ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ



Σχετικά έγγραφα
v a v av a, τότε να αποδείξετε ότι ν <4.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου

Θέματα εξετάσεων στους μιγαδικούς

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

Θέματα από τους μιγαδικούς

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

Ερωτήσεις σωστού-λάθους

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός.

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Θωμάς Ραϊκόφτσαλης 01

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 3: ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΜΕΤΡΟΥ - ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : 1 + i, 1 i, 3 + 4i, 3 4i, 5i, 4, 1 i, 1 i.

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Ον/μο: Θετ-Τεχν. ΘΕΜΑ 1 0

x R, να δείξετε ότι: i)

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

(a) (3a + 14β) + (2a β)i = 7 i (β) a(1 + i) + β(1 i) = 5 i) (1 + i)2 3 i. a + βi =

20 επαναληπτικά θέματα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

20 επαναληπτικά θέματα

(2+ i)z (3 i)u= 5i (1+2i)z+(1+3i)u=7+8i

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ!

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

2(z 2) οι εικόνες των z 1

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ/ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

Θέματα από τους μιγαδικούς

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0.

1. ΔΙΑΒΑΖΩ ΣΗ ΘΕΩΡΙΑ 2. ΞΑΝΑΒΛΕΠΩ ΑΠΟ ΣΟ ΧΟΛΙΚΟ ΒΙΒΛΙΟ ΣΙ ΑΚΗΕΙ: 3. ρ. 4. Δυνάμεις του 1±i, α±αi, α±α 3 i, α 3 ± αi.

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

Επαναληπτικές Ασκήσεις

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

1.Να βρείτε τις δυνατές τιμές της παράστασης Π= i ν + i ν+1 + i ν+2 +i ν+3 + i ν+4 + i ν+5 + i ν+6

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

Επαναληπτικές ασκήσεις για το Πάσχα.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. η γραφική της παράσταση να διέρχεται από το σημείο M

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Transcript:

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες τους,. Αν τότε a. Να αποδείξετε ότι b. Να βρείτε τον αριθμό. Αν η εξίσωση () έχει λύση τον αριθμό λ και να λύσετε την εξίσωση () τότε να βρείτε την τιμή του 3. Δίνεται η εξίσωση με, η οποία έχει ρίζες τους 3 και. Να βρείτε την. Να βρείτε τους αριθμούς α,β. είναι πραγματικός v. είναι φανταστικός v. Να αποδείξετε ότι για κάθε ισχύει 4. Δίνονται οι μιγαδικοί αριθμοί, για τους οποίους ισχύουν 3 4 κ αι 8. Να βρείτε το. Να βρείτε το

. 4 u v. Να βρείτε τη μέγιστη και την ελάχιστη τιμή του 3 4 5 5. Δίνεται ο μιγαδικός, 3 4. Να βρείτε το γεωμετρικό τόπο των εικόνων του.. Να βρείτε τον μιγαδικό με το ελάχιστο μέτρο Για τον μιγαδικό που βρήκατε στο ερώτημα θεωρούμε τον μιγαδικό αν ο αριθμός είναι φανταστικός να βρείτε : a) Τον αριθμό μ b) Τον αριθμό. Έστω η εξίσωση αριθμό ο οποίος έχει μέτρο 5 με έχει ρίζα έναν μη πραγματικό. Να βρείτε το λ και να λύσετε την εξίσωση (). Έστω η λύση με της εξίσωσης με Im(). Θεωρούμε τον μιγαδικό για τον οποίο ισχύει. Να βρείτε : a) Τον γεωμετρικό τόπο των εικόνων του b) Τη μέγιστη και την ελάχιστη τιμή του 7. Δίνεται ο μιγαδικός για τον οποίο ισχύει (). Να βρείτε τον γεωμετρικό τόπο των εικόνων του μιγαδικού. Να βρείτε την μέγιστη και την ελάχιστη τιμή του

. Αν ο μιγαδικός ικανοποιεί τη σχέση () τότε να βρείτε τον γεωμετρικό τόπο των εικόνων του μιγαδικού για τον οποίο ισχύει ότι 8. Δίνεται μιγαδικός με Re() 3, Im() και 5. Να βρείτε τον μιγαδικό. Θεωρούμε τον μιγαδικό για τον οποίο ισχύει 5. Να βρείτε a) Τον γεωμετρικό τόπο των εικόνων του b) Την μέγιστη και την ελάχιστη τιμή του 9. Α) Έστω οι μιγαδικοί, και οι εικόνες τους Μ,Ν αντίστοιχα και Ο η αρχή των αξόνων να αποδείξετε ότι OM ON αν και μόνο αν u είναι φανταστικός Β) Δίνεται ο μιγαδικός και έστω Μ και Ν οι εικόνες των μιγαδικών και αντίστοιχα Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών αν ισχύει ότι OM ON. Α) Έστω οι μιγαδικοί, και οι εικόνες τους Μ,Ν αντίστοιχα και Ο η αρχή των αξόνων.να αποδείξετε ότι τα σημεία Ο,Μ,Ν είναι συνεδριακά αν και μόνο αν ο αριθμός u είναι πραγματικός Β) Δίνεται μιγαδικός αριθμός και έστω Μ και Ν οι εικόνες των μιγαδικών και. Να βρείτε τον γεωμετρικό τόπο των εικόνων του αν τα σημεία Ο,Μ,Ν είναι συνευθειακά. Δίνονται οι μιγαδικοί, για τους οποίους ισχύει 4 3 5. Να αποδείξετε ότι οι εικόνες των, ισαπέχουν από την αρχή των αξόνων. u είναι φανταστικός

. Αν ο γεωμετρικός τόπος των εικόνων του είναι ο κύκλος με κέντρο το Κ(,-5) και ακτίνα ρ=3 να βρείτε a) Τον γεωμετρικό τόπο των εικόνων του b) Την μέγιστη και την ελάχιστη τιμή του. Έστω ο μιγαδικός f (), και Α,Β,Μ και Μ οι εικόνες των,,,() f αντίστοιχα στο μιγαδικό επίπεδο Α.. Να λύσετε την εξίσωση f (). Να βρείτε το μέτρο της ρίζας της παραπάνω εξίσωσης. Να αποδείξετε ότι f () () MB () MA v. Αν x y να γράψετε την εξίσωση του γεωμετρικού τόπου των εικόνων του όταν είναι f () Β.. Να υπολογίσετε την τιμή της παράστασης : f (). Αν το σημείο Μ κινείται πάνω σε κύκλο με κέντρο το Α και ακτίνα να βρείτε τον γεωμετρικό των εικόνων του f (). 5, 3. Δίνεται μιγαδικός αριθμός για τον οποίο ισχύει : 4() 3() 7. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. Αν για τον μιγαδικό ισχύει τόπο C των εικόνων του. 8 75, να βρείτε τον γεωμετρικό. Να βρείτε την μέγιστη και την ελάχιστη τιμή του, καθώς και τους μιγαδικούς για τους οποίους το παίρνει τις τιμές αυτές v. Αν οι μιγαδικοί, ανήκουν στο γεωμετρικό τόπο C να βρείτε τη μέγιστη και την ελάχιστη τιμή του

4. Δίνεται ο μιγαδικός αριθμός για τον οποίο ισχύει 3() () 75 9. Να βρείτε τον γεωμετρικό τόπο των εικόνων του.. Να βρείτε ποιος από τους παραπάνω μιγαδικούς έχει το ελάχιστο μέτρο Για την τιμή του που βρήκατε στο ερώτημα. Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίας ισχύει: Να βρείτε : a) Τον γεωμετρικό τόπο των εικόνων του, b) Την μέγιστη και την ελάχιστη τιμή του : 5 5. Δίνεται η εξίσωση και το πολυώνυμο P () 3,,. Να λύσετε την εξίσωση (). Αν ο αριθμός που βρήκατε στο. είναι ρίζα της εξίσωσης P (), τότε να βρείτε τις τιμές των α,β.. Αν 3, 4 τότε : a) Να λύσετε την εξίσωση P () b) Αν, είναι οι μη πραγματικές ρίζες της εξίσωσης P () αποδείξετε ότι 7 να. Δίνεται η εξίσωση 3 3 3. Να βρείτε το. Να βρείτε το u 3. Δίνεται μιγαδικός για τον οποίο ισχύει u,, u οι μιγαδικοί που βρήκατε στα προηγούμενα ερωτήματα. Να βρείτε : a) Τον γεωμετρικό τόπο των εικόνων του b) Την ελάχιστη τιμή του

7. Δίνεται μιγαδικός για τον οποίο ισχύει : 3 4 7. Να αποδείξετε ότι. Να βρείτε το. u είναι πραγματικός v. Αν 3 τότε να βρείτε : a) Τον γεωμετρικό τόπο των εικόνων του b) Τη μέγιστη και την ελάχιστη τιμή του 8. Δίνεται ο μιγαδικός αριθμός και η συνάρτηση f (). Αν να αποδείξετε ότι f (). Να βρείτε τον γεωμετρικό τόπο των εικόνων του για τους οποίους ισχύει f (). Αν f () τότε να βρείτε τον αριθμό f () f () v. Αν ισχύει f ()() f 4, να βρείτε : a) Τον γεωμετρικό τόπο του των εικόνων του b) Την ελάχιστη τιμή του 9. Δίνεται η συνάρτηση f ()(). Να βρείτε τον αριθμό [()()] f f. Να αποδείξετε ότι ()() f f f. Να βρείτε τον γεωμετρικό τόπο των εικόνων του των μιγαδικών για τους οποίους ισχύει f (). Δίνονται μιγαδικοί αριθμοί, με των οποίων οι εικόνες ανήκουν στον κύκλο κέντρου Ο(,) και ακτίνας. Θεωρούμε και τον μιγαδικό. Να βρείτε τα και

.. είναι πραγματικός 48 58 Αν να αποδείξετε ότι το τρίγωνο με κορυφές τις εικόνες των μιγαδικών Ο,, είναι ισόπλευρο. Δίνεται η εξίσωση 4 8 I. Να βρείτε τη λύση της παραπάνω εξίσωσης II. Να βρείτε το γεωμετρικό τόπο των εικόνων του για τους οποίους ισχύει : 4 Re() 5 7 III. Αν οι εικόνες των, ανήκουν στον γεωμετρικό τόπο του ερωτήματος. Να βρείτε τη μέγιστη τιμή του. Έστω Α και Β οι εικόνες των μιγαδικών 3 5, 4 αντίστοιχα. Θεωρούμε και τη συνάρτηση f ()( ). Αν Γ είναι η εικόνα του f ( 4 ) να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ορθογώνιο. Έστω Μ η εικόνα του. f () Αν τα διανύσματα BM, BA είναι κάθετα, να βρείτε a) Τον γεωμετρικό τόπο των εικόνων του b) Την ελάχιστη τιμή του 3. Έστω ο μιγαδικός για τον οποίο ισχύει. Να αποδείξετε ότι. Να αποδείξετε ότι 4 Re(). Αν η εικόνα του μιγαδικού βρίσκεται στο εσωτερικό του κυκλικού δίσκου με κέντρο το Ο(,)και ακτίνα ρ=, να αποδείξετε ότι Re()

4. Δίνονται οι μιγαδικοί 3 και Να αποδείξετε ότι 3. 3. 3. Οι εικόνες των,, 3 σχηματίζουν ισοσκελές τρίγωνο 5. Έστω, και Α και Β οι εικόνες τους αντίστοιχα. Αν το ΟΑΒ όπου Ο η αρχή των αξόνων είναι ορθογώνιο με υποτείνουσα την ΑΒ τότε :. Να βρείτε την τιμή της παράστασης. είναι φανταστικός. Να αποδείξετε ότι