ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 11/6/2018

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

2x 4 0, αδύνατη. x Πανελλαδικές Εξετάσεις Μαθηματικά Κατεύθυνσης 11 Ιουνίου Θέμα Α Α1. Σχολικό βιβλίο σελ.99

Επιμέλεια: Παναγιώτης Γιαννές

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

= R * ως πράξη παραγωγίσιμων συναρτήσεων με 0 x 4 2x 8x 8 x x x x x. και γνησίως αύξουσα στο (0, + ). = με τιμή ( )

1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

x, x γνησίως μονότονη. (σελ. 35 σχολικό βιβλίο)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

είναι 1-1 αλλά δεν είναι γνησίως μονότονη.

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Πανελλαδικές εξετάσεις 2017

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Πανελλαδικές εξετάσεις 2018

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 2018

Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ),

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

γ) Ισχύει lim = 0. ΑΠΑΝΤΗΣΕΙΣ συνx x δ) Αν η f είναι αντιστρέψιμη συνάρτηση, τότε οι γραφικές παραστάσεις C και C των συναρτήσεων f και

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Μελέτη και γραφική παράσταση συνάρτησης

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Λύσεις του διαγωνίσματος στις παραγώγους

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

3o Επαναληπτικό Διαγώνισμα 2016

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

και γνησίως αύξουσα στο 0,

, για κάθε x. Άρα, υπάρχει σταθερά c τέτοια, ώστε G(x) F(x) c, για κάθε x. ΘΕΜΑ Β. x,y

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ

Ασκήσεις Επανάληψης Γ Λυκείου

Πανελλαδικές εξετάσεις 2015

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

f '(x 0) lim lim x x x x

Α2. α. Ψ β. Σχολικό βιβλίο σελ. 134 ΣΧΟΛΙΟ): Πχ. για την

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 Ενδεικτικές απαντήσεις

Μαθηματικά Ο.Π. Γ ΓΕΛ 05/ 05 / 2019 ΘΕΜΑ Α. Α1. Σελίδες Σχολικού Βιβλίου. Α2. Σελίδα 161 Σχολικού Βιβλίου

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

20 επαναληπτικά θέματα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ. x x. = 3, x (2,5) 0 είναι η h. Α4. α) Σ β) Σ γ) Σ δ) Λ

ΛΥΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ lisari team ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ η έκδοση

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

Πες το με μία γραφική παράσταση

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

x, οπότε για x 0 η g παρουσιάζει

0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Transcript:

ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 1:5

Σελίδα από 11

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 11 / 6 / 18 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Μαθηματικά ΟΠ Γ ΓΕΛ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελίδα 99 Α. Α Ψ Β. Σχολικό βιβλίο Σελ 5 Για παράδειγμα η συνάρτηση, 1, είναι 1-1 αλλά δεν είναι γνήσια μονότονη όπως φαίνεται και στο σχήμα. Α. Σχολικό βιβλίο σελ 16 Α4. α) Λ β) Λ γ) Σ δ) Σ ε)σ ΘΕΜΑ Β 4 Β1. Είναι (), Η συνεχής στο D ως πράξεις συνεχών. Η συνάρτηση παραγωγίσιμη ως πράξεις παραγωγίσιμων συναρτήσεων με 4 8 8 () 1, Σελίδα από 11

Το πρόσημο της είναι με βάση το παρακάτω πίνακα 8 - + + - - + + - + 8 Άρα το πρόσημο της και η μονοτονία της φαίνονται στον παρακάτω πίνακα - - + + + Τ.Μ Άρα η είναι γνησίως αύξουσα σε καθένα από τα διαστήματα γνησίως φθίνουσα στο διάστημα, Στην θέση παρουσιάζει τοπικό μέγιστο το, και, ενώ είναι Β. Η 8 4 () παραγωγίσιμη ως ρητή με () 1 4 Είναι για κάθε () άρα η είναι κοίλη σε καθένα από τα διαστήματα, και, Β. Κατακόρυφη ασύμπτωτη θα αναζητήσουμε στο Επομένως Σελίδα 4 από 11

4 1 lim lim lim 4 4 4 1 lim lim lim 4 4 Άρα η ευθεία (ο άξονας yy ) κατακόρυφη ασύμπτωτη της. Πλάγιες Οριζόντιες θα αναζητήσουμε στο και στο Για να είναι η y,, ασύμπτωτη της όρια lim και lim lim και 4 lim 4 lim lim lim lim 1 C στο 4 4 4 lim lim lim lim (αντιστοίχως στο να είναι πραγματικοί αριθμοί (αντιστοίχως ) αρκεί τα Άρα η ευθεία y είναι ασύμπτωτη της στο 4 Επίσης 4 lim lim lim lim 1 4 4 4 lim lim lim lim Άρα η ευθεία y είναι ασύμπτωτη της στο Β4. Με βάση τα παραπάνω ερωτήματα η γραφική παράσταση της είναι η παρακάτω : Σελίδα 5 από 11

4 επομένως τέμνει τον άξονα στο σημείο A 4, ( ) 4 Σελίδα 6 από 11

ΘΕΜΑ Γ Γ1. Η περίμετρος του τετραγώνου είναι m, οπότε η πλευρά του θα είναι 4. Το παριστάνει μήκος είναι 8 αλλά και 8. Επομένως το εμβαδον του τετραγώνου είναι το οποίο είναι 8 Οπότε ο κύκλος έχει εμβαδόν: Το άθροισμα των εμβαδών είναι: που είναι το συνολικά μήκος του σύρματος, άρα Ε() 16 κατασκευάζουμε τον κύκλο που έχει μήκος: Ε 8 L πρ 8 πρ ρ m π 8 8 8 Ε πρ π π π 4π 4π 8 π 48 π 464 16 16 4π 16π 16π π 56 64 4 16π π 4 64 56 16π. Με το υπόλοιπο του σύρματος,,8 Γ. Η E 1 1 16π 8π είναι παραγωγίσιμη με E π 4 64 π 4 με,8 Είναι 4 π και είναι, E E ενώ, 4 π E 4 π Άρα, είναι Eγνησίωςφθινουσα, και στο π 4 το π 4 Eγνησιωςαυξουσα,8 και η E παρουσιάζει ελάχιστο 1 64 16 E π 4 64 8 8 π 4 16 π 4 16π π π π 4 Σελίδα 7 από 11

Η διάμετρος του κύκλου π 4 8 α δ 4 π 4 8 π 4 8 δ R και η πλευρά του τετραγώνου είναι π π 4 Γ. Η Ε είναι συνεχής και γνησίως φθίνουσα στο, π 4 άρα 16 16 E, E, lim Ε(), + π 4 π 4 π 4 π αφού 16 E π 4 π 4 και + + π 4 64 56 56 16 lim Ε() lim 16π 16π π Η Ε είναι συνεχής και γνησίως αύξουσα στο,8 π 4 άρα 16 E,8 E, lim Ε(),4 π 4 π 4 8 π 4 16 αφού E π 4 π 4 Είναι : π 4 64 56 π 48 64 8 56 lim Ε() lim lim 4 + 8 16π 8 16π 5 E, π 4 και Ε γνησίως φθίνουσα στο, π 4 άρα υπάρχει μοναδικό, π 4 E 5 ώστε Το 5 E, π 4 άρα δεν υπάρχει 1, π 4 Αρά υπάρχει μοναδικό, π 4 ώστε E 5 ώστε 1 E 5 ΘΕΜΑ Δ Δ1. Η είναι δύο φορές παραγωγίσιμη στο με Σελίδα 8 από 11

a a () e e, a a () e e a () e a a Από πίνακα καμπυλότητας έχουμε : - α + () + () Κοίλη σ.κ. Κυρτή Η κοίλη στο Για a Δ, a ( a) a, και κυρτή στο a με σημείο καμπής A, a Η παρουσιάζει ολικό ελάχιστο στο a Υπολογίζουμε τα :.,, a a ί,, a a Καθώς lim ( ) lim e a θα υπάρχει μοναδικό [ a, ) : ( ) Επειδή η ( ). a, Έχουμε 1 a ί Για a ( ) ( ) ( ) ( ) ίύ, 1 1 1 a ( ) ( ) ( ) ( ) ίί, 1 1 1 δηλαδή γνησίως φθίνουσα ( ) ( ) ( ) ίί 1,, άρα η γνησίως αύξουσα ( ) ( ) ( ) Σελίδα 9 από 11

Άρα η παρουσιάζει μοναδικό τοπικό μέγιστο για 1 παρουσιάζει μοναδικό ελάχιστο για, Δ.Η είναι γνησίως φθίνουσα στο με ( ) και 1 (1) e 1 a 1 Αρκεί να δείξουμε ότι: 1 1 e 1 e Θεωρούμε 1 ( ) e, 1 Η συνάρτηση K( ) παραγωγίσιμη με ( ) 1 k e Είναι: e e 1 1 1 1 1 1 1 Οπότε 1, για χ>1 άρα η K γνησίως αύξουσα στο 1 e 1 1 Άρα η εξίσωση ( ) (1) a, αδύνατη στο Δ4. Αν α = Τότε έχουμε : ( ) e, '( ) e, Η παρουσιάζει καμπή στο σημείο Α(, ) στο οποίο η εξίσωση της εφαπτομένης είναι : y () '() ( ) y H κυρτή στο[, ). Άρα ( ) y ή () -+, H ισότητα ισχύει μόνο για Είναι για κάθε οπότε : ( ) ( ) ( ) d ( ) d I ( ) d Θέτουμε y y d ydy Αν τότε y Αν τότε y 1 Σελίδα 1 από 11

1 I ( y ) y dy 1 4 ( 4 4 ) y y dy 1 5 y y 4 4 4 4 5 5 15 Άρα ( ) d 15 Σχολιασμός θεμάτων Μαθηματικών ΟΠ από το Ακαδημαϊκό τμήμα Τα θέματα κρίνονται απαιτητικά. Το δεύτερο θέμα είναι σχετικά εύκολο και μάλλον αναμενόμενο. Το τρίτο θέμα είναι γεωμετρικό πρόβλημα το οποίο απαιτούσε γνώσεις προηγούμενων τάξεων και είχε κλιμακούμενη δυσκολία. Τέλος, το τέταρτο θέμα κρίνεται εξαιρετικά δύσκολο. Σελίδα 11 από 11