ΕΞΕΤAΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΟΚΤΩΒΡΙΟΣ 2002 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΞΕΤAΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΟΚΤΩΒΡΙΟΣ 2002 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α"

Transcript

1 ΕΞΕΤAΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΟΚΤΩΒΡΙΟΣ Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α ) Τα εξαρτήματα ενός μηανήματος συνδέονται ως εξής : Όλα τα εξαρτήματα έουν αξιοιστία ρ. Να βρέθει η αξιοιστία του μηανήματος. (5%) Θεωρούμε αξιοιστία Έουμε την σύνδεση εξαρτημάτων με αξιοιστία ρ. ζητάμε την αξιοιστία(ιθανότητα) του μηανήματος. Έτσι έουμε : Ρ(Ε )* Ρ(Ε )* Ρ(Ε )* * Ρ(Ε )*[ Ρ(Ε ) Ρ(Ε ) Ρ(Ε )]*[ Ρ(Ε ) Ρ(Ε 5 )] ) Γίνεται μια μελέτη για την λειψυδρία μιας όλης κατά τον μήνα Αύγουστο. Να αρουσιαστεί αναλυτικά όλη η ιθανοθεωρητική θεώρηση θεωρώντας όλες τις τυαίες μεταβλητές κανονικές (5%) Αρικά θεωρούμε όλες τις τυαίες κατανομές συνεείς. Έστω ότι η υδροδότηση μιας όλης γίνεται αό τρεις ηγές Π,Π,Π. ου ακολουθούν κανονικές κατανομές, ( Π, Π, Π οι ημερήσιες αροές ). Έστω Π Ν (,), Π Ν (5,), Π Ν (,). Θεωρούμε ότι η ζήτηση είναι είσης συνεής κατανομή, κανονική με Ζ Ν(5, ). Το ζητούμενο είναι έστω να βρεθεί η ιθανότητα έλλειψης μία ημέρα. Για --

2 να έουμε έλλειψη ρέει Ζ > Π Π-Ζ <. Θεωρούμε Φ Π-Ζ. Η Φ θα είναι είσης κανονική κατανομή με μ σ 5,77 Θέλουμε την ιθανότητα 5 ( Φ < ) Φ( ) Φ(,97) Φ(,97),88,8 5,77 Έστω ότι ζητούσαμε την έλλειψη τουλάιστον ημέρες την εβδομάδα. Θα λυθεί με διωνυμική κατανομή ( δοκιμές Bernoulli). ( X ) ( X ) () () (X ),7 Β) Θεωρούμε την ζήτηση ίδια με το ροηγούμενο αράδειγμα συνεή κατανομή με Z Ν(5, ) και την αροή διακριτή με Π με ιθανότητα,7 ή Π 75 με ιθανότητα,. (έλλειψη) ( Ε Π ) * ( Π ) ( Ε Π 75) * ( Π 75) (έλλειψη) ( K > )*,7 ( K > 75)*, Φ,7,,8 Φ ) Γιατί στην μελέτη αντοής ενός σκυροδέματος θεωρούμε την αντοή του Α Ν(μ,σ), αν και η κανονική κατανομή αίρνει και αρνητικες τιμές. Είναι άντα αοδετή αυτή η θεώρηση; (5%) Θεωρούμε ότι η αντοή είναι κανονική κατανομή με Α Ν(μ,σ) και ότι σεδόν οτέ δεν αίρνει αρνητικές τιμές. Πράγματι, Ρ(Α<) Φ(-μσ)Φ(-μσ)-Φ(μσ)> ου ισύει για μσ>.5 ροσεγγιστικά. Το αραάνω ισύει και οότε με ικανοοιητική ροσέγγιση θεωρούμε ότι η αντοή είναι κανονική κατανομή. Μελετάμε τον τύο σκυροδέματος C: τότε μkm και σ<. Άρα μσ>.5 --

3 ) Έστω Χ τ.μ. με συνάρτηση ιθανότητας ()-[], -, σταθερά. Αν Χ, Χ,.. Χ έουν την ίδια συνάρτηση ιθανότητας να βρεθεί η Ρ <Χ Χ <) (%) αν -<< () - αν << αλλού ( ) ( ) ( ) d d d Ε() ( ) ( ) ( ) ( ) ( ) μ E d d d d --

4 ( ) ( ) ( ) ( ) ( ) ( ),85,7 σ σ σ d d d d Ν : (,,85) Ν : (*,,8* ) : (,.8) Μ, σ,8 ( ) ( ) ( ),8,8, < < φ φ φ φ Ή 8.% 5) Έστω οι Χ και Υ έουν την αό κοινού συνάρτηση ιθανότητας αν τρίγωνο Ι (,) (), τριγωνο ΙΙ --

5 Είναι οι Χ, Υ ανεξάρτητες ; να βρεθεί η Ε(Χ) και η Var Y (%) Οι Χ.Υ έουν αό κοινού συνάρτηση ιθανότητας. ¼, <<, << (,) (), <<, << () () Για να είναι τα Χ,Υ, ανεξάρτητα θα ρέει: FX,Y(,)FX() FY() Για και έουμε : FX,Y(,).5*.5.5 άρα τα, δεν είναι ανεξάρτητα, Για το με()σ()*()*().75 Για το με()σ()*()*().75 Για το Var(Y)Σ(-μ ) ().75 *.5.5 *.75.5 *.5.97 ) Δίνεται ότι η έει ομοιόμορφη συνάρτηση ιθανοτήτας στο [α.β]. δίνεται είσης και το δείγμα Χ, Χ,.Χν. Να γίνει εκ τιμηση των αραμέτρων α.β με την μέθοδο των ροών. (5%) Εφόσον η Χ είναι ομοιόμορφη τυαία μεταβλητή ισύει ότι : () C αν α β αλλού -5-

6 Αό συνθήκη κανονικοοίησης έουμε : ( ) d d β α β α β α β α θα γίνει εκτίμηση των αραμέτρων με τη μέθοδο των Ροών. Ε() () E( ) () Αό τις αραάνω σέσεις ροκύτει ότι : Ε() ν n i i και Ε( ) ν n i i Εομένως : Ε() Ε( ) β a β ( ) d d και β α α β β ( ) d α a d β α αβ Αό τις σέσεις (,) ροκύτει ότι : α β () a aβ β Με τη βοήθεια των σέσεων (,) και με τον εριορισμό α<β έουμε: () a β --

7 ΜΕΡΟΣ Β (%) ) Υοθέτουμε ότι τα δικινητήρια και τετρακινητήρια αερολάνα έουν ιδίου τύου μηανές με αξιοιστία Ρ. υοθέτουμε ότι ένα αερολάνο ραγματοοιεί μια έιτυη τήση αν λειτουργούν τουλαιστον τα 5% των μηανών του. Να βρεθεί για οιες τιμές της Ρ ένα τετρακινιτήριο αερολάνο είναι ιο ασφαλές Δικινητήριο : η ιθανότητα να λειτουργούν όλες είναι : ρ η ιθανότητα να λειτουργεί μία είναι : ρ(-ρ) η ιθανότητα να λειτουργεί τουλάιστον μία είναι : Ρ (>)ρ ρ(-ρ)ρ ρ-ρ ρ-ρ ρ(-ρ) Τετρακινητήριο : Η ιθανότητα να λειτουργούν τουλάιστον δύο: ( ) ( ) ( ) ( ) ( ) ( ) 8 θέτουμε Ρ (>) > Ρ (>) ( ) ρ ρ ρ,7 ρ μιγαδικές λύσεις ρ -7-

8 Ε Φ Α Ρ Μ Ο Γ Η Για ρ.7 έουμε : Για ρ.8 έουμε : Για ρ. έουμε : ( ) ( ). 9 ( ) ( ) ( ).8 ( ). 8 ) α) Ειλέγουμε ένα αριθμό στην τύη μεταξύ και, και ένα δεύτερο αριθμό στην τύη μεταξύ και. να βρεθεί η ιθανότητα το γινόμενο τους να είναι μεγαλύτερο του. Β) υοθέτουμε ότι η θ είναι ομοιόμορφα κατανεμημένη στο {-,]. Να βρεθεί η ιθανότητα το sinθ> Γ) έστω τυαία μεταβλητή με συνάρτηση ιθανότητας (), E R, E R, σταθερά Να βρεθεί η συνάρτηση ιθανότητας της ΥΧ Ειλέγω τυαία ένα αριθμό μεταξύ και, και ένα άλλο μεταξύ και. Α*Β> > ΧΥ>>ΥΧ Θα άρω τα σημεία άνω αό την υερβολή ΥΧ η εριοή ου ζητάμε -8-

9 η εριοή αυτή είναι : ln... d άρα η Ρ-LN Β) θέλουμε την ιθανότητα sinθ > Sinθ > > θ >,98 rad και θ < Για να ισύει Sinθ >, με το να είναι ομοιόμορφα κατανεμημένη Στο [-,], θα ρέει να ισύει,98 < θ< εομένως η ζητούμενη ιθανότητα είναι : Ρ(,98 < θ < ) Η θ είναι ομοιόμορφα κατανεμημένη και άρα ισύει : C αν < < F() Αλλού ) ( ) ( ) ( Ε Ε d d d d -9-

10 Var() E( )-(E()) σ σ συνεώς έουμε : θ Ν(, ) Ρ(,98<θ<) ( ) ( ),,5,958,75,7 *,98,98 Φ Φ Φ Φ Φ Φ ο Γ) : έουμε τυαία μεταβλητή με συνάρτηση ιθανότητας Φ() R R,, η σταθερά. Για την συνάρτηση ιθανότητας έουμε d Για την συνάρτηση κατανομής ( ) ( ) d d F για την συνάρτηση ιθανότητας της ΥΧ Έστω () η συνάρτηση ιθανότητας της Υ. Αρκεί να βρώ την συνάρτηση κατανομής της Υ, έστω F () F ()(Y ) F Εομένως : --

11 ( ) ( ) [ ] ) ( Y F Y ) Έστω τυαία μεταβλητή Χ Ν(θ,σ ). Δίνεται και το δείγμα,. ν [η σ θεωρείται άγνωστη. Να βρεθεί η αμερόλητη εκτιμήτρια για την θ

ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α

ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α ) Έχουμε κατασκευάσει 4 δοκίμια. Να βρεθεί προσεγγιστικά ο αριθμός των δοκιμίων που περιέχονται μεταξύ των σημείων

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΝΟΕΜΒΡΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α (40%)

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΝΟΕΜΒΡΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α (40%) ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΝΟΕΜΒΡΙΟΣ 00 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α (0%) ) Η αντοχή ενός τύπου σκυροδέματος ως γνωστόν θεωρείται κανονική. Ελέγχω δοκίμια: από αυτά έχουν αντοχή

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% )

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% ) ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ (0-6-005) ΟΜΑΔΑ Α ( 40% ) ) Έστω μια τυχαία μεταβλητή Χ και ένα δείγμα x, x,, x n. Θεωρούμε την τιμή k = n i= ( x && x) i.να διευκρινιστεί

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 86 8767 www.iraklits.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ

Διαβάστε περισσότερα

Aριστοβάθμιο ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΓΕΛ 2017 ΘΕΜΑ Α. β) Αντιπαράδειγμα η f(x)= x που είναι συνεχής στο 0 αλλά όχι παραγωγίσιμη σε αυτό αφού Β) Σ

Aριστοβάθμιο ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΓΕΛ 2017 ΘΕΜΑ Α. β) Αντιπαράδειγμα η f(x)= x που είναι συνεχής στο 0 αλλά όχι παραγωγίσιμη σε αυτό αφού Β) Σ ΘΕΜΑ Α. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΓΕΛ 27 Α. Θεωρία, σολικό σελ.253( αό αλαιά έκδοση) Α 2. α)λάθος β) Αντιαράδειγμα η f()= ου είναι συνεής στο αλλά όι αραγωγίσιμη σε αυτό αφού + Α 3. Α) Λ Β) Σ Γ)Λ Δ)Σ

Διαβάστε περισσότερα

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 ) Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή

Διαβάστε περισσότερα

1.2 Βασικές Τριγωνομετρικές Εξισώσεις

1.2 Βασικές Τριγωνομετρικές Εξισώσεις 1. Βασικές Τριγωνομετρικές Εξισώσεις 1 η Μορφ Ασκσεων: Μας ζητούν να λύσουμε μια εξίσωση της μορφς: = α, α 0 = α, α 0 εφx = α, α 0 σφx = α, α 0 1. Να λυθούν οι εξ ισώσεις: i. ημ x =, ii. ημ x= 0, iii.

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Εαναλητικό Διαγώνισμα Άλγεβρας Β Λυκείου Α. Αν α>0 με α, τότε για οοιουσδήοτε θ, θ,θ>0 και κ ισχύει log ( θ θ ) = log θ + log θ (7 μονάδες) α α α Β. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x ΠΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι 00-00 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. (0 µον.) Να υολογισθούν τα όρια:

Διαβάστε περισσότερα

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0. Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια )

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια ) ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ηµχ = ηµθ χ = 0 0 κ + θ ή χ = 0 0 κ + 80 0 - θ ( τύοι λύσεων σε µοίρες ) χ = κ + θ ή χ = κ + - θ ( τύοι λύσεων σε ακτίνια ) κ ακέραιος συνχ = συνθ χ = 0 0 κ ± θ ( τύοι λύσεων

Διαβάστε περισσότερα

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να

Διαβάστε περισσότερα

Tριγωνομετρικές εξισώσεις

Tριγωνομετρικές εξισώσεις Tριγωνομετρικές εξισώσεις Εχουμε μάθει να λύνουμε εξισώσεις ρώτου βαθμού και δευτέρου βαθμού ου είναι ισότητες ου εριέχουν έναν άγνωστο και ροσαθούμε να βρούμε για οιά (ή οιές) τιμές αυτού του αγνώστου

Διαβάστε περισσότερα

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων 1 Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων ρ. Παναγιώτης Λ. Θεοδωρόουλος ρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr ΠΡΟΛΟΓΟΣ Στην εργασία αυτή εισηµαίνονται και αναλύονται

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα . Εκφωνήσεις των θεμάτων των εξετάσεων Εεξεργασμένες ενδεικτικές ααντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα Εεξεργασία: Δημήτριος Σαθάρας Σχολικός Σύμβουλος Μαθηματικών Συντονιστής βαθμολογητών

Διαβάστε περισσότερα

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Ααντήσεις)

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΠΤΥΞΕΩΣ ΠΕΡΙΟ ΙΚΩΝ ΣΗΜΑΤΩΝ ΣΕ ΣΕΙΡΑ FOURIER

ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΠΤΥΞΕΩΣ ΠΕΡΙΟ ΙΚΩΝ ΣΗΜΑΤΩΝ ΣΕ ΣΕΙΡΑ FOURIER ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΠΤΥΞΕΩΣ ΠΕΡΙΟ ΙΚΩΝ ΣΗΜΑΤΩΝ ΣΕ ΣΕΙΡΑ FOURIER ρ. Α. Μαγουλάς Οκτώβριος 4 Παράδειγµα Έστω το ακόλουθο εριοδικό σήµα f ( f

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 17 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Ααντήσεις) ΘΕΜΑ Α Α1. Αόδειξη σχολικού βιβλίου σελ 135 Α. α. Ψευδής

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία και ώρα εξέτασης: Τρίτη, 3/5/ 8:3 :3 ΜΕΡΟΣ Α d.. Να ρείτε

Διαβάστε περισσότερα

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0 ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 05 Γιάννης Ζαµέλης Μαθηµατικός 855 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ακαι µε ( α, ) = και α =, = α) Να ρείτε το εσωτερικό γινόµενο α (Μονάδες 8)

Διαβάστε περισσότερα

ΔΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΑΣΚΗΣΕΙΣ Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( x. 2 lim χ + χ 5χ. χ 5χ+ lim. χ χ. lim.

ΔΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΑΣΚΗΣΕΙΣ Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( x. 2 lim χ + χ 5χ. χ 5χ+ lim. χ χ. lim. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ o ΑΣΚΗΣΕΙΣ R Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( ) ( Α ) Να υπολογίσετε τα όρια α) + 5 4 + 9 + 5 + 8 4 γ) 4 4 α, α > α α ε) + 8 + ζ) 5 + 4 6 η) + θ) + + 7 ι) + 5 4 ια) + 6 + ι + 4 ιγ) + + + 5+

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να βρείτε

Διαβάστε περισσότερα

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135 ΘΕΜΑ Α Α. Σχολικό βιβλίο, σελίδα 5 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ 07 Α. α. Ψ β. Δίνεται αντιαράδειγμα στο σχολικό βιβλίο σελίδα 99, αράγραφος: «Παράγωγος και συνέχεια». Α.

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2 ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017) ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (9/6/7) Α. σελ. 35 Α. α. ΨΕΥΔΗΣ, β. σελ. 99 Α3. σελ. 73 Α. α) Λ

Διαβάστε περισσότερα

1. Διδιάστατοι πίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων

1. Διδιάστατοι πίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων Διδιάστατοι ίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων Έστω Χ, Υ δύο κατηγορικές μεταβλητές αόκρισης με Ι και στάθμες αντίστοιχα Οι αοκρίσεις (Χ,Υ ενός τυχαία ειλεγμένου ατόμου αό

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α. Σχολικό Βιβλίο Σελ.

Διαβάστε περισσότερα

Δίνονται οι συναρτήσεις: f ( x)

Δίνονται οι συναρτήσεις: f ( x) http://eler.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές ααντήσεις 6 ης Γρατής Εργασίας ΠΛΗ 00-0: Άσκηση (5 μον.) (Για το ερώτημα (α) συμβουλευθείτε τα εδάφια. και. και για το (β) το εδάφιο. του συγγράμματος

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 8 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Αριλίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Λύση Θεμάτων Πιθανοτήτων-Στατιστικής (Φλεβάρης 17) Σειρά Α

Λύση Θεμάτων Πιθανοτήτων-Στατιστικής (Φλεβάρης 17) Σειρά Α Λύση Θεμάτων Πιθανοτήτων-Στατιστικής (Φλεβάρης 17) Σειρά Α Ζήτημα 1 ο : Στο μάθημα της Στατιστικής έρασαν ερισσότεροι αό φοιτητές. Ο διλανός ίνακας δίνει (σε κλάσεις) τα αοτελέσματα ενός μικρού δείγματος.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 Απόδειξη θεωρήματος σελίδα 135 στο σχολικό

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 Απόδειξη θεωρήματος σελίδα 135 στο σχολικό ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Αόδειξη θεωρήματος σελίδα 5 στο σχολικό Α. α) ΨΕΥ ΗΣ β) Η συνάρτηση f()= είναι συνεχής στο o = αφού ισχύει lim f() lim f() Και δεν είναι αραγωγίσιμη στο o = αφού: f() f() lim lim lim

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017 Α ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ Α Έστω, єδ με

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 10 Μαΐου 2015 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 10 Μαΐου 2015 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 0 Μαΐου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α Αόδειξη (βλέε σχολικό σελ 35) Α Σχολικό σελίδα 97 x Α3 Για την f (x) =

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

3.4 Θεώρημα Rolle Θεώρημα Μέσης Τιμής

3.4 Θεώρημα Rolle Θεώρημα Μέσης Τιμής .4 Θεώρημα Rolle Θεώρημα Μέσης Τιμής. Θεώρημα Rolle Αν μια συνάρτηση f είναι συνεής στο κλειστό διάστημα [α, β], αραγωγίσιμη στο ανοιτό διάστημα (α, β) και ικανοοιεί τη σέση f(α) f(β), τότε υάρει ένας

Διαβάστε περισσότερα

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΗΝ ΡΙΓΩΝΟΜΕΡΙΑ Νικ. Ιωσηφίδης, Μαθηµατικός Φροντιστής, ΒΕΡΟΙΑ e-mail: iossifid@yahoo.gr Η εργασία αυτή γράφτηκε για τους µαθητές της Β Λυκείου όταν (δεκαετία 98-990) η ριγωνοµετρία δεν

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 5- ΛΥΣΕΙΣ Οι ασκήσεις της Εργασίας αυτής βασίζονται στην ύλη των Ενοτήτων 9 του συγγράµατος «Λογισµός Μιας Μεταβλητής»

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ Γκύζη -Αθήνα Τηλ :.6.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 MAΪΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ A. Θεωρία σχολικού βιβλίου σελίδα 6-6

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:

Διαβάστε περισσότερα

( ) ( ) + N( ) σ γνωστό και διακριτό prior. π ϑ = = = Παράδειγμα. 1. Να βρεθεί το marginal probability density του y (the prior predictive)

( ) ( ) + N( ) σ γνωστό και διακριτό prior. π ϑ = = = Παράδειγμα. 1. Να βρεθεί το marginal probability density του y (the prior predictive) Παράδειγμα ( ϑσ ) amplg dsrbuo: y ϑ~ N, ϑ ~ όου = ( ϑ = ) με σ γνωστό και διακριτό pror. Να βρεθεί το margal probably desy του y (he pror predcve). Να εριγραφεί το samplg scheme αό την pror predcve. 3.

Διαβάστε περισσότερα

Ράβδος σε σκαλοπάτι. = Fημθ και Fy

Ράβδος σε σκαλοπάτι. = Fημθ και Fy Ράβδος σε σκαλοάτι Ράβδος μήκους ύψους ακουμά σε σκαλοάτι όως φαίνεται στο σχήμα. Το κάτω άκρο της είναι σε εαφή με λείο κατακόρυφο εμόδιο το οοίο μορεί να κρατείται σταερό σε οοιαδήοτε έση. Μεταξύ ράβδου

Διαβάστε περισσότερα

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ www.orion.edu.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 0-03 ιδάσκων: Βασίλης ΚΟΥΤΡΑΣ ιδάσκων ε ί Συµβάσει Π. 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας,

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας, ΣΕΙΡΕΣ FOURIER. Η ροσέγγιση συναρτήσεων µέσω ολυωνύµων, την οοία µελετήσαµε στην ροηγούµενη Ενότητα, αρά την αοτελεσµατικότητα και την, σχετική, αλότητά της, αοδεικνύεται ανεαρκής για την εριγραφή/ροσέγγιση

Διαβάστε περισσότερα

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης. Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α Βλέε σχολικό βιβλίο Α α Ψευδής β Η είναι συνεχής στο, αού

Διαβάστε περισσότερα

4. Αν η συνάρτηση f είναι συνεχής στο, να αποδειχθεί ότι η συνάρτηση. Αν t = a ή u = x - a και αν t = b ή u = x -b. x ς ς.

4. Αν η συνάρτηση f είναι συνεχής στο, να αποδειχθεί ότι η συνάρτηση. Αν t = a ή u = x - a και αν t = b ή u = x -b. x ς ς. ΚΕΦΑΛΑΙΟ 4. Αν η συνάρτηση f είναι συνεή στο, να αποδειθεί ότι η συνάρτηση Θέτουμε - t = u ή - dt = du ή dt = -du Αν t = ή u = και αν t = ή u = F = + tχf ( -t) Χ dt = + ( -u) Χf ( u) Χ( -du) 5. Αν για

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΜΕ ΤΗΝ ΙΔΙΑ ΚΥΚΛΙΚΗ ΣΥΧΝΟΤΗΤΑ. Ένα σώμα εκτελεί ταυτόχρονα δύο αλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, οι οοίες εξελίσσονται γύρω αό την ίδια θέση ισορροίας.

Διαβάστε περισσότερα

ΤΡΙΤΗ, 30 ΜΑΪΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ

ΤΡΙΤΗ, 30 ΜΑΪΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ΠΡΩΤΟ ΤΡΙΤΗ, 30 ΜΑΪΟΥ 000 ΜΑΘΗΜΑΤΙΚΑ Α. (α) Πότε ένας γεωµετρικός µετασχηµατισµός ονοµάζεται γραµµικός; (,5 µονάδες) r (β) Αν Μ(x, y) σηµείο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 8464 84767 www.iraklitos.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

Πώς ; ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας.

Πώς ; ΣΤ)Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας. ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. Γωνία Τριγωνοµετρικός αριθµός o ή rad o ή 6 rad 45 ο ή 4 rad 6 ο ή rad 9 ο ή rad ημ (ημίτονο) συν (συνημίτονο) εφ (εφατομένη) +εν ορ-ζεται

Διαβάστε περισσότερα

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση (8 µον) Χρησιµοοιώντας την αντικατάσταση acosθ, ή ataθ, για µια κατάλληλη

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 1o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ 1 (β) (γ) 3 (δ) 4 (α) 5 α (Σ), β (Λ), γ (Λ), δ (Λ), ε (Λ) ΘΕΜΑ 1ο ΘΕΜΑ ο 1 (α, στ) Το έργο W της

Διαβάστε περισσότερα

1.3. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. 1. i) f(x) = 5 ii) f(x) = x 4 iii) f(x) = x 9

1.3. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. 1. i) f(x) = 5 ii) f(x) = x 4 iii) f(x) = x 9 . Ασκήσεις σχ. βιβλίου σελίδας 5 8 A ΟΜΑ ΑΣ (Να βρείτε τις αραγώγους των συναρτήσεων στις ασκήσεις 8). f() 5 f() 4 i f() 9 f () ( 5) 0 f () ( 4 ) 4 i f () ( 9 ) 9 8.. f() f() i f() 5 f () f () ( ) 4 i

Διαβάστε περισσότερα

ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΜΕ ΣΟΝ ΟΡΙΜΟ ΣΗ ΠΑΡΑΓΩΓΟΤ

ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΜΕ ΣΟΝ ΟΡΙΜΟ ΣΗ ΠΑΡΑΓΩΓΟΤ ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΣΟ ΚΕΥΑΛΑΙΟ ΣΩΝ ΠΑΡΑΓΩΓΩΝ ΑΚΗΗ 1 Αφού η ςυνάρτηςη είναι παραγωγίςιμη ςτο 0 1 θα ιςύει Επομένωσ ƒ ƒ(1) 1 1 1 ƒ ƒ 1 1 1 ƒ ƒ 1 + + 1 1 1 ƒ ƒ(1) 1 + + 1 6 xf x f(1) f x ƒ 1 + ƒ 1 f(1) ƒ ƒ 1

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή

Διαβάστε περισσότερα

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου. Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.. Βρείτε τον μετασχηματισμό Fourier της συνάρτησης x, αν x xχ [,] (x) =, αν x < ή < x Λύση. Εειδή η συνάρτηση είναι τμηματικά συνεχής και μηδενίζεται έξω

Διαβάστε περισσότερα

7.1. Το ορισµένο ολοκλήρωµα

7.1. Το ορισµένο ολοκλήρωµα Κ Χριστοδουλίδης: Μαθηµατικό Συµλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 7 Το ορισµένο ολοκλήρωµα 7 Το ορισµένο ολοκλήρωµα Για το αόριστο ολοκλήρωµα βρήκαµε ότι: Αν η συνάρτηση F ( είναι µια αρχική συνάρτηση

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 18 Μαΐου 216 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοοίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Εικ. Καθηγητής v.kouras@fme.aegea.gr

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεώρημα σελ. σχολ. βιβλ. 5 Α. α Λ Έστω η συνάρτηση f() τότε η f δεν είναι αραγωγίσιμη στο, ενώ η f είναι συνεχής στο Α. Θεωρία

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Στατιστική Ι-Θεωρητικές Κατανομές Ι Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

(Π1) Θετικό Κόστος Εισόδου (F>0)

(Π1) Θετικό Κόστος Εισόδου (F>0) (Π) Θετικό Κόστος Εισόδου (>0) - Το δυναμικό αίγνιο μεταξύ των ειχειρήσεων, έχει την εξής χρονική διάρθρωση: Στάδιο : Η (υφιστάμενη) ειχείρηση ειλέγει την αραγωγική δυναμικότητα k. Στάδιο : Η ειχείρηση

Διαβάστε περισσότερα

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Παρασκευή 9 Ιουνίου 7 Λύσεις των θεμάτων Έκδοση η (/6/7, 6:3) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς

Διαβάστε περισσότερα

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ Οι µιγαδικοί αριθµοί και w συνδέονται µε την σέση a β w =, όπου γ α,β,γ R Όταν =0 τότε w= και όταν =-i τότε w=- i Να βρείτε τις σταθερές α,β,γ α Αν το άθροισµα και το γινόµενο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανε ιστήµιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανε ιστήµιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΙΑΛΕΞΗ 09 ΧΡΗΣΗ ΤΗΣ ΤΥΠΟΠΟΙΗΜΕΝΗΣ ΚΑΝΟΝΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ΑΣΚΗΣΕΙΣ Βόλος, 2015-2016

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

( f ) ( T) ( g) ( H)

( f ) ( T) ( g) ( H) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Αόδειξη (iii), σελ.44 σχολικού βιβλίου Α. Ορισµός,

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους

Διαβάστε περισσότερα

3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx

3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx 1.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Oµάδας 1.i) Να βρείτε την ερίοδο, τη µέγιστη τιµή και την ελάχιστη τιµή της αρακάτω συνάρτησης και στη συνέχεια να την αραστήσετε

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 5 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.) Λύση: f ( ) ( ) ( ) ( )! f α) Ο τύος της σειράς µε κέντρο

Διαβάστε περισσότερα

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 ) Μέρος IV Πολυδιάστατες τυχαίες μεταβλητές Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων Δ5 ( ) Πολυδιάστατες μεταβλητές Πολλά ποσοτικά χαρακτηριστικά που σχετίζονται με

Διαβάστε περισσότερα

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ (13/06/2018)

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ (13/06/2018) ΠΑΝΕΛΛAΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΕΠΙΣΤΗΜΩΝ ΥΕΙΑΣ (3/06/08) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A. γ Α. δ Α3. α Α4. δ Α5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ ΘΕΜΑ Β

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 ΠΑΝΕΛΛΗΝΙΕΣ 7 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 9/6/7 ΕΠΙΜΕΛΕΙΑ: ΤΣΙΤΟΣ ΧΡΗΣΤΟΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7

Διαβάστε περισσότερα

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία f ( t ) ίνεται η συνεχής συνάρτηση f : [, + ) R µε: f ( ) = + ( + ), > t Α ) να δείξετε ότι: α) f ( ) = ln +, > β) f ( ) = Β) να µελετηθεί η µονοτονία και τα ακρότατα της f Γ) να δείξετε ότι η C f είναι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΣΤΟ ο ΠΡΟΣΟΜΟΙΩΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 09 ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 05/04/09 ΘΕΜΑ Α Α. Θεωρία-Ορισμός

Διαβάστε περισσότερα

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - /7 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14  ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

3.4 Οι τριγωνομετρικές συναρτήσεις

3.4 Οι τριγωνομετρικές συναρτήσεις 3.4 Οι τριγωνομετρικές συναρτήσεις Περιοδικές συναρτήσεις Ορισμός Μια συνάρτηση f με εδίο ορισμού το Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ>0 τέτοιος ώστε για κάθε Α να ισχύει: ( T)A και

Διαβάστε περισσότερα