ΚΕΦΑΛΑΙΟ 12: ΜΙΚΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ευστάθεια κοντά στη θέση ισορροπίας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 12: ΜΙΚΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ευστάθεια κοντά στη θέση ισορροπίας"

Transcript

1 ΚΕΦΛΙΟ : ΜΙΚΡΕΣ ΤΛΝΤΩΣΕΙΣ. Ευστάθεια κντά στη θέση ισρρπίας Θερύµε ένα συντηρητικό σύστηµα µε -βαθµύς ελευθερίας, τ πί περιγράφεται από τις γενικευµένες συντεταγµένες,,. ν τ σύστηµα βρίσκεται σε µια θέση ισρρπίας, τότε ι γενικευµένες δυνάµεις στη θέση αυτή ισύται µε µηδέν, F,,, πό την µπρύµε να υπλγίυµε τις συντεταγµένες στη θέση ισρρπίας,,, όπυ η δυναµική ενέργεια έχει ακρότατ. Μια θέση ισρρπίας καλείται ευσταθής ή ασταθής, ανάλγα αν εφαρµόµενη µια µικρή διαταραχή τυ συστήµατς στη θέση ισρρπίας τυ πρκαλεί απλά µια περιρισµένη κίνηση τυ συστήµατς γύρ από την θέση ισρρπίας τυ ή την ριστική απµάκρυνσή τυ από αυτήν. Στ Σχήµα απτυπώνεται η δυναµική ενέργεια στις δύ χαρακτηριστικές περιπτώσεις. Σχήµα Η δυναµική ενέργεια Επειδή ενδιαφερόµαστε για την κίνηση τυ συστήµατς στη γειτνιά µιας ευσταθύς θέσης ισρρπίας, αναπτύσσυµε κατά yo τη δυναµική ενέργεια για µικρές µετατπίσεις η από τη θέση ισρρπίας,,...,,..., o η o ηη... όπυ η. ν µετατπίσυµε την στάθµη αναφράς ώστε,, και επειδή γραµµικός όρς στην ισύται µε µηδέν λόγ της, η δυναµική ενέργεια σε πρώτη πρσέγγιση ισύται µε όπυ o,...,,, η η 3. Είναι πρφανές ότι ι σταθερές είναι συµµετρικές, δηλ.. Παρόµια ανάπτυξη σε σειρά µπρύµε να πάρυµε και για την κινητική ενέργεια, Chp. 5

2 ,,..., η η. 4 Όπς και στη περίπτση της δυναµικής ενέργειας, τα στιχεία Τ είναι συµµετρικά ς πρς τυς δείκτες τυς, δηλ. Τ Τ. πόδειξη της 4. ν κανείς δεν επιθυµεί να δει τα ακριβή βήµατα της απόδειξης, µπρεί να πρχρήσει στ επόµεν κµµάτι, χρίς να χάσει τη συνέχεια τυ φρµαλισµύ πυ αναπτύσσυµε. Πράγµατι, η κινητική ενέργεια είναι, υ, όπυ dt d υ και τα διανύσµατα θέσης είναι συναρτήσεις τν γενικευµένν συντεταγµένν, t. Υπθέτυµε ότι τα διανύσµατα θέσης,,..., δεν εξαρτώνται ρητά από τν χρόν t, πότε η ταχύτης ισύται µε: t dt d υ και επειδή t, η ταχύτητα γράφεται τελικά, υ πότε η κινητική ενέργεια παίρνει τη µρφή, η 5 ναπτύσσυµε τ τετράγν της εστερικής παρένθεσης:, η Συνεπώς, η κινητική ενέργεια 5 γράφεται,,,, η η 6 όπυ. Οι συντελεστές είναι γενικώς συναρτήσεις τν και µπρύν να αναπτυχθύν σε σειρά yo ς πρς τη θέση ισρρπίας, ς ακλύθς,...,...,,..., o η 7 Εφόσν όµς η ανάπτυξη 6 είναι ήδη τετραγνική ς πρς τα, στη χαµηλότερη πρσέγγιση της Τ κρατάµε µόν τ πρώτ όρ της ανάπτυξης 7, πότε φθάνυµε στη ανάπτυξη 4, η Chp. 5

3 όπυ ι σταθερές Τ,,., η η πό τις 3 και 4, η Lgg δίδεται από τη σχέση, L η η ηη,. 8 Λαµβάνντας ς γενικευµένες µεταβλητές τις απκλίσεις η από την ηρεµία, η Lgg 8 δηγεί στις εξισώσεις Lgge, η η,,,. 9 H επίλυση τυ συστήµατς τν -διαφρικών εξισώσεν 9 θα δώσει την κίνηση τυ συστήµατς κντά στη θέση ισρρπίας,,.. Επίλυση τν εξισώσεν κίνησης Οι διαφρικές εξισώσεις 9 είναι γραµµικές µε σταθερύς συντελεστές. κιµάυµε επµένς λύσεις ταλάντσης της µρφής, η C e -t όπυ C είναι τ πλάτς ταλάντσης για την συντεταγµένη και C ένας παράγντας αναλγίας. ντικαθιστώντας στην 9 λαµβάνυµε,,,, Οι εξισώσεις απτελύν ένα σύστηµα -µγενών εξισώσεν µε αγνώστυς τα πλάτη και για να υπάρχει µη µηδενική λύση θα πρέπει η ρίυσα τν συντελεστών να µηδενίεται, απ όπυ λαµβάνµε τη χαρακτηριστική εξίσση -βαθµύ ς πρς, της πίας ι ρίες θα είναι ι συχνότητες ταλάντσης τν λύσεν. Σαν εφαρµγή της παραπάν θερίας, θα µελετήσυµε τ παράδειγµα τυ διπλύ εκκρεµύς παρακάτ. Chp. 53

4 Πριν κλείσυµε τ εδάφι αυτό, θα δύµε τ πρόβληµα πυ αναπτύξαµε από µια διαφρετική σκπιά. Η εξίσση µπρεί να θερηθεί σαν ένα πρόβληµα ιδιτιµών. Πράγµατι, αν γράφυµε τα στιχεία σαν ένα πίνακα Τ και παρµίς τα στιχεία σαν τν πίνακα, η γράφεται, λ 3 Τ πρόβληµα ιδιτιµών τώρα ανάγεται στ να βρύµε τις ιδιτιµές λ και τα αντίστιχα ιδιδιανύσµατα ι ιδιτιµές λ R, ιδιδιανύσµατα λ, µεταξύ τυς,. Θα πρέπει να σηµειώσυµε τις εξής ιδιότητες: λ λ ι πίνακες και Τ είναι αυτσυυγείς ή ερµητιανί. πυ αντιστιχύν σε διαφρετικές ιδιτιµές λ, λ είναι κάθετα Οι πρτάσεις αυτές αφήννται σαν άσκηση, όπς και η απόδειξη της συνθήκης ρθγνιότητς, δ 4 όπυ αναφέρεται στην -στή συνιστώσα τυ διανύσµατς ιδιτιµή λ, δηλ.,,,. τ πί αντιστιχεί στην Παράδειγµα: Τ διπλό εκκρεµές απτελείται από ένα µαθηµατικό εκκρεµές µάας Μ και µήκυς L, και από ένα δεύτερ µαθηµατικό εκκρεµές µάας και µήκυς, τ πί εξαρτάται από τ πρώτ, όπς φαίνεται στ Σχήµα. Σχήµα Τ διπλό εκκρεµές Chp. 54

5 Θερύµε ότι η κίνηση είναι σ ένα επίπεδ, πότε τ σύστηµα έχει βαθµύς ελευθερίας. Οι γνίες θ και φ λαµβάννται ς πρς την κατακόρυφ ι πίες όπς θα δύµε παρακάτ θα είναι και ι γενικευµένες συντεταγµένες τυ πρβλήµατς. Επιλέγ τ σηµεί εξάρτησης τυ πρώτυ εκκρεµύς σαν αρχή τν αξόνν, και τυς άξνες x,y όπς φαίνεται στ σχήµα. Τότε ι καρτεσιανές συντεταγµένες τν δύ µαών όπς και ι αντίστιχες συνιστώσες της ταχύτητας είναι, µάα Μ: x L s θ x cosθ θ L y L cos θ y s θ θ L 5 µάα : x L s θ s φ L cosθ θ cos φ φ y L cos θ cos φ x y Ls θ θ s φ φ 5b Η κινητική ενέργεια τν δύ µαών, χρησιµπιώντας τις πρηγύµενες σχέσεις, είναι, Mx y ML θ M L θ x [L θ y φ φ L cos θ φ θ φ ] L cos θ φ θ φ Για µικρές γνίες θ,φ<< σε ds έχυµε: cos θ φ θ φ..., πότε η κινητική ενέργεια γράφεται, Τ θ M L φ L θ φ 6 Για τη δυναµική ενέργεια λόγ βαρύτητς θερώ τ επίπεδ y σαν στάθµη αναφράς θα επανέλθυµε στ θέµα της στάθµης αναφράς της δυναµικής ενέργειας παρακάτ, πότε η δυναµική ενέργεια τν δύ µαών θα είναι Mgy gy y MgL cos θ gl cos θ cos φ M gl cos θ g cos φ Παρατηρύµε ότι για θφ δηλ. στη θέση ισρρπίας τν µαών, η δυναµική ενέργεια τν δύ µαών είναι: MgLg. Για µικρές γνίες θ,φ<< σε ds έχυµε: και cos φ φ, πότε η δυναµική ενέργεια γράφεται, cosθ θ M glθ g φ 7 Επειδή στην εισαγγή τυ κεφαλαίυ και µάλιστα στη παραγγή της 3, είχαµε µετατπίσει τη στάθµη αναφράς της δυναµικής ενέργειας ώστε σταθερός όρς στην ανάπτυξη yo 3 Chp. 55

6 να µηδενίεται, θα κάνυµε τ ίδι και εδώ. Μετατπίυµε λιπόν κατά την στάθµη αναφράς της δυναµικής ενέργειας, δηλ. θ,φ θ,φθ,φ, πότε στην 7 απλά δεν θα περιλαµβάνεται όρς. Η µετατόπιση αυτή δηγεί στην εξής έκφραση της δυναµικής ενέργειας: ' M gl cosθ g - cos φ πυ πράγµατι στη θέση ισρρπίας τυ συστήµατς θφ, η δυναµική ενέργεια ισύται τώρα µε µηδέν. Άρα εφεξής, αγνύµε τν όρ, χρίς βέβαια στην υσία να αλλάει τίπτα στ φρµαλισµό πυ αναπτύσσυµε εδώ, απλώς γίννται λίγ πι απλί ι υπλγισµί, και αγνύµε τν τόν από τη δυναµική ενέργεια. Τότε η Lgg πυ δεν θα χρησιµπιηθεί στη µέθδ πυ αναπτύξαµε, βάσει τν 6 και 7, είναι θ φ L θ φ M glθ φ 8 L M L g Όπς είναι φυσικό από την 8, ι γνίες θ και φ είναι η ενδεικνυόµενη επιλγή γενικευµένν συντεταγµένν τυ πρβλήµατς, δηλ. η θ, και η φ. Υπλγίυµε τα στιχεία µήτρας και, χρησιµπιώντας τις 6 και 7, M L, L, M gl,, g πότε η ρίυσα γράφεται, M gl M L L g L 9 απ όπυ πρκύπτει η χαρακτηριστική εξίσση. Όµς για να απλυστεύσυµε τις πράξεις χρίς να αλλιθεί αισθητά η γενικότης, παίρνυµε Μ και L, πότε η ρίυσα 9 δίδει τη χαρακτηριστική εξίσση, ή Lg L Lg 4 L 4 g L L L 4 της πίας ι ρίες είναι, o, o όπυ o g / L. Υπλγίυµε στη συνέχεια τα πλάτη ταλάντσης πυ αντιστιχύν σε καθεµιά συχνότητα ξεχριστά. Πράγµατι, Chp. 56

7 για απ όπυ έπεται, τ σύστηµα γράφεται, g L g L Lg L L πρώτς δείκτης αναφέρεται στη συνιστώσα τυ πλάτυς και δεύτερς στην ιδιτιµή. για απ όπυ έπεται, τ σύστηµα γράφεται, g L g L Lg L L,. 3 Εφαρµόντας τώρα τη συνθήκη ρθγνιότητς 4 για έχµε:, δηλ. Τ Τ Τ Τ ή L L L, άρα, 4 L Λαµβάνντας υπ όψιν και την για, βρίσκυµε: L, Συνεπώς, τ ιδιδιάνυσµα τυ πλάτυς πυ αντιστιχεί στη συχνότητα είναι: L 5 υτός τρόπς ταλάντσης φαίνεται παραστατικά στ Σχήµα 3. α δύ εκκρεµή ταλαντύνται εν φάσει µέσα σε ένα κατακόρυφ επίπεδ µε την ίδια συχνότητα αναφερόµενι για µικρές ταλαντώσεις γύρ από θέση ευσταθύς ισρρπίας, δηλ. και τα δύ εκκρεµή ταλαντύνται σαν ένα σώµα Για την δεύτερη συχνότητα ταλάντσης, εφαρµόυµε µίς τη συνθήκη ρθγνιότητς 4 για, :, δηλ. Τ Τ Τ Τ, ή L L L, άρα Chp. 57

8 6 L Σχήµα 3 Οι δύ τρόπι ταλάντσης ενός διπλύ εκκρεµύς τ πί ταλαντύται σε ένα κατακόρυφ επίπεδ µε συχνό- τητα και b Λαµβάνντας υπ όψιν και την 3 για, βρίσκυµε:, L Συνεπώς, τ ιδιδιάνυσµα τυ πλάτυς πυ αντιστιχεί στη συχνότητα είναι: L 7 υτός τρόπς ταλάντσης φαίνεται ενδεικτικά στ Σχήµα 3b. α δύ εκκρεµή ταλαντύνται σε ένα κατακόρυφ επίπεδ µε διαφρά φάσης 8 και µε την ίδια συχνότητα αναφερόµαστε σε µικρές ταλαντώσεις γύρ από θέση ευσταθύς ισρρπίας..3 Καννικές µρφές ταλάντσης Η πρηγύµενη συήτηση έδειξε ότι ι εξισώσεις κίνησης ικανπιύνται από µια λύση ταλάντσης της µρφής για ένα σύνλ -ιδισυχντήτν,,. Η γενική λύση λιπόν τν εξισώσεν κίνησης θα είναι η υπέρθεση ταλαντώσεν µε όλες τις επιτρεπόµενες συχνότητες. Οι συχνότητες αυτές καλύνται και συχνότητες συντνισµύ ή συχνότητες ελεύθερης ταλάντσης τυ συστήµατς. Επµένς, η γενική λύση µπρεί να γραφεί, t η C e 8 όπυ παράγντας αναλγίας C С αναφέρεται στη συγκεκριµένη συχνότητα. Γενικά, σε κάθε ιδιτιµή λ της χαρακτηριστικής εξίσσης αντιστιχύν δύ ισσυχνότητες και, τ ιδιδιάνυσµα είναι τ ίδι και για τις δύ συχνότητες, όµς ι παράγντες αναλγίας και C µπρεί να είναι διαφρετικί, πότε η γενική λύση θα έχει τη µρφή, C Chp. 58

9 η t t C e C e. 9 Θα πρέπει βέβαια να θυµόµαστε ότι η πραγµατική κίνηση είναι τ πραγµατικό µέρς της µιγαδικής λύσης, πότε τ πραγµατικό µέρς τν 8 ή 9 γράφεται η f cos t φ 3 όπυ τ πλάτς f και η φάση φ πρσδιρίνται από τις αρχικές συνθήκες θέσαµε C ± f e ± φt. Μπρύµε να ρίσυµε ένα νέ σύστηµα συντεταγµένν,,, τ πίν ρίεται από τις εξισώσεις µετασχηµατισµύ τν αρχικών συντεταγµένν η,η,,η, ή υπό µρφή πινάκν η 3 η 3 όπυ είναι µνόστηλς πίνακας µε στιχεία,,, και η µνόστηλς πίνακας µε στιχεία η,η,,η. Ο ανάστρφς πίνακας η Τ είναι πίνακας µιας γραµµής και µάλιστα ισχύει ιδιότητες τυ ανάστρφυ γινµένυ πινάκν η. 33 Ο πίνακας στη 3 σχηµατίεται από τα ιδιδιανύσµατα, δηλ. A,,..., Ο πίνακας αναφέρεται και σαν πίνακας τν ιδιδιανυσµάτν. Ο πίνακας έχει γνστές ιδιότητες, η απόδειξη τν πίν αφήνεται σαν άσκηση, όπς η ιδιότητα διαγνπίησης τν πινάκν Τ και. Για παράδειγµα, η σχέση ρθγνιότητς της κινητικής ενέργειας 4 µπρεί να τεθεί υπό µρφή πινάκν ς εξής, A A I 35 όπυ Τ είναι ανάστρφς πίνακας και Ι µναδιαίς πίνακας. κόµη, πίνακας διαγνπιεί τν πίνακα της δυναµικής ενέργειας ς εξής, Chp. 59

10 λ A A 36 όπυ λ είναι διαγώνις πίνακας µε στιχεία τις ιδιτιµές λ,λ,,λ, λ λ O λ 37 µετασχηµατισµός 36 είναι γνστός ς coguet tsfoto τυ από τν A. A A Η κινητική και η δυναµική ενέργεια µπρύν να εκφραστύν συναρτήσει τν νέν συντεταγµένν, χρησιµπιώντας τη σχέση µετασχηµατισµύ 3. Πράγµατι, η δυναµική ενέργεια 3 γράφεται κατ αρχήν ς, η η ή υπό µρφή γινµένυ πινάκν η η και εισάγντας τν µετασχηµατισµό 3 παίρνει απλύστερη µρφή, λ όπυ ενδιάµεσα έχµε χρησιµπιήσει τν µετασχηµατισµό της δυναµικής ενέργειας 36. Συνεπώς,. 38 Παρµίς, η κινητική ενέργεια 4 µπρεί να τεθεί υπό µρφή γινµένυ πινάκν, η η και εισάγντας τν µετασχηµατισµό 3 παίρνει απλύστερη µρφή, όπυ ενδιάµεσα έχµε χρησιµπιήσει την ιδιότητα ρθγνιότητς 35. Συνεπώς,. 39 Οι σχέσεις 38 και 39 δηλώνυν ότι στ νέ σύστηµα συντεταγµένν και η κινητική και η δυναµική ενέργεια εκφράνται σαν άθρισµα τετραγώνν µόν, χρίς διασταυρύµενυς όρυς. Chp. 6

11 Οι εξισώσεις κίνησης απκαλύπτυν αυτή την απλότητα τν νέν συντεταγµένν. Πράγµατι, η νέα Lgg είναι, L 4 πότε ι εξισώσεις κίνησης για τις συντεταγµένες είναι. 4 Οι εξισώσεις 4 έχυν τις λύσεις, t C e 4 Κάθε νέα συντεταγµένη είναι περιδική συνάρτηση η πία περιλαµβάνει µια µόν συχνότητα συντνισµύ. Γι αυτό τ λόγ ι συντεταγµένες καλύνται καννικές συντεταγµένες τυ συστήµατς. Κάθε καννική συντεταγµένη αντιστιχεί σε µια ταλάντση τυ συστήµατς µε µια µόν συχνότητα και αυτές ι ξεχριστές ταλαντώσεις αναφέρνται σαν καννικί τρόπι ταλάντσης o odes of vbto. Όλα τα σώµατα τυ συστήµατς σε κάθε καννικό τρόπ ταλάντσης ταλαντύνται εν φάσει και µε την ίδια συχνότητα. Οπότε η πλήρης κίνηση τυ συστήµατς θα είναι τ άθρισµα τν καννικών τρόπν ταλάντσης υγισµένν µε τ κατάλληλ πλάτς και παράγντα φάσης πυ εµπεριέχνται στ C. Παράδειγµα. ιπλό εκκρεµές συνέχεια. Οι καννικές συντεταγµένες τυ πρβλήµατς βάσει τν σχέσεν ρισµύ 3 ή 3 θα έχυν τη µρφή, η η 43 όπυ η θ και η φ, και ι συνιστώσες τν πλατών δίδνται από τις 5 και 6. Οπότε η 43 γράφεται αναλυτικά, η L η L L L 44 τις πίες λύνυµε ς πρς,, L L θ θ φ. 45 φ Chp. 6

12 Μπρύµε να επαληθεύσυµε τις 38 και 39, αντικαθιστώντας τις 44 στις 7 και 6. Πράγµατι βρίσκυµε για τη κινητική ενέργεια, 7, και παρµίς για τη δυναµική ενέργεια, 6, και τελικά η Lgg γράφεται συναρτήσει τν καννικών συντεταγµένν,, δηλ. επαληθεύεται η έκφραση 4. L Παράδειγµα: Ταλαντώσεις σµατιδίν σε τεντµένη χρδή. Θερύµε χρδή, µήκυς, η πία τεντώνεται στα άκρα της από τάση F εφαρµόµενη κατά µήκς της χρδής. Υπθέτυµε ότι κατά µήκς της χρδής έχυν τπθετηθεί ίσες µάες ανά ίσα διαστήµατα. Θερύµε κατ αρχήν µόν τις εγκάρσιες µετατπίσεις τν σµατιδίν τη χρδής, y,y,,y, όπς φαίνεται στ Σχήµα 4. Σχήµα 4 Στιγµιότυπ τεντµένης χρδής σε εγκάρσια µετατόπιση. Η κινητική ενέργεια τν σµατιδίν της χρδής είναι y y... y. 46 Για να υπλγίσυµε τη δυναµική ενέργεια, θερύµε ότι τ αρχικό µήκς της χρδής µεταξύ τν σµατιδίν και είναι. Όταν µετατπιστεί η χρδή από τη θέση ισρρπίας της, τα σµατίδια και θα απέχυν µεταξύ τυς απόσταση παραστατικά στ Σχήµα 5. Η απόσταση αυτή γράφεται s y y, όπς φαίνεται s y y y y y y y...} y [ άρα η επιµήκυνση της χρδής µεταξύ τν σµατιδίν και είναι Chp. 6

13 δ y y Σχήµα 5 Εγκάρσια µετατόπιση τν γειτνικών σµατιδίν και Τ έργ πυ δαπανάται για την επιµήκυνση αυτή ισύται µε Fδ F y y τ πί απθηκεύεται στη χρδή σαν δυναµική ενέργεια. Οπότε, πρσθέτντας τις συνεισφρές όλν τν τµηµάτν της χρδής βρίσκυµε τη δυναµική ενέργεια της χρδής, F [y y y y... y y ] 47 όπυ θερύµε y y πακτµένη χρδή κατά τα άκρα της. ξίει να σηµειθεί ότι στ συνεχές όρι: και, η απόσταση µεταξύ τν σµατιδίν και γράφεται y y s y dx και καταλήγυµε σε ανάλγη έκφραση της 47 στ συνεχές όρι, όπς θα δύµε σε άλλ κεφάλαι] πό τις 46 και 47 υπλγίυµε τις εξισώσεις Lgge τν σµατιδίν της χρδής, F y y y F y y y... y y y F y y y όπυ y y. Για την επίλυση τυ συστήµατς τν µγενών διαφρικών εξισώσεν 48, δκιµάυµε λύσεις της µρφής, 3 y A e -t και αντικαθιστώντας στ σύστηµα 48 παίρνυµε, F Chp. 63

14 3 F... F όπυ. κόµη τ σύστηµα γράφεται, όπυ F. Υπλγίυµε τις ιδισυχνότητες και τα πλάτη, επαγγικά. Για εφόσν βρίσκυµε:, άρα. Για, ι εξισώσεις 5 δίδυν τη χαρακτηριστική εξίσση: πότε βρίσκ τις λύσεις: και. ντικαθιστώντας τη λύση στις 5 παίρν: 4, 3 :, ενώ η λύση δίδει τα πλάτη: 3 :. Σχήµα 6 Οι καννικί τρόπι ταλάντσης χρδής µε διάκριτα σµατίδια ίσν µαών, για,,3 Οι µαύρι κύκλι παριστάνυν σµατίδια πυ παραµένυν ακίνητα. Για 3, ι 5 δηγύν στη χαρακτηριστική εξίσση: και αναπτύσσντας την ρίυσα παίρνµε την εξίσση, Chp. 64

15 3 4 απ όπυ βρίσκµε τις ρίες της κυβικής εξίσσης όπς και τα αντίστιχα πλάτη,, πλάτη: : : 3 : :, πλάτη: : : 3 : : 3, πλάτη: : : 3 : :, και ύτ καθεξής µπρεί να συνεχιστεί υπλγισµός για 4,5, Στ Σχήµα 6 απεικνίνται ι τρόπι ταλάντσης της χρδής για,,3. ΠΡΟΒΛΗΜΤ: ΣΕΙΡ 3. Θερήσατε ένα γραµµικό συµµετρικό τριατµικό µόρι µε µάες, Μ, και. Θερύµε µόν τις διαµήκεις ταλαντώσεις τυ µρίυ, δηλ. τα άτµα µπρύν να κινύνται µόν κατά µήκς τυ άξνα τυ µρίυ τν πί να λάβετε σαν άξνα x. Τ δυναµικό αλληλεπίδρασης µεταξύ τν ατόµν µπρεί να πρσεγγιστεί από ένα ελατήρι σταθεράς. Στη θέση ισρρπίας τα άτµα απέχυν µεταξύ τυς απόσταση τα ακραία άτµα δεν είναι πακτµένα. Βρείτε τις ιδισυχνότητες, τα ιδιδιανύσµατα, και τις καννικές µρφές ταλάντσης τυ µρίυ. ώσατε και µια φυσική εικόνα για κάθε καννική µρφή ταλάντσης τυ µρίυ. Να διαγνπιηθεί τανυστής: Υπόδειξη: η χαρακτηριστική εξίσση µπρεί να παραγντπιηθεί 3. Στ πρόβληµα τν δύ συευγµένν εκκρεµών, η κινητική ενέργεια και η δυναµική ενέργεια είναι, αντίστιχα: θ θ και θ θ θ θ, όπυ µια σταθερά. Βρείτε τις ιδισυχνότητες, τα ιδιδιανύσµατα, και τις καννικές µρφές ταλάντσης τυ συεγµένυ συστήµατς. ώσατε και µια φυσική εικόνα για κάθε καννική µρφή ταλάντσης. Chp. 65

EΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ

EΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ Kεφ. 3 EΞΑΝΑΓΚΑΣΕΝΕΣ TAΛANTΩΣEIΣ Θα εξετάσυμε τη περίπτση εφαρμγής σ ένα σύστημα μιάς δεδμένης εξτερικής δύναμης η πία να εξαρτάται από τ χρόν (δηλ. τ σύστημα υπβάλλεται σε εξτερική διέγερση. η περίπτση:

Διαβάστε περισσότερα

ΦΘΙΝΟΥΣΕΣ & ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΘΙΝΟΥΣΕΣ & ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΘΙΝΟΥΣΕΣ & ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.piras.weebly.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t).

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t). Kεφ. ΣYΣTHMATA ME ΠOΛΛOYΣ BAΘMOYΣ EΛEYΘEPIAΣ (part, pages - Θεωρύμε ένα σύστημα με N βαθμύς ελευθερίας, τ πί θα περιγράφεται από N συντεταγμένες (t, (t,..., N (t. Oι εξισώσεις κίνησης τυ συστήματς θα έχυν

Διαβάστε περισσότερα

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό

Διαβάστε περισσότερα

Ατομική και ηλεκτρονιακή δομή των στερεών

Ατομική και ηλεκτρονιακή δομή των στερεών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ατμική και ηλεκτρνιακή δμή τν στερεών Μντέλ συζευγμένν εκκρεμών Διδάσκν : Επίκυρη Καθηγήτρια Χριστίνα Λέκκα Άδειες Χρήσης Τ παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt Μία ιστρία στην ΕΞΝΓΚΣΜΕΝΗ ΤΛΝΤΩΣΗ Κατά την περσινή σχλική χρνιά, στα πλαίσια της Π.Δ.Σ. πρσπάησα, αντί να λύσ ασκήσεις πυ μπρεί να υπάρχυν σε πλλά ιαφρετικά εξσχλικά βιβλία, να εάν ι μαητές μυ έχυν πραγματικά

Διαβάστε περισσότερα

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς.

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς. ΑΑΝΤΉΣΕΙΣ ΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 009 Επιμέλεια: Νεκτάρις ρωτπαπάς 1. Σωστή απάντηση είναι η γ. ΘΕΜΑ 1. Σωστή απάντηση είναι η α. Σχόλι: Σε μια απλή αρμνική

Διαβάστε περισσότερα

ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ

ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ Εισαγωγή Ρεύµατα βρόχων ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ Η µέθδς ρευµάτων βρόχων για την επίλυση κυκλωµάτων (ή δικτύων) είναι υσιαστικά εφαρµγή τυ νόµυ τάσεων τυ Kirchhff µε κατάλληλη εκλγή κλειστών βρόχων ρεύµατς.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ /6/ ΘΕΜΑ (3 μνάδες) (α) Η αντίσταση ενός D λευκόχρυσυ μετρήθηκε στη θερμκρασία πήξης τυ νερύ και βρέθηκε 8 Ω, ενώ στη συνέχεια μετρήθηκε σε θερμκρασία θ και βρέθηκε 448 Ω Να

Διαβάστε περισσότερα

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών:

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών: τμικάενεργειακάδιαγράμματα: Χωρικές διαστάσεις ενεργειακές απστάσεις χρνική κλίμακα Καταστάσεις ydg Θεώρημα μεταβλών: Εφαρμγή σε πρόβλημα της ατμικής Πρσέγγιση on- Opnhm: Εφαρμγή στ Η Θεωρία μριακών τρχιακών:

Διαβάστε περισσότερα

ροή ιόντων και µορίων

ροή ιόντων και µορίων ρή ιόντων και µρίων Θεωρύµε ένα διάλυµα µίας υσίας Α. Αν εξαιτίας της ύπαρξης διαφρών συγκέντρωσης ή ηλεκτρικύ πεδίυ όλες ι ντότητες (µόρια ή ιόντα) της υσίας Α κινύνται µέσα σ αυτό µε την ίδια ριακή ταχύτητα

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΩΝ ΣΥΣΤΗΜΑΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΩΝ ΣΥΣΤΗΜΑΤΩΝ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.poiras.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poiras.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ THΛ : 99 9494 www.syghrono.gr ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:.... ΙΑΓΩΝΙΣΜΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 0--07 ΘΕΜΑ Α Α. Σχλικό Βιβλί σελ.

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΙΚΕΣ ΔΟΜΕΣ ΤΑΛΑΝΤΩΤΩΝ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΙΚΕΣ ΔΟΜΕΣ ΤΑΛΑΝΤΩΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΙΚΕΣ ΔΟΜΕΣ ΤΑΛΑΝΤΩΤΩΝ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.poira.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

Πολλαπλασιάζοντας και τα δύο µέλη επί x& και ολοκληρώνοντας ως προς t φθάνουµε στη σχέση. dv dx

Πολλαπλασιάζοντας και τα δύο µέλη επί x& και ολοκληρώνοντας ως προς t φθάνουµε στη σχέση. dv dx ΚΕΦΑΛΑΙΟ : ΚΙΝΗΣΗ ΣΤΗ 1- ΙΑΣΤΑΣΗ.1 Συντηρητικές δυνάµεις Έστω σώµα (µε την έννια τυ σωµατιδίυ) κινύµεν επί ευθείας γραµµής την πία ταυτίζυµε µε τν άξνα x, υπό την επίδραση της δύναµης F(x). Τότε η εξίσωση

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014 ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: // ΘΕΜΑ ( μνάδες) T κύκλωμα τυ παρακάτω σχήματς λαμβάνει ως εισόδυς τις εξόδυς των αισθητήρων Α και Β. Η έξδς τυ αισθητήρα Α είναι ημιτνικό

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ..4: Ρυθμός Μεταβλής τυ σχλικύ βιβλίυ]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα 1. Δίνεται η συνάρτηση f() = 3 3. α) Να βρεθεί ρυθμός μεταβλής της

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Καθηγητές: Δ. ΚΑΛΛΙΓΕΡΟΠΟΥΛΟΣ & Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επιστημνικός Συνεργάτης: Σ. ΒΑΣΙΛΕΙΑΔΟΥ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA.

ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA. ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA.. HΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΣ Μεταλλικί αγωγί: τα ελεύθερα φρτία είναι τα ηλεκτρόνια σθένυς τυ µετάλλυ. Πυκνότης ρεύµατς (τ ρεύµα πυ διαπερνά µια κάθετη διατµή τυ αγωγύ ανά µνάδα επιφανείας

Διαβάστε περισσότερα

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης.

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης. Kεφ. 4 OΔEYONTA KYMATA (pges -7 (Trveling Wves Eξετάσυμε ανικτά συστήματα, δηλ. συστήματα χωρίς σύνρα. Oδεύντα κύματα είναι διαταραχές (πυ μεταφέρυν ενέργεια και ρμή πυ διαδίδνται στν ανικτό χώρ με ρισμένη

Διαβάστε περισσότερα

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2.1. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5 Ο ΜΑΘΗΜΑ 2.1.1. Τ σύνλ των πραγματικών αριθμών Τ σύνλ των πραγματικών αριθμών, είναι γνωστό και με τα στιχεία τυ δυλέψαμε όλες τις πρηγύμενες τάζεις.

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ θ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΕΞΑΝΑΓΚΑΣΜΕΝΗΣ ΤΑΛΑΝΤΩΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ

Διαβάστε περισσότερα

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΔΙΔΑΣΚΩΝ: Λ ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: //7 ΘΕΜΑ ( μνάδες) Οι τιμές των αντιστάσεων και τυ κυκλώματς τυ

Διαβάστε περισσότερα

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος.

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος. ΚΕΦΑΛΑΙΟ 4 Ο ΜΕΘΟ ΟΙ ΕΚΤΙΜΗΣΗΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΟΥ ΚΛΑΣΣΙΚΟΥ ΓΡΑΜΜΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ. Η ΜΕΘΟ ΟΣ ΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ. Εκτίµηση των Παραµέτρων τυ Υπδείγµατς. Στατιστικί Έλεγχι Αναλύσεις. Πρλέψεις. Ελαχιστπίηση

Διαβάστε περισσότερα

Πέµπτη, 6 Ιουνίου 2002 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ

Πέµπτη, 6 Ιουνίου 2002 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, 6 Ιυνίυ 00 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις - να γράψετε στ τετράδιό σας τν αριθµό της ερώτησης και δίπλα τ γράµµα πυ αντιστιχεί στη σωστή

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1 Να γράψετε στ τετράδιό σας τν αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα τ γράμμα πυ αντιστιχεί στη σωστή απάντηση. 1. Αν δείκτης διάθλασης ενός πτικύ υλικύ μέσυ είναι n= 4 3 ακτινβλία

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = =

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = = ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Να βρείτε τα παρακάτω όρια: α ( 4 8) + 6 + 8 Απλές περιπτώσεις Εφαρµόζυµε τις ιδιότητες των ρίων Ουσιαστικά κάνυµε αντικατάσταση α 4+ 8 = 4 + 8= + 4+ 8= 9 8 8 = = 4 + 6 = + 6= Αν f( )

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 8 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίυ, 013 Ώρα: 10:00-13:00 ΘΕΜΑ 1 : (Μνάδες 15) Πρτεινόμενες Λύσεις Η πόρτα μάζας Μ = 3m και πλάτυς μπρεί να περιστρέφεται χρίς τριβές

Διαβάστε περισσότερα

Τετάρτη 5 Νοεμβρίου 2014 ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

Τετάρτη 5 Νοεμβρίου 2014 ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Τετάρτη 5 Νεμρίυ 014 ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑ Β Β1. Ένα κινητό διέρχεται τη χρνική στιγμή to=0 από τη θέση xo=0 ενός πρσανατλισμένυ άξνα Οx, κινύμεν κατά μήκς τυ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ

ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ Οι σηµαντικότερες αντιπρόσποι της κατηγορίας αυτής τν δυνάµεν είναι οι δυνάµεις βαρύτητος και οι ηλεκτροστατικές δυνάµεις, που είναι ανάλογες του αντιστρόφου τετραγώνου της

Διαβάστε περισσότερα

Σύνθεση ή σύζευξη ταλαντώσεων;

Σύνθεση ή σύζευξη ταλαντώσεων; Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,

Διαβάστε περισσότερα

5.15 Εφαρμογές της ομογενούς Δ.Ε. 2ης τάξης με σταθερούς συντελεστές

5.15 Εφαρμογές της ομογενούς Δ.Ε. 2ης τάξης με σταθερούς συντελεστές 4 ΚΕΦΑΛΑΙΟ 5 α) y -y +y e x /x 5 Aπ. u(/)x -3 e x β) y +ysecx Aπ. u[csx]ln csx +xsinx γ) y +4ysin x Aπ. u[cs (x)+]/ ) Γενικεύοντας την παραπάν πορεία για n>, δείξτε ότι τα v i (x) ικανοποιούν το σύστημα

Διαβάστε περισσότερα

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ

Διαβάστε περισσότερα

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο).

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο). 1 ΑΣΚΗΣΕΙΣ ΑΠΟ ΕΙΞΗΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ (η τεχνική τυ αρκεί να απδείξυµε ότι... ) Παναγιώτης Λ. Θεδωρόπυλς Σχλικός Σύµβυλς κλάδυ ΠΕ03 ΠΡΟΛΟΓΟΣ Οι σηµειώσεις αυτές γράφτηκαν µε σκπό να βηθήσυν τυς µαθητές της

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.)

ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.) ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.) Ένα κύκλωµα βρίσκεται στην Ηµιτνική Μόνιµη Κατάσταση (Η.Μ.Κ.) όταν : α) Όλες ι πηγές τυ κυκλώµατς είναι ηµιτνειδείς συναρτήσεις τυ χρόνυ Α sin (ωt+φ) ή Α cs (ωt+φ) β)

Διαβάστε περισσότερα

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1 ΕΠΙΛΥΣΗ ΤΥΠΩΝ Στην ενότητα αυτή, πιστεύω να καταλάβετε ότι τα Μαθηµατικά έγιναν και αναπτύχθηκαν για να αντιµετωπίζυν καθηµερινά πρβλήµατα. εν χρειάζνται όµως πλλά λόγια, ας πρχωρήσυµε σε παραδείγµατα.

Διαβάστε περισσότερα

00-003 Οικνόµυ Θεµιστκλής Ασκήσεις Συµπεριφράς εδάφυς σε δυναµική φόρτιση ΑΣΤΕ [] Άσκηση η : Για την εδαφική τµή τυ Σχήµατς, να πρσδιριστύν µε άση τις πρτεινόµενες στη διεθνή ιλιγραφία σχέσεις: Α η µεταλή

Διαβάστε περισσότερα

ιατυπώστε την ιδιότητα αυτή µε τη βοήθεια µεταβλητών.

ιατυπώστε την ιδιότητα αυτή µε τη βοήθεια µεταβλητών. Μαθηµατικά B υµνασίυ Eρωτήσεις θεωρίας 1. Τι νµάζυµε µεταβλητή;. Τι νµάζυµε αριθµητική παράσταση; 3. Τι νµάζυµε αλγεβρική παράσταση; 4. Πια είναι η επιµεριστική ιδιότητα; 5. Τι συµβαίνει αν και στα δύ

Διαβάστε περισσότερα

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου 6. 6.4 σκήσεις σχλικύ βιβλίυ σελίδας 9 30 Ερωτήσεις Κατανόησης. Πότε µία γωνία λέγεται εγγεγραµµένη; πάντηση Όταν η κρυφή της είναι σηµεί τυ κύκλυ και ι πλευρές της είναι τέµνυσες τυ κύκλυ. ν φ και ω είναι

Διαβάστε περισσότερα

Πέµπτη, 3 Ιουνίου 2004 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

Πέµπτη, 3 Ιουνίου 2004 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 004 Πέµπτη, 3 Ιυνίυ 004 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ Ο Να γράψετε στ τετράδιό σας τν αριθµό καθεµίας από τις παρακάτω ερωτήσεις -4 και δίπλα τ γράµµα πυ

Διαβάστε περισσότερα

ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ)

ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ) ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ - ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ Θέµα. Ένας αρµονικός ταλανττής µε ασθενή απόσβεση, (µάζα=, σταθερά ελατηρίου= s, συντελεστής τριβής= r διεγείρεται

Διαβάστε περισσότερα

ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids)

ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids) ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Plarids) Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 94677 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 4. Πόλωση

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ

ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

m i r i z i Αν είναι x, y, z τα µοναδιαία διανύσµατα των τριών αξόνων, τότε τα διανύσµατα ω r και r i µπορούν αντίστοιχα να γραφούν: r r x i y i ω x

m i r i z i Αν είναι x, y, z τα µοναδιαία διανύσµατα των τριών αξόνων, τότε τα διανύσµατα ω r και r i µπορούν αντίστοιχα να γραφούν: r r x i y i ω x ΓΕΝΙΚΗ ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΤΡΟΦΟΡΜΗ, ΤΑΝΥΣΤΗΣ Α ΡΑΝΕΙΑΣ, ΚΥΡΙΟΙ ΑΞΟΝΕΣ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ Έστ ότι το στερεό του σχήµατος στρέφεται µε γνιακή ταχύτητα (,, γύρ από άξονα που διέρχεται από σταθερό σηµείο Ο. Αν

Διαβάστε περισσότερα

1.8 ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΕΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ

1.8 ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΕΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ 1 8 ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΕΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΚΑΤΑΚΟΡΥΦΗΝ ΓΩΝΙΕΣ ΘΕΩΡΙΑ Παραπληρµατικές γνίες : Είναι γνίες πυ έχυν άθρισµα 180 Κάθε µία λέγεται παραπλήρµα της άλλης Συµπληρµατικές γνίες : Είναι γνίες πυ έχυν άθρισµα

Διαβάστε περισσότερα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα ΦΥΣ 11 - Διαλ.3 1 Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα q Το παρακάτω σύστημα είναι ανάλογο με το σύστημα των δύο εκκρεμών. q Οι δυο ιδιοσυχνότητες του συστήματος είναι ίδιες με τις ιδιοσυχνότητες

Διαβάστε περισσότερα

ΣΤΑΤΙΚΑ ΗΜΜ ΠΕΔΙΑ. Καταναλισκόμενη ισχύς σε ωμικό αγωγό. Το έργο που παράγεται από το ηλεκτρικό πεδίο πάνω σ ένα ελεύθερο φορτίο του αγωγού είναι,

ΣΤΑΤΙΚΑ ΗΜΜ ΠΕΔΙΑ. Καταναλισκόμενη ισχύς σε ωμικό αγωγό. Το έργο που παράγεται από το ηλεκτρικό πεδίο πάνω σ ένα ελεύθερο φορτίο του αγωγού είναι, Kεφ. 16 (Part III, pages 6-34) ΣΤΤΙΚ ΗΜΜ ΠΕΔΙ Καταναλισκόμενη ισχύς σε ωμικό αγωγό. Τ έργ πυ παράγεται από τ ηλεκτρικό πεδί πάνω σ ένα ελεύθερ φρτί τυ αγωγύ είναι, dw = f dr = qe υdt άρα Ρ = dw dt = qυ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 00 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ : Θεωρύμε τυς μιγαδικύς αριθμύς α) z(t) + z(t) = z(t)

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09 ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 04 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 04 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερμηνία: Τετάρτη 04 Απριλίυ 018 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς πρτάσεις Α1 Α4 να γράψετε στ τετράδιό σας τν αριθμό της

Διαβάστε περισσότερα

ΜΑΓΝΗΤΙΚΗ ΔΥΝΑΜΗ ΠΑΝΩ ΣΕ ΑΓΩΓΟ ΠΟΥ ΔΙΑΡΡΕΕΤΑΙ ΑΠΟ ΡΕΥΜΑ

ΜΑΓΝΗΤΙΚΗ ΔΥΝΑΜΗ ΠΑΝΩ ΣΕ ΑΓΩΓΟ ΠΟΥ ΔΙΑΡΡΕΕΤΑΙ ΑΠΟ ΡΕΥΜΑ ΜΑΓΝΗΤΙΚΗ ΔΥΝΑΜΗ ΠΑΝΩ ΣΕ ΑΓΩΓΟ ΠΟΥ ΔΙΑΡΡΕΕΤΑΙ ΑΠΟ ΡΕΥΜΑ Για ευθύγραμμ αγωγό μήκυς l σε μγενές μαγνητικό πεδί πυ σχηματίζει γωνία φ με αυτόν: dl d Ι l φ φ sin ΜΑΓΝΗΤΙΚΗ ΔΥΝΑΜΗ ΠΑΝΩ ΣΕ ΑΓΩΓΟ ΠΟΥ ΔΙΑΡΡΕΕΤΑΙ

Διαβάστε περισσότερα

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α, Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,

Διαβάστε περισσότερα

1.0 Βασικές Έννοιες στην Τριγωνομετρία

1.0 Βασικές Έννοιες στην Τριγωνομετρία 1.0 Βασικές Έννιες στην Τριγωνμετρία 1 η Μρφή Ασκήσεων: Ασκήσεις όπυ θέλυμε να βρύμε στιχεία ενός γεωμετρικύ σχήματς 1. Στ διπλανό σχήμα να απδείξετε ότι: ΒΓ υ εφω + εφθ. Τ τρίγων ΑΔΒ είναι ρθγώνι στ Δ,

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΥΜΑΤΑ ΣΕ 2 & 3 ΔΙΑΣΤΑΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΥΜΑΤΑ ΣΕ 2 & 3 ΔΙΑΣΤΑΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΥΜΑΤΑ ΣΕ & 3 ΔΙΑΣΤΑΣΕΙΣ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoiras.weebl.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ 1 1.1 Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΘΕΩΡΙ 1. ιάνυσµα Λέγεται κάθε πρσανατλισµέν ευθύγραµµ τµήµα. (έχει αρχή και πέρας) A B 2. Μηδενικό διάνυσµα 0 Λέγεται τ διάνυσµα τυ πίυ η αρχή και τ πέρας συµπίπτυν. AA= 0 3.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ

ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ 6932 946778 www.pmoias.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις

Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις q Ταλαντώσεις εμφανίζονται παντού Ø Μικρές ταλαντώσεις γύρω από θέση ισορροπίας Ø Εμφανίζονται σε πολλά προβλήματα κβαντοµηχανικής Ø Έχουμε ήδη συναντήσει σε

Διαβάστε περισσότερα

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2 1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 8 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίυ, 013 Ώρα: 10:00-13:00 Οδηγίες: 1) Τ δκίμι απτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. ) Να απαντήσετε σε όλα τα θέματα

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ. Έννοιες που πρέπει να γνωρίζετε: Α θερμοδυναμικός νόμος, ενθαλπία, θερμοχωρητικότητα

ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ. Έννοιες που πρέπει να γνωρίζετε: Α θερμοδυναμικός νόμος, ενθαλπία, θερμοχωρητικότητα ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ Έννιες πυ πρέπει να γνωρίζετε: Α θερμδυναμικός νόμς ενθαλπία θερμχωρητικότητα Θέμα ασκήσεως. Πρσδιρισμός θερμχωρητικότητας θερμιδμέτρυ. Πρσδιρισμός θερμότητς

Διαβάστε περισσότερα

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα.

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα. 2.2. ΕΝΟΤΗΤΑ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ 8 ΜΑΘΗΜΑ ΔΕΔΟΜΕΝΩΝ Σπός Σπός της ενότητας αυτής είναι να παρυσιάσει σύντμα αλλά περιετιά τυς τρόπυς με τυς πίυς παρυσιάζνται τα στατιστιά δεδμένα. Πρσδώμενα απτελέσματα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

Dimitris Balios 18/12/2012

Dimitris Balios 18/12/2012 18/12/2012 Κστλόγηση εξατμικευμένης και συνεχύς Δρ. Δημήτρης Μπάλις Συστήματα κστλόγησης ανάλγα με τη μρφή της παραγωγικής διαδικασίας Κστλόγηση συνεχύς Κστλόγηση εξατμικευμένης ή κστλόγηση κατά φάση ή

Διαβάστε περισσότερα

Kεφ. 6 ΔΙΑMOΡΦΩΣΗ ΚΥΜΑΤΟΣ, ΚΥΜΑΤΟΠΑΚΕΤΑ,

Kεφ. 6 ΔΙΑMOΡΦΩΣΗ ΚΥΜΑΤΟΣ, ΚΥΜΑΤΟΠΑΚΕΤΑ, Kεφ. 6 ΔΙΑMOΡΦΩΣΗ ΚΥΜΑΤΟΣ, ΚΥΜΑΤΟΠΑΚΕΤΑ, (part, pages -) Η μέχρι τώρα μελέτη μας αφορούσε κύματα ή ταλαντώσεις με μία μόνο συχνότητα. Στη συνέχεια θα μελετήσουμε την υπέρθεση πολλών κυμάτν που συνίστανται

Διαβάστε περισσότερα

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =. ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ Πλυώυµ τυ x λέγετι κάθε πράστση της µρφής : x + x ++ x+ όπυ,,,, είι στθερί πργµτικί ριθµί κι φυσικός ριθµός Τ πλυώυµ τυ x συµβλίζυµε: f( x ), g( x ), f x = x + x ++ x+ h x,, πότε γράφυµε:

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

EC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας

EC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας ΣΥΣΤΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΙΟΤΗΤΑΣ EC-ASE: Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας 2 «Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας» Επικεφαλής Εταίρς:

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

D b < 2mω0 (εκτός ύλης) m

D b < 2mω0 (εκτός ύλης) m Φθίνουσες - Εξαναγκασμένες Ταλαντώσεις Τι μπορούμε να διδάξουμε στους μαθητές τελικά, εκτός από αυτά που γράφει το σχολικό βιβλίο; Α) Φθίνουσες ταλαντώσεις Μελετάμε την περίπτση όπου η σταθερά απόσβεσης

Διαβάστε περισσότερα

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες ΦΥΣ 211 - Διαλ.06 1 Ανακεφαλαίωση Τι είδαμε μέχρι τώρα: q Συζητήσαμε συστήματα πολλών σωμάτων Ø Εσωτερικές και εξωτερικές δυνάμεις Ø Νόμους δράσης-αντίδρασης Ø Ορμές, νόμους διατήρησης (γραμμική ορμή,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Διαταραχών Λογισμού Μεταβολών Άσκηση 3.10, σελίδα 35 από το βιβλίο

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΟΡΜΗ - ΚΡΟΥΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΟΡΜΗ - ΚΡΟΥΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΟΡΜΗ - ΚΡΟΥΣΕΙΣ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poiras.weebly.o ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

HMY 333 Φωτονική Διάλεξη 06. Εισαγωγή στις ταλαντώσεις και κύματα. Απλοί αρμονικοί ταλαντωτές. Γιατί εξετάζουμε την απλή αρμονική κίνηση;

HMY 333 Φωτονική Διάλεξη 06. Εισαγωγή στις ταλαντώσεις και κύματα. Απλοί αρμονικοί ταλαντωτές. Γιατί εξετάζουμε την απλή αρμονική κίνηση; HMY 333 Φτονική Διάλεξη 6 Εισαγγή στις ταλαντώσεις και κύματα Απλοί αρμονικοί ταλανττές Μάζα-ελατήριο Mss-spring H. Chrisin, K.U.Ln(Wikipdi Εκκρεμές Pndlm U. o Monn LC κύκλμα hp://www.grnndwhi.n/~chb/lc_oscillor.hm

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια

Διαβάστε περισσότερα

Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke:

Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke: Άσκηση Μ Σπειροειδές ελατήριο Νόμος του Hooe και εξίσωση δυνάμεων Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooe: Οι ελαστικές τάσεις και οι παραμορφώσεις

Διαβάστε περισσότερα

Είναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι

Είναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι 4.6 4.8 σκήσεις σχλικύ βιβλίυ σελίδας 87 88 ρωτήσεις Κατανόησης. Να υπλγίσετε την γωνία ω στ παρακάτω σχήµα πάντηση ω ίναι φ =8 = 6 άρα ω = 5 + 6 = 5 φ. ν = και x διχτόµς της γωνίας πάντηση ω φ ω 55 x

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

Εφαρμογή της γενικής λύσης

Εφαρμογή της γενικής λύσης Εφαρμογή της γενικής λύσης Να βρεθούν οι χαρακτηριστικές συχνότητες του συστήματος ΦΥΣ 11 - Διαλ.4 1 x 1 x m 1 m k 1 k 1 k 3 Η δυναμική ενέργεια του συστήματος είναι: U = 1 kx 1 + 1 k 1 ( x x 1 ) + 1 kx

Διαβάστε περισσότερα

2.1. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας. 1.i) 1.ii) 1.iii) = 0. f x = x + 1 στο x ο. Να βρείτε την παράγωγο της συνάρτησης ( ) Λύση

2.1. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας. 1.i) 1.ii) 1.iii) = 0. f x = x + 1 στο x ο. Να βρείτε την παράγωγο της συνάρτησης ( ) Λύση . Ασκήσεις σχλικύ βιβλίυ σελίδας 9 A Oµάδας. Να βρείτε την παράγωγ της συνάρτησης ( D R ( ( ( στ. Να βρείτε την παράγωγ της συνάρτησης ( D ( R ( ( ( στ ( ( ( ( ( ( ( (.i Να βρείτε την παράγωγ της συνάρτησης

Διαβάστε περισσότερα

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών ΦΥΣ - Διαλ.08 Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών q q Το μεγάλο πλεονέκτημα του Lagrangian φορμαλισμού είναι ότι δεν χρειάζεται να υπολογισθούν οι δυνάμεις των δεσμών Ø Υπάρχουν περιπτώσεις που χρειαζόμαστε

Διαβάστε περισσότερα

Αρχές Οικονομικής Θεωρίας

Αρχές Οικονομικής Θεωρίας Αρχές Οικνμικής Θεωρίας 12:00 Σελίδα 2 από 7 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 15 / 06 / 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Αρχές Οικνμικής Θεωρίας ΠΡΟΤΕΙΝΟΜΕΝΕΣ

Διαβάστε περισσότερα

Οι τροχαλίες θεωρούνται κυλινδρικά σώµατα µε ροπή αδράνειας ως προς τον άξονα περιστροφής τους I. = mr και g=10m/s 2.

Οι τροχαλίες θεωρούνται κυλινδρικά σώµατα µε ροπή αδράνειας ως προς τον άξονα περιστροφής τους I. = mr και g=10m/s 2. Γιο Γιο σε Τροχαλία και µια Ολίσθηση που µετατρέπεται σε Κύλιση Η µεγάλη τροχαλία του διπλανού σχήµατος έχει µάζα Μ=4kg, ακτίνα R=0, και κρέµεται από σταθερό σηµείο. Η µικρή τροχαλία έχει µάζα =kg και

Διαβάστε περισσότερα

3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ

3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. 3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. Εισαγγή Στην μελέτη τν συστημάτν, μία από τις μεθόδους που χρησιμοποιούνται είναι η απόκριση κατά συχνότητα ή η συχνοτική απόκριση. Η μέθοδος αυτή μελετά την συμπεριφορά

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ TAΛΑΝΤΩΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ TAΛΑΝΤΩΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ TAΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση:

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση: Ι12. Αν σε ένα τρίγων ΑΒΓ ισχύει η σχέση ημ 3 Β ημ 2 ΑημΒ ημ 2 ΑημΓ ημ 3 Γ, να απδείξετε ότι Βˆ Γˆ 120. Ι13. Αν σε ένα τρίγων ΑΒΓ ισχύει η σχέση: 1 1 2 1, να α β α β γ α β γ β γ 2 απδείξετε ότι 4συν Β

Διαβάστε περισσότερα