1. Αν είναι. 2. Να λύσετε τις εξισώσεις: 3. Αν α= 4. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση ηµα.συνβ=1+συνα.ηµβ, δείξτε
|
|
- Καλλίστρατος Λαγός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τ Ρ Ι Γ Ω Ν Ο Μ Ε Τ Ρ Ι Α Αν είναι π π α < β < <, να συγκρίνετε τους αριθµούς: π π (α) συνα και συνβ, (β) συν( α ) και συν( β ) Να λύσετε τις εξισώσεις: π χ (α) συνχ=ηµ(χ+ ), (β) ηµ =συνχ ο ο εφ50 εφ5 Αν α= ο ο εφ εφ 50 5 ο εφ50 + εφ5 και β= ο + εφ50 εφ5 ο ο, να αποδείξετε ότι αβ= εφ 55 ο Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση ηµασυνβ=+συναηµβ, δείξτε ότι το τρίγωνο είναι αµβλυγώνιο 5 Να λύσετε στο διάστηµα [0,π] τις εξισώσεις: (α) συν(συν(συνχ))=, (β) ( -εφχ)(+εφχ)=0, (γ) (συνχ-)(εφχ-)ηµχ=0, (δ) (ηµχ+ )(+συνχ)(+εφ χ)=0 6 Να λυθεί η εξίσωση: ηµ χ+ηµχσυν χ+συν χ=0 7 Να λυθεί η εξίσωση: εφ χ-6ηµ χ+=0 8 Να δείξετε ότι η παράσταση Α=συν χ-συνχσυνασυν(α+χ)+συν (α+χ) είναι ανεξάρτητη του χ 9 Αν ισχύει συν(α+β)=συνασυνβ, να αποδείξετε ότι ηµ (α+β)=(ηµα+ηµβ) 0 Να αποδειχθούν οι παρακάτω ισότητες: (α) ηµαηµ(β-γ)+ηµβηµ(γ-α)+ηµγηµ(α-β)=0, (β) ηµ α+ηµ(60 ο -α)ηµ(60 ο +α)=, (γ) συν α+συν (60 ο +α)+συν (60 ο -α)= /
2 Αν Α,Β,Γ είναι γωνίες τριγώνου ΑΒΓ µε εφα= αποδείξετε ότι Λ Γ =5 ο και εφβ= να Αν ισχύει ηµχ+ηµψ= και συνχ+συνψ=, να βρεθεί το συν(χ-ψ) Αν α+β+γ= π, να αποδειχθεί ότι: (α) (β) (γ) εφαεφβ+εφβεφγ+εφγεφα= σφασφβσφγ=σφα+σφβ+σφγ εφ α+εφ β+εφ γ συν ( Β Γ) (α) Αν σε τρίγωνο ΑΒΓ ισχύει η σχέση εφβ=, ηµ Α ηµ ( Β Γ) να αποδείξετε ότι το τρίγωνο είναι ορθογώνιο, ηµ Α (β) Αν σε τρίγωνο ΑΒΓ ισχύει η σχέση = συνγ, να αποδείξετε ηµ Β ότι το τρίγωνο είναι ισοσκελές α 5 Αν είναι συν, να υπολογιστεί το συνα = 6 Να αποδειχτεί ότι: (συνα+συνβ) +(ηµα+ηµβ) =συν ( 7 Να λυθούν οι εξισώσεις: (α) συν χ+ηµ χ=, (β) α β (+ηµχ)σφ( π +χ)= 8 Να λυθούν οι εξισώσεις: (α) ηµχσυνχ=, 9 Να αποδείξετε ότι: (α) (β) (β) συνχ=ηµ χ +, (γ) εφχ=ηµχ, χ (0,π) π π π συν α + συν ( α + ) + συν ( α + ) + συν ( α + ) = [ηµθ(+ηµθ)+συνθ(+συνθ)][ηµθ(-ηµθ)+συνθ(-συνθ)]=ηµθ 0 είξτε ότι: (α) εφ π +εφ 5π =, (β) εφ α+σφ (+ συν α ) α= συν α ) /
3 ηµ α συν α συνα α είξτε ότι: = εφ + συν α + συν α + συνα χ Να λυθούν οι εξισώσεις: (α) ηµχ εφ = συνχ, (β) (γ), Να λυθεί η εξίσωση: ηµ (χ+5 ο )-ηµ (χ-5 ο )= ηµ χ+5συν χ- ηµχ=, +ηµχ+συνχ+ηµχ+συνχ=0 π π π Να αποδειχτεί ότι: (α) συν συν συν =, 7 (β) ηµ0 ο συν0 ο συν0 ο = 8, (γ) συν0 ο συν0 ο συν60 ο συν80 ο = 6 5 (α) είξτε ότι για κάθε γωνία α ισχύει : συνα=συν α-συνα, (β) Να λυθεί η εξίσωση: +ηµχ=σφχ Να λυθεί η εξίσωση: ηµχ-ηµχ=(-συνχ) 7 (α) Αν για τις γωνίες α,β ισχύει ηµ β=ηµασυνα, να αποδείξετε ότι π συν + α = συν β ( ) (β) Αν για τις γωνίες α,β ισχύει εφ α=+εφ β, να αποδείξετε ότι συν β=+συνα 8 (α) είξτε ότι για κάθε γωνία α ισχύει : ηµα=ηµα-ηµ α, ηµα ηµβ ηµγ (β) Αν ηµα+ηµβ+ηµγ=0, να δείξετε ότι = ηµ α ηµ β ηµ γ 9 (α) Αν σε τρίγωνο ΑΒΓ ισχύει η σχέση ηµ Α=ηµ Β+ηµ Γ, να αποδείξετε ότι το τρίγωνο είναι ορθογώνιο, (β) Αν σε τρίγωνο ΑΒΓ ισχύει η σχέση ηµ Α+ηµ Β+ηµ Γ=, να αποδείξετε ότι το τρίγωνο είναι ορθογώνιο Να δείξετε ότι: = ο ο ηµ 0 συν0 /
4 ΠΟΛΥΩΝΥΜΑ ίνονται τα πολυώνυµα P(χ)=(α+)χ +χ +βχ+γ- και Q(χ)=χ +δχ +6χ+ Να βρείτε τις τιµές των α,β,γ,δ R για τις οποίες το πολυώνυµο F(x)= P(χ)+ Q(χ) είναι: (α) βαθµού, (β) βαθµού, (γ) βαθµού 0, (δ) το µηδενικό πολυώνυµο (α) Να βρείτε τις τιµές των α,β,γ R ώστε τα πολυώνυµα P(χ)=χ +χ+9 και Q(χ)=α(χ+)(χ+)+βχ(χ-)+γ να είναι ίσα (β) Υπάρχουν τιµές α,β,γ R ώστε τα πολυώνυµα f(χ)=χ +χ + και g(χ)= α(χ+)(χ+)+βχ(χ-)+γ να είναι ίσα; Να βρείτε πολυώνυµο P(χ) τρίτου βαθµού το οποίο να έχει ρίζα το 0 και να ικανοποιεί την σχέση P(χ-)=P(χ)-χ, χ R Αν το πολυώνυµο P(χ)=χ +χ -χ +αχ+β είναι τέλειο τετράγωνο πολυωνύµου, να δειχτεί ότι α+β=0 5 Αν είναι α +β +γ =αβγ και α+β+γ=0, όπου α,β,γ R, να δείξετε ότι το πολυώνυµο Q(χ)=(α-β)χ 9 +(β-γ)χ -(γ-α) είναι το µηδενικό (Χρησιµοποιήστε την ταυτότητα του Euler ) 6 (α) Αν το πολυώνυµο P(χ) έχει παράγοντα το χ+, να δείξετε ότι το πολυώνυµο Q(χ)=P(χ+)+χ -5 έχει παράγοντα το χ+5 (β) Αν P(χ) είναι ένα µη µηδενικό πολυώνυµο και το χ-α διαιρεί ακριβώς το πολυώνυµο f(χ)=p(χ)-χ, να δείξετε ότι το χ-α διαιρεί ακριβώς το πολυώνυµο g(χ)= P(P(χ))-χ 7 (α) Να βρείτε πολυώνυµο το οποίο όταν διαιρεθεί µε το χ +χ+ δίνει πηλίκο χ+ και υπόλοιπο χ+ (β) Να δείξετε ότι το υπόλοιπο της διαίρεσης του πολυωνύµου P(χ)=α χ +(α -α+)χ-(α+) δια του χ+, είναι ανεξάρτητο του α 8 Να προσδιορίσετε το θ (0,π) ώστε το χ- να είναι παράγοντας του πολυωνύµου P(χ)=χ -(συν θ)χ +(ηµθ)χ +χ- /
5 9 Αν το πολυώνυµο P(χ)=χ +αχ -χ+β έχει ως παράγοντα το χ -χ-6, να προσδιορίσετε τα α,β R 0 Το πολυώνυµο P(χ) διαιρούµενο µε τα πολυώνυµα χ+ και χ+ αφήνει υπόλοιπο και αντίστοιχα Να βρείτε το υπόλοιπο της διαίρεσης P(χ):(χ+)(χ+) ν ( x ) Αν είναι f ( x) και g ( x) = x+ να δείξετε ότι η διαίρεση ν = ν f ( x) : g( x) είναι τέλεια (ν φυσικός αριθµός) Αν το πολυώνυµο P(χ)=-νχ ν+ +(ν+)χ ν +α διαιρείται µε το χ-, τότε να δείξετε ότι διαιρείται και µε το (χ-) Να λυθούν οι εξισώσεις: (α) χ -9χ +8χ=0, (β) χ -χ -χ+=0, (γ) χ -χ +χ-9=0, (δ) χ +χ +8χ+=0 Έστω οι ακέραιοι α,β και το πολυώνυµο P(χ)=χ +αχ +βχ+ Αν το πολυώνυµο P(χ) έχει δύο θετικές ακέραιες ρίζες, να βρείτε τους α,β 5 Να λυθούν οι εξισώσεις: (α) χ 6-9χ +8=0, (β) (χ+) -5(χ+) +=0 6 ίνονται τα πολυώνυµα P(χ)=χ -χ +αχ+β, Q(χ)=χ -χ- Αν το Q(χ) διαιρεί ακριβώς το P(χ), να λυθεί η ανίσωση P(χ)<0 7 Να αποδειχτεί ότι η εξίσωση χ ν -=0 (ν φυσικός αριθµός) έχει ακριβώς δύο ακέραιες ρίζες, όταν ν-άρτιος και έχει ακριβώς µια ακέραια ρίζα, όταν ν-περιττός 8 Να λυθεί η ανίσωση: χ -χ +6<0 5/
6 9 Να βρεθούν τρεις διαδοχικοί ακέραιοι αριθµοί τέτοιοι, ώστε ο κύβος του µεγαλύτερου να ισούται µε το τριπλάσιο του αθροίσµατος των κύβων των δύο άλλων χ + χ 50 Να λυθεί η ανίσωση: χ 5 Να λυθούν οι εξισώσεις: (α) χ + = χ+, (β) χ + = 6( χ + ) χ χ χ χ 5 Να λυθεί η εξίσωση: ( χ + ) χ+ 5 = ( χ+ ) χ+ χ + 9 χ 5 Να λυθεί η εξίσωση: + = χ χ+ 9 5 Να λυθεί η εξίσωση: + χ 5 = χ 55 Να λυθούν οι ανισώσεις: (α) χ χ + (β) χ χ+ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 56 Σε µια αριθµητική πρόοδο η διαφορά ω και ο δεύτερος όρος είναι η µικρότερη και η µεγαλύτερη ρίζα αντίστοιχα της πολυωνυµικής εξίσωσης χ -6χ +χ-6=0 Να βρεθεί το 0 ος όρος της προόδου 57 Αν οι αριθµοί συν ( π -χ), συν χ, συν ( π +χ) µε χ [0,π], είναι διαδοχικοί όροι αριθµητικής προόδου, να βρεθεί το χ 58 Να βρεθούν τρεις αριθµοί που είναι διαδοχικοί όροι αριθµητικής προόδου, αν το άθροισµά τους είναι και τι γινόµενό τους 5 59 Σε µια αριθµητική πρόοδο (α ν ) ισχύει: α +α 5 +α 8 =5 και S 5 =α 7 +0 Να βρείτε την πρόοδο και το άθροισµα S 0 60 Αν οι αριθµοί α,β,γ είναι διαδοχικοί όροι αριθµητικής προόδου, να δειχθεί ότι (α-β) +(α-γ) +(β-γ) =6(β -αγ) 6/
7 6 Να βρεθούν οι συντελεστές α,β του τριωνύµου χ +αχ+β, αν οι συντελεστές,α,β είναι διαδοχικοί όροι αύξουσας αριθµητικής προόδου και το άθροισµα των τετραγώνων των ριζών του είναι 6 6 Σε µια αύξουσα αριθµητική πρόοδο µε 00 όρους, οι δύο µεσαίοι όροι είναι οι αριθµοί 50 και 5 Να βρείτε την πρόοδο και το άθροισµα των όρων της προόδου που είναι µεταξύ του 0 ου και του 0 ου όρου 6 Ένας γυµναστής τοποθετεί τους 6 µαθητές µιας τάξης σε σχήµα τριγώνου έτσι, ώστε ο πρώτος στίχος να έχει µαθητή, ο δεύτερος στίχος να έχει µαθητές, ο τρίτος µαθητές κοκ Να βρεθεί πόσους στίχους έχει ο σχηµατισµός 6 Αν οι αριθµοί α,β,γ,δ είναι διαδοχικοί όροι αριθµητικής προόδου, δείξτε ότι και οι αριθµοί β+γ+δ, γ+δ+α, δ+α+β, α+β+γ είναι διαδοχικοί όροι αριθµητικής προόδου 65 (α) Να βρεθεί το χ ώστε τα τετράγωνα των αριθµών χ+,χ+ και χ+9 να αποτελούν διαδοχικούς όρους αριθµητικής προόδου (β) Αν οι αριθµοί α,β,γ είναι διαδοχικοί όροι αριθµητικής προόδου, να δειχθεί ότι και οι αριθµοί α -βγ, β -αγ και γ -αβ είναι διαδοχικοί όροι αριθµητικής προόδου 66 (α) Αν τα µήκη των πλευρών ενός ορθογωνίου τριγώνου είναι διαδοχικοί όροι αριθµητικής προόδου, να δείξετε ότι τα µήκη αυτά είναι ανάλογα των αριθµών,,5 (β) Αν οι τρεις πλευρές ενός ορθογωνίου τριγώνου είναι διαδοχικοί όροι αριθµητικής προόδου µε διαφορά 6, να βρεθούν οι πλευρές του τριγώνου 67 Σε µια αριθµητική πρόοδο το άθροισµα των 0 πρώτων όρων είναι 00 και η διαφορά του τρίτου από τον δέκατο όρο είναι 5 Να βρεθούν οι 5 πρώτοι όροι της προόδου 68 Αν S, S, S είναι αντίστοιχα τα αθροίσµατα των ν πρώτων όρων τριών αριθµητικών προόδων, που έχει κάθε µια πρώτο όρο το και διαφορά 7/
8 ,, αντίστοιχα, να δείξετε ότι ι αριθµοί S, S, S είναι επίσης διαδοχικοί όροι αριθµητικής προόδου 69 Να αποδειχτεί ότι αν οι πλευρές α,β,γ τριγώνου και η ηµιπερίµετρός του είναι διαδοχικοί όροι αριθµητικής προόδου, τότε το τρίγωνο είναι ορθογώνιο 70 Μεταξύ των αριθµών και α παρεµβάλλονται 8 αριθµοί έτσι, ώστε οι 0 συνολικά αριθµοί να αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε διαφορά 5 Να βρεθεί ο αριθµός α και η πρόοδος ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ 7 Το γινόµενο τριών φυσικών αριθµών είναι 000 και το άθροισµά τους είναι 5 Αν τα τετράγωνά τους σχηµατίζουν γεωµετρική πρόοδο, να βρεθούν οι αριθµοί 7 Να βρείτε τη γεωµετρική πρόοδο (α ν ) για την οποία ισχύει: S =0 και S 8 = Σε µια γεωµετρική πρόοδο (α ν ) ισχύει ότι: α =, ακ =6 και S κ = (για κάποιο κ φυσικό αριθµό) Να βρείτε το λόγο λ της προόδου και το κ 7 Να βρεθούν τρεις διαδοχικοί αριθµοί γεωµετρικής προόδου οι οποίοι να έχουν άθροισµα και γινόµενο 6 x Να λυθεί η εξίσωση: = 5 (x φυσικός αριθµός) 76 Αν οι αριθµοί α,β,γ,δ είναι διαδοχικοί αριθµοί γεωµετρικής προόδου να αποδείξετε ότι: α (β+γ)(β +γ )=β (α+β)(α +β ) 77 Να βρεθεί ο πρώτος όρος και ο λόγος γεωµετρικής προόδου (α ν ) αν ισχύουν οι σχέσεις: α +α +α +α +α 5 =9 και α +α +α +α 5 +α 6 =86 8/
9 78 Μεταξύ των αριθµών 5 και 60 να παρεµβληθούν τέσσερις αριθµοί έτσι, ώστε όλοι µαζί οι αριθµοί να αποτελούν διαδοχικούς όρους γεωµετρικής προόδου 79 Να βρεθεί ο γενικός όρος της ακολουθίας (α ν ) για την οποία ισχύει: α = και 6α ν++α ν =8α ν+ α ν (ν=,, ) 80 Να βρεθεί ο γενικός όρος της ακολουθίας (α ν ) για την οποία ισχύει: α = και α ν =α ν+ - (ν=,, ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ 8 Έστω η συνάρτηση f µε τύπο f(χ)= χ -χ (χ R) (α) Να αποδείξετε ότι η είναι γνησίως αύξουσα στο [0,+ ) (β) Να λύσετε την εξίσωση: f(χ)=0 + 8 Αν α >0, να συγκρίνετε τους αριθµούς Α=, α και Β= α χ χ χ χ 8 Να αποδείξετε ότι για κάθε χ R ισχύει: ( + 9 ) ( + ) Πότε ισχύει η ισότητα; χ χ 8 Για ποια τιµή του χ R οι αριθµοί χ χ, 6, αποτελούν διαδοχικούς όρους αριθµητικής προόδου; 85 Να λυθούν οι εξισώσεις: (α) χ+ 6 = (β) χ+ 6 = 8 8 χ+ 8 χ Αν η εξίσωση χ -( θ +)χ+9=0 έχει πραγµατικές ρίζες, να προσδιορίσετε το θ 87 Να λυθούν οι εξισώσεις: ηµ (α) 7 χ ηµχ 7 = 9 ηµ χ συν χ (β) 5 = 9 9/
10 88 Να λυθεί το σύστηµα: χ ψ = - χ ψ χ = Να λυθεί το σύστηµα: χ =5 ψ 5 χ = ψ 90 Να λυθούν οι εξισώσεις: χ ( χ+ ) χ (α) 7 = χ χ+ χ χ+ (β) = 6 χ +χ+ 5 9 Να λυθεί η ανίσωση: < χ+ χ χ 9 Να λυθεί η ανίσωση: e e< e e χ χ χ 9 Να λυθεί η ανίσωση: + 9 > 5 6 x x 9 Να λυθεί η ανίσωση: 0 > Να λυθούν οι εξισώσεις: χ χ+ (α) = χ 6 χ χ (β) ((5 ) ) = (γ) χ χ = ΛΟΓΑΡΙΘΜΟΙ 96 Να δειχθεί ότι οι αριθµοί log 7 και log 5 log 7 5 είναι αντίστροφοι 97 Να συγκριθούν οι αριθµοί Α= log (8 ) 98 Αν 7 = log ( α) α να δειχθεί ότι log 6 6= + α 99 Αν 0<, β, χ β αβ και Β= log (7 9) α και αβ, να αποδειχθεί ότι: + = log χ log χ log χ a 0/
11 00 Να βρεθεί το χ R ώστε να ισχύει: (log 8) log 6+ log 8= 9 χ + χ χ 0 Να αποδειχθεί ότι: (α) log log log 5 log 0= (log 9 ) log 5 log5 6 log6 7 log7 8 log 9= (β) 0 Να αποδειχθεί ότι: (α) log log 5 9 log 8 = 5 (β) log 7 log 6+ log 5= α + β logα + logβ 0 Αν α,β>0 και ισχύει η σχέση: log( ) =, να αποδειχθεί ότι οι αριθµοί α, 7αβ, β είναι όροι αριθµητικής προόδου 0 Αν για τους διαφορετικούς ανά δύο θετικούς αριθµούς α,β,γ ισχύει: logα logβ logγ α β γ = =, να δειχθεί ότι α β γ = β γ γ α α β 05 Αν 0<, β, γ, χ α και οι αριθµοί α,β,γ είναι διαδοχικοί όροι γεωµετρικής προόδου, να δειχθεί ότι οι αριθµοί,, είναι διαδοχικοί όροι αριθµητικής προόδου log χ log χ log χ a β log5 log5 06 Να αποδειχθεί ότι: 5 = 0 γ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ 07 Να βρεθεί το πεδίο ορισµού των συναρτήσεων f µε τύπο: (α) f(x)= log (+ x ) (β) f(x)= log(logx ) (γ) f(x)= log x (x+ ) (δ) f(x)= log( x x + ) 08Να βρεθεί το πρόσηµο των αριθµών: (α) log ( ) (β) log 5 (γ) ( ) log 5 e /
12 09 Να λυθούν οι ανισώσεις: (α) lnx (lnx) (β) ln( x ) < ln + lnx 0 Να λυθεί η εξίσωση: (+ log 5) (log x) x 5 = Να λυθούν οι εξισώσεις: (α) logx + ( x + x 6) = log5x (β) (log x ) 5 = Να λυθούν οι εξισώσεις: (α) ln x 6 ln x+ lnx 6= 0 ln (β) x ln + x = 5 Να λυθεί η ανίσωση: ln x lnx< 0 Να λυθούν οι ανισώσεις: (α) ( 5) > 7 log x x log ( x ) log (β) ( x ) > 5 Για ποιες τιµές του θ R η ανίσωση: x (+ logθ ) x+ 5 (logθ ) 0 αληθεύει για κάθε χ R; 6 Να λυθεί η ανίσωση: log x + logx 7 Να λυθεί η ανίσωση: > + logx+ logx 8 Να λυθεί η ανίσωση: ln x 5lnx log + log x 9 Να λυθεί η εξίσωση: (x) = 00 0 Να λυθεί η εξίσωση: log x 6 log x x = x Να λυθεί η εξίσωση: (log x ) = log (log ) log x /
13 Να λυθούν τα παρακάτω συστήµατα: (α) log( xψ ) = x log( ) = ψ (β) log( x + ψ ) = + log8 log( x ψ ) + log= log( x+ ψ ) Να λυθεί το σύστηµα: log x + log ψ = ψx x + ψ = Να λυθεί το σύστηµα: logx logx + 9 logψ logψ = = 5 log x 5 Να λυθεί η εξίσωση: x = /
1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ 1 ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο A. α) Αν α>0 και α 1,τότε για οποιουσδήποτε θ 1, θ >0 να δείξετε ότι log α (θ 1. θ )=log α θ 1 +log
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ. Νδο ηµ α Α) = εφα +συνα Β) π συνα εφ α = +ηµ α Γ) ηµ α= ηµ α συνα+ συν α ηµα ) συν α+ηµ α εφα= + εφα εφα Ε) ( + συνα) εφα=ηµ α Ζ) =εφα εφα+σφα. Νδο
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1
1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.
Διαβάστε περισσότερα1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =
Διαβάστε περισσότερα1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι
_ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x
Διαβάστε περισσότεραΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1
ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α
Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6
Διαβάστε περισσότεραςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές
Διαβάστε περισσότεραΆλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση
Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ 00-08 α φάση Συναρτήσεις Θεωρούμε τη συνάρτηση Α, 6 wwwaskisopolisgr f κ, με 4,4 και κ η οποία διέρχεται από το σημείο και τμήμα της γραφικής της παράστασης φαίνεται
Διαβάστε περισσότεραA N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις
ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ............................................
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότεραΙγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β Λυκείου ΑΣΚΗΣΕΙΣ. 2. Να υπολογίσετε την τιµή των παραστάσεων : α) συν π 18 συνπ 9 - ηµ π. 18 ηµπ 9. β) συν18 ο συν27 ο - ηµ18 ο ηµ27 ο
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ Β Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο ο - Φ Υ Λ Λ Ο Νο 6 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΓΩΝΙΩΝ ΑΣΚΗΣΕΙΣ 1. Να υπολογίσετε την τιµή των παραστάσεων : α) συν
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.
Διαβάστε περισσότερα2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω.
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Να βρείτε τους αριθμούς: i)ημ5 0 ii)συν(-660 0 ) i)διαιρώντας το 5 με το 60 βρίσκω και εομένως 0 0 0 5 60 5 5 60 5 5 0 0 0 0 0 ii) ( 660 ) ( 70 60 ) ( 60 60 ) 0 (60 ) Να
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
Διαβάστε περισσότεραΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία
Διαβάστε περισσότερα2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi.
.1 Πολυώνυμα 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; i. 1 x + x ii. x + 7 x iii. 5 x + 7x x iv. 1 x + x v. 1 4 4 x + x + 4x vi. 1 x + 5x. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Τελευταία ενηµέρωση: Νοέµβριος 016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Συστήµατα 1.1 Μη γραµµικά συστήµατα........................ Ιδιότητες συναρτήσεων 3.1 Μονοτονία,
Διαβάστε περισσότερα= συν. Μάθηµα 9. Κεφάλαιο: Τριγωνοµετρία. Θεµατικές Ενότητες: 1. Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών. Εισαγωγή
Μάθηµα 9 Κεφάλαιο: Τριγωνοµετρία Θεµατικές Ενότητες: 1 Τριγωνοµετρικοί Αριθµοί Αθροίσµατος Γωνιών Εισαγωγή Γνωρίζουµε τους τριγωνοµετρικούς αριθµούς των 30 0, όως και των 45 0 Είναι δυνατόν, µέσω αυτών,
Διαβάστε περισσότεραΘέµατα Εξετάσεων Άλγεβρας Β Λυκείου
Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου 1999-004 Περιεχόµενα 1 Θέµατα 1999......................................... 3 Θέµατα 000......................................... 8 3 Θέµατα Σεπτεµβρίου 000..................................
Διαβάστε περισσότεραBbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {
ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=
Διαβάστε περισσότερα( ) x 3 + ( λ 3 1) x 2 + λ 1
Επαναληπτικό Διαγώνισµα Άλγεβρα Β Λυκείου Θέµα Α Α1. Έστω η πολυωνυµική εξίσωσης α ν χ ν + α ν 1 χ ν 1 +... + α 1 χ + α 0 = 0, µε ακέραιους συντελεστές. Να αποδείξετε ότι αν ο ακέραιος ρ 0 είναι ρίζα της
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 1 / 1 / 0 1 6 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 1 0 / 1 / 0 1 8 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο
Διαβάστε περισσότερα1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R
1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση
Διαβάστε περισσότερα5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ
5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Διαβάστε περισσότερα7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Διαβάστε περισσότερα( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.
ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ 1) Να βρεθεί το Π.Ο. των συναρτήσεων : α) f ( ) β) f ( ) + 5 + 6 ln( + 1) γ) f ( ) δ) 1 f( ) 4 ) Να βρεθεί
Διαβάστε περισσότεραΟΝΟΜ/ΜΟ :... ΟΜΑ Α Α. 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : Σχῆµα 1: Ασκηση 1δ.
ΙΑΓΩΝΙΣΜΑ 1 oυ 4 νoυ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ΟΜΑ Α Α 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : (α ) Η περίοδος της συνάρτησης f(x) = 3συν x 5 είναι 5π... (ϐ ) Η συνάρτηση f(x)
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ
Υπολογισμός παραστάσεων ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ. Να υπολογίσετε τις τιμές των παραστάσεων : 4 6 6 4 δ) ε) 4 6 4. Να υπολογίσετε τις τιμές των
Διαβάστε περισσότεραΆλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.
Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις
Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.
Διαβάστε περισσότεραΤαυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"
Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)
Διαβάστε περισσότεραΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΛΥΚΕΙΟ ΑΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ - ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΛΕΡΑ. Να λύσετε τα πιο κάτω συστήματα: α) χ+ψ=7 β)3κ+λ=4 γ) +y= δ)χ+ψ= χ-ψ=- 5κ=+3λ -y-y =7 4χψ=3.Να γίνουν οι πράξεις: α)
Διαβάστε περισσότεραΜαθηματικά για την B Λυκείου. ισχύει: Q 3. c 3. e 2 e 8. Άρα: Οπότε: Q ,2 10. t N 0,5, όπου t σε ώρες. Άρα: 0. Άρα: Γ)
Τάξη: Β Εκθετική και Λογαριθμική Συνάρτηση Α. ΕΚΘΕΤΙΚΗ ΜΕΤΑΒΟΛΗ Πολλά φαινόμενα της πραγματικότητας συνδέονται με την έννοια της εκθετικής μεταβολής. Θα αναφέρουμε λίγα τέτοια προβλήματα για κατανόηση
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. Σωστό. Σωστό. Σωστό 4. Σωστό 5. Σωστό 6. Σωστό 7. Λάθος 8. Λάθος 9. Σωστό 10. Σωστό 11. Σωστό 1. Λάθος 1. Λάθος 14. Σωστό 15. Σωστό 16. Σωστό 17. Σωστό
Διαβάστε περισσότεραΤριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ
ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί
Διαβάστε περισσότεραK. Μυλωνάκης Αλγεβρα B Λυκείου
ΠΟΛΥΩΝΥΜΑ Ονομάζουμε μονώνυμο του x κάθε πραγματικό αριθμό ή κάθε παράσταση της μορφής αx ν, όπου α είναι πραγμ. αριθμός και ν ένας θετικός ακέραιος. Π.χ. οι παραστάσεις 2χ 4, -3χ 2, 7 είναι μονώνυμα του
Διαβάστε περισσότερα4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0
1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...
Διαβάστε περισσότεραΆλγεβρα Γενικής Παιδείας Β Λυκείου 2001
Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,
Διαβάστε περισσότεραii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότεραx 1 δίνει υπόλοιπο 24
ΓΕΝΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 3. Δίνεται το πολυώνυμο P() 6 α β το οποίο έχει παράγοντα το και όταν διαιρείται με το δίνει υπόλοιπο i. Να δείξετε ότι: α και β 6 ii. Να λύσετε την εξίσωση
Διαβάστε περισσότεραΆλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.
Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 2 η δεκάδα θεµάτων επανάληψης 11. Α. Αν α > 0 µε α 1 τότε για οποιουσδήποτε πραγµατικούς αριθµούς θ 1, θ 2 > 0 να αποδείξετε ότι log α (θ 1 θ 2 ) = log α θ 1 + log α θ 2 Β. Έστω το σύστηµα Σ : α1x +
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου
Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Α. Αν α>0 με α, τότε για οποιουσδήποτε θ, θ,θ>0 και κ ισχύει log (θ θ ) log θ log θ Μονάδες 8 α α α Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα( x) ( ) ( ) ( ) ( ) Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ. f x+ h f x. 5x 3 2. x x 2x. 3 x 2. x 2x. f x = log x. f x = ln x 4. log 9. 2x 7x 15. x x.
Κεφάλαιο - Συναρτήσεις I Πεδίο ορισµού συνάρτησης Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ίνονται οι συναρτήσεις: f( ) = +, (ii) f( ) = Να βρεθούν τα f( 0 ), f( ), f( ), f( α ), f( α+ β), f( α 5) ( ) ( ) f + h f, h Να
Διαβάστε περισσότεραΣυνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1
Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει
Διαβάστε περισσότεραΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραΑν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η
Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη α. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή
Διαβάστε περισσότεραΘΕΜΑ Α ΘΕΜΑ B. Β.1. Γνωρίζουμε ότι τα σημεία Α(π,4) και Β(-2π,6) ανήκουν στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΘΕΜΑ Α Α.1. Η απόδειξη βρίσκεται στη σελίδα 175 του σχολικού βιβλίου. Α.. Η διατύπωση του ορισμού βρίσκεται στη σελίδα 163 του σχολικού βιβλίου «εκθετική συνάρτηση». Α.3. i) Λάθος ii) Λάθος iii) Σωστό
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΕρωτήσεις επί των ρητών αριθµών
Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα
Διαβάστε περισσότερα5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ασκήσεις σχολικού βιβλίου σελίδας 84 85 A Οµάδας. Στο ίδιο σύστηµα αξόνων να παραστήσετε γραφικά τις συναρτήσεις f() = log και g() = log Τι παρατηρείτε; Να δικαιολογήσετε την
Διαβάστε περισσότεραΒασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότερα- 1 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ
- ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com - ΠΟΛΥΩΝΥΜΑ ν Μονώνυμο του χ ονομάζουμε κάθε αλγεβρική παράσταση της μορφής α χ με χ R και ν Ν. Πολυώνυμο του χ
Διαβάστε περισσότερα47 Να προσδιορίσετε τη συνάρτηση gof, αν α) f και g, β) f ηµ και π γ) f ( ) και g εφ 4 g 48 ίνονται οι συναρτήσεις f + και g Να προσδιορίσετε τις συνα
ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ 43 Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις είναι f g Στις περιπτώσεις που είναι f g να προσδιορίσετε το ευρύτερο δυνατό υποσύνολο του στο οποίο ισχύει f g α) β) γ) f και f +
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΟΓΡΑΡΙΘΜΙΚΗ ΥΝΑΡΤΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ.-. ΟΓΑΡΙΘΜΙΚΗ ΥΝΑΡΤΗΗ. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς:. Η εξίσωση α x = θ, όπου α > 0 με α και θ >
Διαβάστε περισσότερα( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει
μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραx y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο.
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) 1. Δίνονται τα πολυώνυμα: P ( x) x x, Q( x) x x 1. Να βρεθούν: a) P( x) Q( x) ) P( x) Q( x) ) P( x) Q( x). Να βρεθεί η τιμή του λ R για την οποία
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ ΚΕΦ. 1 ο (ΠΙΘΑΝΟΤΗΤΕΣ) Ο ρ ι σ µ ο ί Πείραµα τύχης (π.τ.) είναι το πείραµα για το οποίο δεν µπορούµε εκ των προτέρων να προβλέψουµε το αποτέλεσµά του αν και επαναλαµβάνεται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ
1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ 1. Φυσικοί αριθμοί : Ν = {0,1,,3,4,...}. Ακέραιοι αριθμοί : Ζ = {...-4,-3,-,-1,0,1,,3,4,...} 3. Ρητοί αριθμοί : Q = { ì í, μ Ζ, ν Ζ* } Σημ. Το σύνολο Q των ρητών αριθμών ταυτίζεται με
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΤΑΥΤΟΤΗΤΕΣ α ) η μ + συν = γ ) εφ + =, ¹ κπ+ sun hm β ) εφ =, ¹ κπ+ sun sun δ ) σφ =, ¹
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει
ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση
Διαβάστε περισσότεραΜαθηματικά B Λυκείου
Επαναληπτικά Θέματα ΟΕΦΕ (Προσομοίωσης Εξετάσεων) 00-06 Μαθηματικά B Λυκείου εκφωνήσεις και απαντήσεις από τον parmenides5 χωρίς υδατογραφήματα* *τα υδατογραφήματα τα έβγαλα μόνος μου και δεν τα βρήκα
Διαβάστε περισσότερα<Πεδία ορισμού ισότητα πράξεις σύνθεση>
Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε
Διαβάστε περισσότεραΚεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις.
Μαθηματικά B Γυμνασίου Κεφάλαιο 1 ο. Εξισώσεις-Ανισώσεις. Μέρος Α.- Θεωρία. 1. Τι λέμε αλγεβρική και τι αριθμητική παράσταση; 2. Τι λέμε αναγωγή ομοίων όρων; 3. Τι λέμε εξίσωση α βαθμού; 4. Τι λέμε πρώτο
Διαβάστε περισσότερα