledeća dva uslova: svaka formula je sama sebi potformula; ako je F jednaka nekoj od formula A B, A B, A B, A B, onda je svaka od podformula formula A i svaka potformula formule B ujedno i potformula od F; ako je F = A, onda je svaka potformula formule A ujedno i potformula od F. Neka je A neka formula i C njena potformula. Ako je D neka formula tako da je C D tada je A A[C D].

Logičke konstante Proširena azbuka iskazne logike L se dobija dodavanjem dva simbola logičkih konstanti i standardnoj azbuci L. Skup iskaznih formula Form je najmanji skup reči nad azbukom L tako da važi.1 Sva iskazna slova i simboli logičkih konstanti i su iskazne formule;.2 Ako su A i B iskazne formule, onda su to i sledeći izrazi: (A B), (A B), (A B), (A B), ( A)

Logičke konstante Proširena azbuka iskazne logike L se dobija dodavanjem dva simbola logičkih konstanti i standardnoj azbuci L. Skup iskaznih formula Form je najmanji skup reči nad azbukom L tako da važi.1 Sva iskazna slova i simboli logičkih konstanti i su iskazne formule;.2 Ako su A i B iskazne formule, onda su to i sledeći izrazi: (A B), (A B), (A B), (A B), ( A) Valuacija τ odnosno odgovarajuća interpretacija v τ iskaznih formula na proširenoj azbuci se definiše na isti način kao na standardnoj azbuci, s tim da za svaku valuaciju τ važi da je v τ ( ) = i v τ ( ) =.

Tautologije sa konstantama A A A A A A A A A A A A A A A A A A A A A A A A

Jedan primer p q r f

Disjunktivna normalna forma Neka istinitosna funkcija f : {, } n {, } nije kontradikcija (tj. nema stalno vrednost ). Tada za sve x 1,..., x n {, } važi: f (x 1,..., x n ) = = {x 1 a 1 x n a n : a 1,..., a n {, } n, f (a 1,..., a n ) = } gde je x i znači x i, a x i znači x i.

Konjunktivna normalna forma Neka istinitosna funkcija f : {, } n {, } nije tautologija (tj. nema stalno vrednost ). Tada za sve x 1,..., x n {, } važi: f (x 1,..., x n ) = = {x 1 a 1 x n a n : a 1,..., a n {, } n, f (a 1,..., a n ) = } gde je x i znači x i, a x i znači x i.

Baze iskazne algebre Kao posledicu dobijamo: Za svaku iskaznu formulu A postoji njoj ekvivalentna iskazna formula B, koja od logičkih veznika ima samo,, ili, ili, ili,.

Baze iskazne algebre Kao posledicu dobijamo: Za svaku iskaznu formulu A postoji njoj ekvivalentna iskazna formula B, koja od logičkih veznika ima samo,, ili, ili, ili,. Definicija Neka je F neki skup istinitosnih funkcija. Kažemo da je F baza iskazne algebre I ako se svaka istinitosna funkcija može dobiti kompozicijom funkcija iz skupa F.

Jednoelementne baze Shefferova operacija (ili operacija nand), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q).

Jednoelementne baze Shefferova operacija (ili operacija nand), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q). Lukasiewiczeva operacija (ili operacija nor), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q).

Jednoelementne baze Shefferova operacija (ili operacija nand), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q). Lukasiewiczeva operacija (ili operacija nor), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q). Teorema Jedine binarne operacije skupa {, } koje, svaka za sebe, čine jednoelementnu bazu iskazne algebre jesu Shefferova operacije odnosno Lukasiewiczeva operacija.