αʹ Pure states... 50

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.1... 1. 5.1αʹ Pure states... 50"

Transcript

1 Φασματική αραιοποίηση και το πρόβλημα των Kadison-Singer Διπλωματική Εργασία Κωνσταντίνος Στούμπος Επιβλέπων: Απόστολος Γιαννόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2015

2

3 Περιεχόμενα 1 Εισαγωγή Στοιχεία Γραμμικής Άλγεβρας Βασικές έννοιες Χρήσιμες προτάσεις Φασματική αραιοποίηση και περιορισμένη αντιστρεψιμότητα Φασματική αραιοποίηση αʹ Διαισθητική περιγραφή της μεθόδου βʹ Απόδειξη του Θεωρήματος Περιορισμένη Αντιστρεψιμότητα αʹ Το Πρόβλημα βʹ Απόδειξη του Θεωρήματος Σύνδεση με το πρόβλημα των Kadison και Singer Εφαρμογές στην ασυμπτωτική γεωμετρική ανάλυση Η θέση John ενός κυρτού σώματος Σημεία επαφής Παραγοντοποίηση Dvoretzky-Rogers Απόσταση Banach-Mazur από τον κύβο Το πρόβλημα των Kadison και Singer Περιγραφή του προβλήματος αʹ Pure states βʹ Η εικασία Paving Περιγραφή της Μεθόδου των Marcus, Spielman και Srivastava Διαπλεκόμενες οικογένειες πολυωνύμων

4 iv Περιεχόμενα 5.4 Πραγματικά ευσταθή πολυώνυμα Μεικτό χαρακτηριστικό πολυώνυμο Η πολυδιάστατη μέθοδος των εμποδίων Η εικασία του Weaver Απόδειξη της εικασίας paving Φασματική θεωρία γραφημάτων και εφαρμογές στα γραφήματα Ramanujan Πίνακας γειτνίασης Ιδιοτιμές κανονικών γραφημάτων Η Λαπλασιανή ενός γραφήματος Η ισοπεριμετρική σταθερά γραφήματος Expanders Θεώρημα Alon-Bopppana γραφήματα Ramanujan αʹ Αριθμοί Catalan βʹ Το καθολικό κάλυμμα ενός γραφήματος γʹ Δύο τεχνικά λήμματα δʹ Απόδειξη του θεωρήματος Alon Boppana Γραφήματα Ramanujan με οποιονδήποτε βαθμό αʹ 2-ανυψώσεις βʹ Πολυώνυμο ταιριάσματος γʹ Το κύριο αποτέλεσμα Αʹ Μία εναλλακτική απόδειξη του Λήμματος

5 Κεφάλαιο 1 Εισαγωγή 1.1

6

7 Κεφάλαιο 2 Στοιχεία Γραμμικής Άλγεβρας Θα χρησιμοποιούμε κεφαλαία γράμματα για πίνακες στον R n n και πεζά για διανύσματα στήλες στον R n Βασικές έννοιες Ορισμοί Ο ανάστροφος ενός πίνακα A = (a ij ) R n n είναι ο A T = (a ji ) R n n. Ενας πίνακας A λέγεται συμμετρικός αν A = A T. Αν v R n 1 είναι ένα διάνυσμα στήλη με συντεταγμένες v 1,..., v n, θέτουμε v T = (v 1,..., v n ) R 1 n. Εστω v T = (v 1,..., v n ), w T = (w 1,..., w n ) R 1 n. Το εσωτερικό γινόμενο των v, w είναι η ποσότητα: n v w = v, w = v T w = v i w i. Η Ευκλείδεια νόρμα του διανύσματος v συμβολίζεται με v 2 = v T v. Το εξωτερικό ή τανυστικό γινόμενο των v, w είναι ο n n πίνακας vw T = (v i w j ) i,j. Ιχνος ενός πίνακα A R n n καλείται η ποσότητα n Tr(A) = a ii = όπου λ i είναι οι ιδιοτιμές του πίνακα A. n λ i, Η ορίζουσα ενός πίνακα A είναι το γινόμενο των ιδιοτιμών του, και συμβολίζεται με n det(a) := λ i.

8 4 Στοιχεια Γραμμικης Αλγεβρας Το χαρακτηριστικό πολυώνυμο ενός πίνακα A είναι το πολυώνυμο χ[a](x) = det(xi A) το οποίο έχει ρίζες τις ιδιοτιμές του A. Πυρήνας της γραμμικής απεικόνισης που αντιστοιχεί στον A λέγεται ο υπόχωρος του R n ker(a) = {x R n : Ax = 0}. Κατά τα γνωστά επίσης, εικόνα του A θα ονομάζουμε καταχρηστικά τον υπόχωρο Im(A) = {Ax : x R n }. Στην ειδική περίπτωση όπου ο A είναι συμμετρικός, ο πυρήνας του A είναι το ορθογώνιο συμπλήρωμα της εικόνας του A. Η τάξη του A είναι ίση με το πλήθος των γραμμικά ανεξάρτητων στηλών του, δηλαδή με την διάσταση της εικόνας της γραμμικής απεικόνισης που αντιστοιχεί στον πίνακα A. Ισοδύναμα, είναι το πλήθος των μη μηδενικών ιδιοτιμών του A. Η νόρμα του πίνακα A είναι η ποσότητα: A 2 = sup Ax 2. x 2=1 Οταν ο Α είναι συμμετρικός και θετικά ημιορισμένος, ισχύει A 2 = max 1 i n λ i, δηλαδή η νόρμα του πίνακα A είναι ίση με τη μέγιστη ιδιοτιμή του. Η νόρμα Frobenius ή νόρμα Hilbert-Schmidt του A ορίζεται από τη σχέση n n A HS = a 2 ij 1/2 = ( Tr(A T A) ) ( n ) 1/2 1/2 = λ 2 i. Ορίζουμε το κατά σημείο γινόμενο των πινάκων A και B ως εξής: A B = n όπου A = (a ij ) R n n και B = (b ij ) R n n. n a ij b ij = Tr(A T B), Η τετραγωνική μορφή που αντιστοιχεί στον A είναι η απεικόνιση από τον R n n στο R με v v T Av = Tr(A T vv T ) = A vv T.

9 2.2 Χρησιμες προτασεις 5 Θεώρημα (φασματικό θεώρημα για συμμετρικούς πίνακες). Εστω A : R n R n συμμετρικός γραμμικός τελεστής. Τότε ο A έχει n πραγματικές ιδιοτιμές λ 1 λ n με αντίστοιχα ιδιοδιανύσματα u 1,..., u n τα οποία αποτελούν ορθοκανονική βάση του R n. Δηλαδή, ισχύουν οι σχέσεις για i = 1,..., n, και A = Au i = λ i u i n λ i u i u T i, από όπου συμπεραίνουμε ότι ο πίνακας A διαγωνοποιείται. Απόδειξη. Με επαγωγή στη διάσταση n. Για n = 1 ο ισχυρισμός είναι προφανής. Υποθέτουμε ότι το συμπέρασμα ισχύει για κάθε συμμετρικό (n 1)-διάστατο γραμμικό τελεστή. Εστω u R n ώστε u T Au = max v 2=1 vt Av. Τέτοιο u πράγματι υπάρχει από τη συνέχεια της τετραγωνικής μορφής που ορίζει ο A και τη συμπάγεια της μοναδιαίας σφαίρας του R n. Από τη μέθοδο των πολλαπλασιαστών Lagrange έχουμε ότι υπάρχει λ R ώστε το u να είναι κρίσιμο σημείο της συνάρτησης f : R n R με f(v) = v T Av λv T v. Υπολογίζοντας την κλίση της f στο u, έχουμε f(u) = 2Au 2λu = 0, οπότε το u είναι ένα μοναδιαίο πραγματικό ιδιοδιάνυσμα του A που αντιστοιχεί στην ιδιοτιμή λ. Παρατηρούμε τώρα ότι αν w u = {v : u, v = 0} τότε Aw u. Πράγματι, αφού A = A T έχουμε ότι w T A T u = w T Au = λw T u = 0. Επίσης, ο B = A u ικανοποιεί την x T B T y = x T By για κάθε x, y u. Εφαρμόζοντας την επαγωγική υπόθεση για τον A u, παίρνουμε το συμπέρασμα. 2.2 Χρήσιμες προτάσεις Λήμμα (τύπος Sherman-Morrison). Αν A είναι ένας n n αντιστρέψιμος πίνακας και v R n ένα διάνυσμα, τότε (2.2.1) (A + vv T ) 1 = A 1 A 1 vv T A v T A 1 v

10 6 Στοιχεια Γραμμικης Αλγεβρας Απόδειξη. Ζητάμε n n πίνακα X ώστε X = (A + vv T ) 1, ισοδύναμα (A + vv T )X = I. Για το σκοπό αυτό αρκεί να βρούμε πίνακα X και y R 1 n ώστε Λύνουμε: { AX + vy = I v T X y = 0 ( A v v T 1 ) ( X y ) = ( I 0 X = A 1 (I vy) = v T X = v T A 1 (I vy) = y = v T A 1 (I vy) και αφού v T A 1 v 1, έπεται ότι (1 + v T A 1 v)y = v T A 1 ) Άρα, y = vt A v T A 1 v. X = A 1 A 1 vv T A v T A 1 v. Λήμμα Αν A είναι ένας n n αντιστρέψιμος πίνακας και v R n ένα διάνυσμα, τότε (2.2.2) det(a + vv T ) = det(a)(1 + v T A 1 v). Απόδειξη. Ελέγχουμε πρώτα οτι ισχύει η σχέση: ( I O v T 1 ) ( ) ( ) I + A 1 vv T A 1 v I O 0 1 v T 1 ( ) ( ) I O I A 1 v = v T 1 v T = 1 Παίρνοντας ορίζουσες και στα δύο μέλη έχουμε: det(i + A 1 vv T ) = 1 + v T A 1 v, ( I A 1 v v T A 1 v και πολλαπλασιάζοντας με det(a) και τα δύο μέλη παίρνουμε το συμπέρασμα. Πρόταση Για κάθε αντιστρέψιμο πίνακα A και κάθε πίνακα B ίδιας διάστασης με τον A έχουμε t det(a + tb) = det(a + tb) Tr((A + tb) 1 B). )

11 2.2 Χρησιμες προτασεις 7 Απόδειξη. Παράτηρούμε ότι t det(a + tb) = s det(a + tb + sb) s=0 = det(a + tb) s det(i + s(a + tb) 1 B) s=0. Θέτουμε C = (A + tb) 1 B. Τότε παίρνουμε τη σχέση: s det(i + sc) s=0 = s det s n ( 1 s I + C) s=0 = s χ[ C]( 1 s ) s=0, όπου χ[ C]( 1 s ) είναι το χαρακτηριστικό πολυώνυμο του C υπολογισμένο στην τιμή 1 s. Χρησιμοποιώντας γνωστή από τη γραμμική άλγεβρα σχέση για το χαρακτηριστικό πολυώνυμο, παρατηρούμε ότι ισχύει Επομένως χ[ C]( 1 s ) = 1 s n + Tr(C) 1 s n (1)n+1 det( C). s χ[ C]( 1 s ) s=0 = s (1 + Tr(C)s + + ( 1) n+1 det( C)s n ) s=0 = Tr(C). Τελικά t det(a + tb) = det(a + tb) Tr((A + tb) 1 B) Θεώρημα (Courant-Fisher). Οι ιδιοτιμές λ 1... λ n ενός συμμετρικού πίνακα A R n n χαρακτηρίζονται ως εξής: λ k = max min {S:dim S=n k+1} v S\{0} όπου με S συμβολίζουμε υποχώρους του R n. v T Av v T v = min max {S:dim S=k} v S\{0} v T Av v T v, Απόδειξη. Θεωρούμε ότι τα u 1,..., u n είναι ορθοκανονικά ιδιοδιανύσματα του A (από το φασματικό θεώρημα), που αντιστοιχούν στις ιδιοτιμές λ 1... λ n. Θέτουμε W k = span{u 1,..., u k } να είναι ο υπόχωρος που παράγεται από τα πρώτα k ιδιοδιανύσματα u 1,..., u k. Αν S είναι τυχών υπόχωρος διάστασης n k + 1, παρατηρούμε ότι dim(w k S) 1, αφού n dim(w k + S) = dim W k + dim S dim(w k S) = n + 1 dim(w k S).

12 8 Στοιχεια Γραμμικης Αλγεβρας Εστω v W k S. Παρατηρούμε ότι v = k v, u j u j και Au j = λ j u j. Άρα, Άρα, όπου η ισότητα ισχύει αφού Av, v v 2 = k λ k j v, u j u j, v v 2 = λ j v, u j 2 k 2 v, u λ k. j 2 Av, v Av, v min v S\{0} v 2 = inf 2 v S\{0} v 2 λ k, 2 Av, v inf v S\{0} v 2 = inf Av, v = min Av, v, 2 v S, v 2=1 v S, v 2=1 επειδή το σύνολο {v S, v 2 = 1} είναι συμπαγές. Δηλαδή, sup min {S:dim S=n k+1} v S\{0} Παρατηρούμε ότι για S = span{u k,..., u n } έχουμε ότι Επομένως, sup min {S:dim S=n k+1} v S\{0} Av, v min v S\{0} v 2 = λ k. 2 v T Av v T v = sup v T Av v T v λ k. min {S:dim S=n k+1} v S\{0} = max min {S:dim S=n k+1} v S\{0} Av, v v, v Av, v v, v = λ k. Για την άλλη ισότητα δουλεύουμε ακριβώς με τον ίδιο τρόπο, θέτοντας αρχικά W k = span{u k,..., u n }.

13 Κεφάλαιο 3 Φασματική αραιοποίηση και περιορισμένη αντιστρεψιμότητα Εστω B τυχών n m πίνακας με m n και έστω 0 < ɛ < 1. Σε αυτό το κεφάλαιο περιγράφουμε τα ακόλουθα αποτελέσματα: Θεώρημα (φασματική αραιοποίηση). Υπάρχει διαγώνιος πίνακας S m m 0 με το πολύ n ɛ 2 μη μηδενικά στοιχεία, ώστε (1 ɛ) 2 BB T BSB T (1 + ɛ) 2 BB T. Θεώρημα (περιορισμένη αντιστρεψιμότητα). Υπάρχει διαγώνιος πίνακας S m m με τουλάχιστον k = (1 ɛ) 2 B 2 HS μη μηδενικά στοιχεία όλα ίσα με 1, ώστε ο πίανακας B 2 2 BSB T να έχει k μη μηδενικές ιδιοτιμές μεγαλύτερες ή ίσες από ɛ 2 B 2 HS m. Τα δύο αυτά θεωρήματα αποτελούν τον πυρήνα της διδακτορικής διατριβής του N. Srivastava [52], η οποία είναι η βασική αναφορά μας για το κεφάλαιο. Η απόδειξη των δύο παραπάνω αποτελεσμάτων βασίζεται σε μια καινούρια μέθοδο που αναπτύχθηκε στα [7], [51], τη «μέθοδο των εμποδίων». Μέσω μιας επαναληπτικής διαδικασίας οι συγγραφείς προσδιορίζουν άνω και κάτω φράγματα (εμπόδια) για τις ιδιοτιμές ενός θετικά ημιορισμένου συμμετρικού πίνακα, μελετώντας σε κάθε βήμα τη συμπεριφορά κατάλληλων «συναρτήσεων δυναμικού» όταν τα ορίσματα αυτών διαταράσσονται από πίνακες τάξης 1. Το πολυδιάστατο

14 10 Φασματικη αραιοποιηση και περιορισμενη αντιστρεψιμοτητα ανάλογο της μεθόδου, που εμφανίζεται για πρώτη φορά στα [43] και [44], θα μας απασχολήσει στη συνέχεια της εργασίας, ειδικότερα στην απόδειξη της εικασίας των Kadison και Singer. Αξίζει να σημειωθεί ότι οι αποδείξεις είναι κατασκευαστικές και μπορούν να μετατραπούν σε αλγόριθμους που τρέχουν σε πολυωνυμικό χρόνο. 3.1 Φασματική αραιοποίηση Θεώρημα Εστω A ένας θετικά ημιορισμένος πίνακας τάξης n που γράφεται στη μορφή m A = w j wj T, όπου w j R n. Για κάθε 0 < ɛ < 1 υπάρχουν μη αρνητικοί αριθμοί {s j } j m, το πολύ n ɛ 2 από τους οποίους είναι μη μηδενικοί, ώστε να ισχύει: m (3.1.1) (1 ɛ) 2 A Ã := s j w j wj T (1 + ɛ) 2 A. Στο υπόλοιπο της ενότητας θα ασχοληθούμε με την απόδειξη του εξής ισοδύναμου, όπως θα δούμε, αποτελέσματος, το οποίο μας λέει ότι αρκεί να εξετάσουμε την περίπτωση A = I. Θεώρημα Εστω d > 1 και v 1,..., v m R n ώστε I = m v j vj T. Τότε, υπάρχουν μη αρνητικοί πραγματικοί αριθμοί {s j } 1 j m, με {j : s j ώστε ( ) 2 m d + 1 I s j v j vj T I. d 1 0} dn, Το επιχείρημα που ακολουθεί μας επιτρέπει να αποδείξουμε το Θεώρημα από το Θεώρημα Απόδειξη. Θεωρούμε έναν πίνακα A τάξης n, ο οποίος είναι της μορφής A = m w j wj T.

15 3.1 Φασματικη αραιοποιηση 11 Θέτουμε v j = A 1/2 w j και παρατηρούμε ότι m m v j vj T = A 1/2 w j wj T A 1/2 = I. Για d = 1 ɛ 2, εφαρμόζοντας το Θεώρημα βλέπουμε ότι υπάρχουν αριθμοί {s j 0} 1 j m, από τους οποίους το πολύ n ɛ 2 είναι μη μηδενικοί, ώστε m I s j v j vj T ( d + 1 d 1 ) 2 I = ( ) ɛ I. 1 ɛ Ορίζοντας λοιπόν Ã = (1 ɛ)2 m s jw j w T j έχουμε ότι και άρα το συμπέρασμα. I (1 ɛ) 2 A 1/2 ÃA 1/2 ( ) ɛ I, 1 ɛ 3.1αʹ Διαισθητική περιγραφή της μεθόδου Είναι γνωστό ότι οι ιδιοτιμές του πίνακα A + vv T διαπλέκονται με τις ιδιοτιμές του A. Για να το δούμε αυτό, χρησιμοποιούμε το Λήμμα για να υπολογίσουμε το χαρακτηριστικό πολυώνυμο του A + vv T : έχουμε ( ) n (3.1.2) χ[a + vv T ](x) = det(xi A vv T v, u i 2 ) = χ[a](x) 1, x λ i όπου λ i είναι οι ιδιοτιμές του πίνακα A και u i τα αντίστοιχα ιδιοδιανύσματα. Το πολυώνυμο χ[a + vv T ](x) έχει ρίζες λ δύο ειδών: (i) Εκείνες για τις οποίες ισχύει ταυτόχρονα χ[a](λ) = 0. Αυτό συμβαίνει για εκείνες τις ιδιοτιμές λ i του A που τα αντίστοιχα ιδιοδιανύσματά τους u i είναι κάθετα στο v. (ii) Εκείνες για τις οποίες χ[a](λ) 0 και (3.1.3) f(λ) = 1 n v, u i 2 λ λ i = 0. Αυτά τα λ είναι οι ιδιοτιμές οι οποίες έχουν μετακινηθεί και έχουν βρεθεί σε θέσεις ανάμεσα στις σταθερές ιδιοτιμές της περίπτωσης (i), χωρίς να αλλάξει συνολικά η αντιστοιχία στη διάταξη μεταξύ παλιών και νέων ιδιοτιμών. Πράγματι, υποθέτουμε

16 12 Φασματικη αραιοποιηση και περιορισμενη αντιστρεψιμοτητα προς άτοπο ότι για κάποιο s υπάρχουν λ s, λ s+1 σταθερές ιδιοτιμές της περίπτωσης (i) ώστε στο διάστημα (λ s, λ s+1 ) να υπάρχουν δύο λύσεις x 1 < x 2 της (3.1.3). Τότε προκύπτει ότι Ισοδύναμα, έχουμε n v, u i 2 x 1 λ i = n v, u i 2 x 2 λ i. n v, u i 2 x 2 x 1 (x 1 λ i )(x 2 λ i ) = 0, το οποίο οδηγεί σε άτοπο αφού σε κάθε όρο του αθροίσματος η ποσότητα (x 1 λ i )(x 2 λ i ) παραμένει θετική. Στη συνέχεια, ο Srivastava δίνει ένα φυσικό μοντέλο που εξηγεί την (3.1.3). Στο μοντέλο αυτό οφείλεται το όνομα της μεθόδου των εμποδίων. Κάνουμε μια απόπειρα να το περιγράψουμε. Για περισσότερες λεπτομέριες παραπέμπουμε στα [52] και [46, σελ. 7]. Φανταστείτε ένα κεκλιμένο επίπεδο, του οποίου την ευθεία κλίσης ταυτίζουμε με τους πραγματικούς αριθμούς. Στις θέσεις όπου βρίσκονται οι ιδιοτιμές του πίνακα A, τοποθετούμε εγκάρσια, αφόρτιστα αρχικά, εμπόδια. Θεωρούμε τώρα n αρνητικά φορτισμένα σωματίδια ίσης μάζας τα οποία ισορροπούν στις θέσεις λ j, j = 1,..., n που ορίζουν τα εμπόδια, λόγω της επίδρασης της βαρύτητας. Η πρόσθεση του τάξης 1 πίνακα vv T στον A, αντιστοιχεί στο να φορτίσουμε με αρνητικό φορτίο μεγέθους v, u j 2 τα εμπόδια στις θέσεις λ j. Υ- ποθέτουμε ότι κάθε φορτίο στα εμπόδια απωθεί το αντίστοιχο φορτίο του σωματιδίου με δύναμη ανάλογη με το φορτίο του εμποδίου και αντιστρόφως ανάλογη της απόστασης του σωματιδίου από το εμπόδιο. Δηλαδή η δύναμη που δέχεται το σωματίδιο j από το εμπόδιο λ j είναι ίση με v, u j 2, λ λ j με θετική φορά την διεύθυνση προς τα πάνω, κατά μήκος του κεκλιμένου επιπέδου. Επομένως, τα σωματίδια στα οποία αντιστοιχεί θετικό φορτίο στο εμπόδιο, μετακινούνται προς τα πάνω μέχρι να φτάσουν στο σημείο ισορροπίας τους, το οποίο δίνεται από τη συνισταμένη των απωστικών δυνάμεων από τα εμπόδια και της δύναμης της βαρύτητας που δέχονται τα σωματίδια. Τα σημεία ισορροπίας των σωματιδίων που μετακινήθηκαν, προσδιορίζονται από τις λύσεις της εξίσωσης (3.1.3) και αντιστοιχούν στις νέες ιδιοτιμές. Με το παραπάνω μοντέλο στο νου μας, υπολογίζουμε το αναμενόμενο φορτίο που συνεισφέρει ένα τυχαία επιλεγμένο διάνυσμα v {v i } m στο εμπόδιο λ j ή πιο ορθά τη μέση τιμή του τετραγώνου της προβολής του τυχαίου v στο ιδιοδιάνυμα u j. Εχουμε: ( E v v, u j 2 = 1 m v i, u j 2 = 1 m ) m m ut j v i vi T u j = u j 2 2 m = 1 m.

17 3.1 Φασματικη αραιοποιηση 13 Φυσικά, δεν είναι απαραίτητο να υπάρχει v στο σύνολο των διανυσμάτων μας που να υλοποιεί την αναμενόμενη συμπεριφορά, ωστόσο αν υπήρχε, αυτό θα σήμαινε τη σταθερή μετακίνηση προς τα εμπρός όλων των εμποδίων σε κάθε βήμα. Στην πραγματικότητα, μπορούμε να περιμένουμε ότι ύστερα από αρκετά μεγάλο πλήθος επαναλήψεων της παραπάνω διαδικασίας όλες οι ιδιοτιμές θα μετακινούνται προς τα εμπρός, χωρίς καμία να βρίσκεται πολύ μπροστά, ή πολύ πίσω, δηλαδή ο λόγος λmax λ min θα παραμένει φραγμένος. Η παραπάνω διαίσθηση πράγματι επαληθεύεται. Από τη σχέση (3.1.2) και το γεγονός ότι χ[a] (x) = n j i (x λ j), για το διάνυσμα v avg = 1 n m u j με ίσες προβολές στα u j έχουμε χ[a + v avg v T avg](x) = χ[a](x) ( 1 ) n 1/m = χ[a](x) 1 x λ i m χ[a] (x). Αν ξεκινήσουμε με A = 0, δηλαδή με χ 0 (x) = x n, μετά από k επαναλήψεις παίρνουμε το πολυώνυμο χ k (x) = (I 1/mD) k x n, όπου D ο τελεστής παραγώγισης ώς προς x. Δημιουργούμε έτσι μια γνωστή ορθογώνια οικογένεια πολυωνύμων, τα πολυώνυμα Laguerre.([19]). Τα πολυώνυμα αυτά έχουν μελετηθεί αρκετά και η θέση των ριζών τους είναι γνωστη. Ειδικότερα, μετά από k = dn επαναλήψεις, ο λόγος της μεγαλύτερης ρίζας προς τη μικρότερη τείνει στην τιμή ( d + 1 d 1 ) 2, καθώς n, που είναι ακριβώς το ζητούμενο φράγμα. Για να αποδείξουμε το Θεώρημα θα δείξουμε ότι μπορούμε να διαλέξουμε μια πεπερασμένη ακολουθία διανυσμάτων v i με κατάλληλα βάρη s i στο καθένα, ώστε να υλοποιούν την αναμενόμενη συμπεριφορά που περιγράφηκε παραπάνω. Θα ελέγχουμε τις ιδιοτιμές του νέου πίνακα που προκύπτει σε κάθε βήμα, διατηρώντας μόνο δύο από τα αρχικά εμπόδια, το πρώτο και το τελευταίο, και κρατώντας τις ιδιοτιμές ανάμεσά τους. Το κάτω εμπόδιο θα απωθεί τις ιδιοτιμές, σπρώχνοντάς τες προς τα εμπρός, ενώ το άνω εμπόδιο θα τις συγκρατεί ώστε να μην φύγουν πολυ μακρυά. Σε κάθε βήμα, και τα δύο εμπόδια θα μετακινούνται προς τα εμπρός, με σταθερό ρυθμό. Κρατώντας φραγμένη την «ολική απώθηση»(δυναμικό) σε κάθε βήμα, θα δείξουμε ότι υπάρχει κατάλληλο διάνυσμα και κατάλληλο βάρος για αυτό, ώστε ο τάξης 1 πίνακας που δημιουργεί, προστιθέμενος στον πίνακα του προηγούμενου βήματος, να επιτρέπει να συνεχιστεί η διαδικασία. Η διαδικασία θα τελειώσει όταν πετύχουμε το κατάλληλο φράγμα για το δυναμικό.

18 14 Φασματικη αραιοποιηση και περιορισμενη αντιστρεψιμοτητα 3.1βʹ Απόδειξη του Θεωρήματος Εστω u, l R και έστω A ένας συμμετρικός n n πίνακας με ιδιοτιμές λ 1,..., λ n. Ξεκινάμε ορίζοντας τις εξής ποσότητες: Ορισμός (άνω δυναμικό). Ορισμός (κάτω δυναμικό). Φ u (A) := Tr(uI A) 1 = Φ l (A) := Tr(A li) 1 = n n 1 u λ i. 1 λ i l. Παρατήρηση Οι δύο αυτές συναρτήσεις μετράνε πόσο μακρυά βρίσκονται οι ιδιοτιμές λ 1,..., λ n από τις θέσεις των εμποδίων u και l. Οταν, λόγου χάρη, μια ιδιοτιμή λ k πλησιάζει το u, το Φ u (A) εκρήγνυται αφού ο πίνακας ui A τείνει να γίνει ιδιάζων. Παρατήρηση Εχουμε li A ui l < λ min (A) λ max (A) < u. Με βάση την προηγούμενη παρατήρηση αρκεί να δείξουμε ότι: ( ) 2 λ max (Ã) d + 1 λ min (Ã), d 1 όπου Ã = m s jv j vj T. Για να δείξουμε το ζητούμενο θα ακολουθήσουμε την εξής επαναληπτική διαδικασία: θα κατασκευάσουμε τον πίνακα Ã προσθέτοντας έναν όρο της μορφής v j vj T σε κάθε βήμα και προσδιορίζοντας το κατάλληλο βάρος s j. Πιο συγκεκριμένα, έστω u 0, δ U, δ L, ɛ U και ɛ L θετικές σταθερές και l 0 < 0 (θα επιλεγούν στη συνέχεια) για τις οποίες ικανοποιούνται τα ακόλουθα: (i) Αρχικά A (0) = 0, τα εμπόδια βρίσκονται στις θέσεις u = u 0, l = l 0 και τα δυναμικά έχουν τις τιμές Φ u0 (A (0) ) = ɛ U και Φ l0 (A (0) ) = ɛ L. (ii) Κάθε πίνακας A (q+1) προκύπτει από τον προηγούμενο A (q) θέτοντας A (q+1) = A (q) + svv T για κατάλληλο s > 0 και v {v j : j = 1,..., m}. (iii) Για κάθε βήμα q = 0, 1,..., Q, όπου Q = dn, Φ u+δ U (A (q+1) ) Φ u (A (q) ) ɛ U

19 3.1 Φασματικη αραιοποιηση 15 και Φ l+δl (A (q+1) ) Φ l (A (q) ) ɛ L, δηλαδή αν μετακινήσουμε τα εμπόδια κατά δ U και δ L, τα αντίστοιχα δυναμικά Φ u (A (q) ) και Φ l (A (q) ) δεν αυξάνονται στο επόμενο βήμα. (iv) Καμία ιδιοτιμή δεν ξεπερνά ποτέ κανένα εμπόδιο, δηλαδή για κάθε q = 0, 1,, Q: l 0 + qδ L < λ min (A (q) ) λ max (A (q) ) < u 0 + qδ U. Για να τελειώσει η απόδειξη, μένει να επιλεγούν τα u 0, v 0, δ U, δ L, ɛ U και ɛ L έτσι ώστε μετά από Q = dn βήματα να ισχύει: (3.1.4) λ max (A (Q) ) λ min (A (Q) ) u 0 + dnδ U l 0 + dnδ L ( d + 1 d 1 ) 2. Η μεγαλύτερη τεχνική δυσκολία της απόδειξης έγκειται στο να ικανοποιούνται τα (ii) και (iii) ταυτόχρονα, δηλαδή να είναι πάντα δυνατή η επιλογή ενός πίνακα vv T που μπορεί να προστεθεί στον εκάστοτε πίνακα A ώστε να μπορούμε να προωθήσουμε και τα δύο εμπόδια με σταθερό ρυθμό σε κάθε βήμα, χωρίς να αυξάνονται τα αντίστοιχα δυναμικά. Η δυσκολία αυτή γίνεται εφικτό να ξεπεραστεί με τα ακόλουθα τρία λήμματα. Λήμμα (προώθηση άνω εμποδίου). Εστω ότι λ max (A) u και έστω v τυχόν διάνυσμα. Αν (3.1.5) U A (v) := vt ((u + δ U )I A) 2 v Φ u (A) Φ u+δ U (A) τότε και Φ u+δ U (A + tvv T ) Φ u (A) λ max (A + tvv T ) < u + δ U. + v T ((u + δ U )I A) 1 v 1 t Δηλαδή, αν προσθέσουμε t φορές τον πίνακα vv T στον A και μετακινήσουμε το άνω εμπόδιο κατά δ U, τότε το άνω δυναμικό δεν αυξάνεται.

20 16 Φασματικη αραιοποιηση και περιορισμενη αντιστρεψιμοτητα Απόδειξη. Εστω u = u + δ U. Από την Πρόταση έχουμε: (3.1.6) Φ u+δ U (A + tvv T ) = Tr(u I A tvv T ) 1 = Tr ((u I A) 1 + t(u I A) 1 vv T (u I A) 1 ) 1 tv T (u I A) 1 v = Tr((u I A) 1 ) + ttr(vt (u I A) 1 (u I A) 1 v) 1 tv T (u I A) 1 v = Tr((u I A) 1 ) + tvt (u I A) 2 v 1 tv T (u I A) 1 v = Φ u+δ U (A) + tvt (u I A) 2 v 1 tv T (u I A) 1 v = Φ u (A) (Φ u (A) Φ u+δ U (A)) + v T (u I A) 2 v 1/t v T (u I A) 1 v, όπου για τις παραπάνω ισότητες χρησιμοποιούμε τη γραμμικότητα του ίχνους, το γεγονός ότι Tr(AB) = Tr(BA), το ότι ο πίνακας (u I A) 2 είναι συμμετρικός και τέλος τους ορισμούς του εξωτερικού γινομένου και του άνω δυναμικού. Παρατηρούμε τώρα ότι λόγω της υπόθεσης έχουμε: 1 t vt (u I A) 1 v > 0, επομένως η (3.1.5) γράφεται ισοδύναμα στη μορφή δηλαδή Τότε, η (3.1.6) μας δίνει Η παραπάνω σχέση δίνει επιπλέον ότι v T (u I A) 2 v Φ u (A) Φ u+δ U (A) 1 t vt (u I A) 1 v, v T (u I A) 2 v 1/t v T (u I A) 1 v (Φu (A) Φ u+δ U (A)) 0. Φ u+δ U (A + tvv T ) Φ u (A). λ max (A + tvv T ) < u + δ U, γιατί σε διαφορετική περίπτωση θα υπήρχε t t ώστε λ max (A+t vv T ) = u+δ U (λόγω της μονοτονίας και της συνέχειας της συνάρτησης λ max (A + tvv T ) ως προς t, από το θεώρημα ενδιάμεσης τιμής). Ομως για ένα τέτοιο t η Φ u+δ U (A + t vv T ) εκρήγνυται, ενώ το t ικανοποιεί την (3.1.5) και ο προηγούμενος υπολογισμός δείχνει ότι θα έπρεπε να ισχύει η Φ u+δ U (A + t vv T ) Φ u (A).

21 3.1 Φασματικη αραιοποιηση 17 Το δεύτερο λήμμα αφορά τη μετακίνηση του κάτω εμποδίου. Μετακινώντας το l στη θέση l+δ L και κρατώντας τον πίνακα Α σταθερό, το κάτω δυναμικό Φ l (A) αυξάνεται καθώς το εμπόδιο l πλησιάζει τις ιδιοτιμές του A. Ετσι, προσθέτοντας στον A έναν πίνακα της μορφής tvv T οι ιδιοτιμές του A + vv T μετακινούνται μπροστά και μακρυά από το εμπόδιο, με αποτέλεσμα το δυναμικό να μειώνεται. Παρακάτω υπολογίζεται η τιμή του t έτσι ώστε μετά τη μετακίνηση του εμποδίου στη νέα του θέση, το νέο δυναμικό Φ l+δl (A + tvv T ) να μην έχει αυξηθεί. Λήμμα (προώθηση κάτω εμποδίου). Εστω ότι λ min (A) l, Φ l (A) < 1 δ L v R n τυχόν διάνυσμα. Αν τότε L A (v) := vt (A (l + δ L )I) 2 v Φ l+δl (A) Φ l (A) (3.1.7) Φ l+δl (A + tvv T ) Φ l (A) και v T (A (l + δ L )I) 1 v 1 t > 0, λ min (A + tvv T ) > l + δ L. και έστω Δηλαδή, αν προσθέσουμε t φορές τον πίνακα vv T στον A και μετακινήσουμε το κάτω εμπόδιο κατά δ L, τότε το κάτω δυναμικό δεν αυξάνεται. Απόδειξη. Αρχικά παρατηρούμε ότι από τις υποθέσεις του λήμματος ισχύει Άρα, για κάθε t > 0, λ min (A) > l + δ L. λ min (A + tvv T ) > l + δ L. Για την απόδειξη της (3.1.7) δουλεύουμε όπως στο προηγούμενο λήμμα. Θέτουμε l = l + δ L. Εχουμε Φ l+δl (A + tvv T ) = Tr(A + tvv T l I) 1 = Tr ((A l I) 1 t(a l I) 1 vv T (A l I) 1 ) 1 + tv T (A l I) 1 v = Tr(A l I) 1 ttr(vt (A l I) 1 (A l I) 1 v) 1 + tv T (A l I) 1 v = Φ l+δl (A) tvt (A l I) 2 v 1 + tv T (A l I) 1 v = Φ l (A) + (Φ l+δl (A) Φ l (A)) v T (A l I) 2 v 1/t + v T (A l I) 1 v

22 18 Φασματικη αραιοποιηση και περιορισμενη αντιστρεψιμοτητα Αναδιατάσσοντας την ανισότητα L A (v) 1 t πριν. της υπόθεσης έχουμε το συμπέρασμα όπως Το τρίτο λήμμα προσδιορίζει τις συνθήκες εκείνες κάτω από τις οποίες μπορούμε να βρούμε κατάλληλο πίνακα tvv T ώστε και τα δύο δυναμικά να διατηρούνται φραγμένα καθώς μετακινούνται τα εμπόδια, ώστε να μπορούμε να συνεχίσουμε την διαδικασία. Η απόδειξη βασίζεται σε ένα επιχείρημα μέσης τιμής. Λήμμα Αν τα λ max (A) < u, λ min (A) > l, Φ u (A) ɛ U, Φ l (A) ɛ L ɛ U, ɛ L, δ U, δ L ικανοποιούν τη σχέση (3.1.8) 0 1 δ U + ɛ U 1 δ L ɛ L, τότε υπάρχουν i [m] και t > 0 για τα οποία και L A (v j ) 1 t U A(v j ), λ max (A + tv j v T j ) < u + δ U και λ min (A + tv j v T j ) l + δ L. Απόδειξη. Θα δείξουμε ότι m m L A (v j ) U A (v j ), απ όπου παίρνουμε το ζητούμενο χρησιμοποιώντας τα Λήμματα και Ξεκινάμε φράσσοντας το m U A(v j ). Εχουμε m m U A (v j ) = vt j ((u + δ U )I A) 2 v j m Φ u (A) Φ u+δ + v T U (A) j ((u + δ U )I A) 1 v j = ((u + δ U )I A) 2 ( m v jv T j ) Φ u (A) Φ u+δ U (A) = Tr ( ((u + δ U )I A) 2) Φ u (A) Φ u+δ + Tr ( ((u + δ U U )I A) 1) (A) = = n n 1 u λ i 1 (u+δ U λ i) 2 m + ((u + δ U )I A) 1 v j vj T + Φ u+δ U (A) n 1 u+δ U λ i n (u + δ U λ i ) 2 n δ U (u λ i) 1 (u + δ U λ i ) + 1 Φu+δ U (A) 1 δ U + Φ u+δ U (A) 1 δ U + Φ u (A) 1 δ U + ɛ U,

23 3.1 Φασματικη αραιοποιηση 19 όπου: για την δεύτερη ισότητα χρησιμοποιήθηκαν οι σχέσεις m v jv T j = I και X I = Tr(X), όπου X τυχών πίνακας, και για την πρώτη ανισότητα η n (u + δ U λ i ) 2 n (u λ i ) 1 (u + δ U λ i ) 1. Για να φράξουμε το m L A(v j ) θα χρειαστεί ο ακόλουθος ισχυρισμός: Ισχυρισμός Αν λ 1 > l για κάθε i = 1,..., n, αν 0 n (u λ i) 1 ɛ L 1 και δ L ɛ L 0, τότε n (λ i l δ L ) 2 n n (λ i l δ L ) 1 n (λ i l) (λ 1 i l δ L ) 1 1 n (λ i l) 1. δ L Απόδειξη. Εχουμε για κάθε i = 1,..., n, άρα δ L 1 ɛ L λ i l n (λ i l δ L ) 1 n (λ i l) 1 0. Η ανισότητα του ισχυρισμού είναι ισοδύναμη με την ακόλουθη: ( n n ) n (λ i l δ L ) 2 (λ i l δ L ) 1 (λ i l) 1 Ισοδύναμα n δ L ( ) 1 n n + (λ i l δ L ) 1 (λ i l) 1 δ L ( ) n 1 = δ L (λ i l δ L )(λ i l) ( ) 1 n 1 + δ L δ L (λ i l δ L )(λ i l) ( ) n 1 n 2 = (λ i l δ L )(λ i l) + 1 δ L. (λ i l δ L )(λ i l) ( 1 (λ i l δ L ) 2 (λ i l) δ L n ) 2 1. (λ i l δ L )(λ i l)

24 20 Φασματικη αραιοποιηση και περιορισμενη αντιστρεψιμοτητα Από την ανισότητα Cauchy-Schwarz έχουμε ( n δ L ) 2 ( 1 = δ L (λ i l δ L )(λ i l) ( n n δ L (δ L ɛ L ) δ L n ) 2 1 (λ i l δ L ) λ i l λ i l ) ( n (λ i l) 1 1 ( n δ L δ L 1 (λ i l δ L ) 2 (λ i l) 1 (λ i l δ L ) 2 (λ i l), (λ i l δ L ) 2 (λ i l) ) όπου η δεύτερη ανισότητα ισχύει διότι n (λ i l) 1 ɛ L, και η τελευταία λόγω της σχέσης 1 δ L ɛ L 0. Η απόδειξη του ισχυρισμού είναι πλήρης. Μένει να δειχθεί ότι m L A (v j ) 1 δ L ɛ L, οπότε από την (3.1.8) έχουμε το λήμμα. Πράγματι, m m L A (v j ) = vt j (A (l + δ L)I) 2 v j m vj T (A (l + δ L )I) 1 v j Φ l+δl (A) Φ l (A) = Tr ( (A (l + δ L )I) 2) Tr ( (A (l + δ L )I) 1) Φ l+δl (A) Φ l (A) n = (λ i l δ L ) 2 n n (λ i l δ L ) 1 n (λ i l) (λ 1 i l δ L ) 1 1 n (λ i l) 1 1 ɛ L δ L δ L Ετσι, έχουμε αποδείξει το Λήμμα Απόδειξη του Θεωρήματος Επιλέγουμε δ U = d+1 d 1, δ L = 1, ɛ U = d 1 d+d, ɛ L = 1 d, u 0 = n ɛ U και l 0 = n ɛ L. Με αυτήν την επιλογή έχουμε 1 d 1 d 1 + ɛ U = + = 1 1 = 1 ɛ L. δ U d + 1 d( d + 1) d δ L )

25 3.2 Περιορισμενη Αντιστρεψιμοτητα 21 Τα αρχικά δυναμικά είναι: και ( Φ n ((n/ɛu ɛ U (0) = Tr )I ) ) 1 = ɛ U Φ n ɛ L (0) = ɛ L. Επιπλέον, λ max (0) = 0 και λ min (0) = 0. Άρα, οι υποθέσεις του Λήμματος ικανοποιούνται τετριμμένα, οπότε βρίσκουμε τα ζητούμενα v 1 και s 1. Υποθέτοντας τώρα ότι έχει κατασκευασθεί ο A (q), βρίσκουμε τον A (q+1) διαλέγοντας v j έτσι ώστε L A (q)(v j ) U A (q)(v j ), και θέτοντας για κάποιον t > 0 ο οποίος ικανοποιεί την Τέλος, από τη σχέση (3.1.4) έχουμε: λ max (A (dn) ) λ min (A (dn) ) A (q+1) = A (q) + tv j v T j L A (q)(v j ) 1 t U A (q)(v j). d+ d d 1 + d d+d d 1 d d = d(d + 2 d + 1) d( d 1) Περιορισμένη Αντιστρεψιμότητα = ( d + 1 d 1 ) αʹ Το Πρόβλημα Αφετηρία μας είναι το επόμενο θεώρημα των Bourgain και Tzafriri. Θεώρημα (Bourgain-Tzafriri). Υπάρχουν απόλυτες σταθερές c, d > 0 ώστε αν B είναι ένας n n πίνακας με στήλες μοναδιαίου μήκους, τότε υπάρχει S [n] με πλήθος στοιχείων S ώστε να ισχύει σ min (B S ) d, όπου B S είναι ο n S πίνακας που cn B 2 2 προκύπτει αν επιλέξουμε τις στήλες του B από το σύνολο δεικτών S, και σ min (B S ) είναι η ελάχιστη ιδιάζουσα τιμή του B S. Ο Vershynin γενίκευσε αυτό το αποτέλεσμα προκειμένου να μελετήσει τα σημεία επαφής ενός κυρτού σώματος με το ελλειψοειδές μέγιστου όγκου του, μέσω της αναπαράστασης του John για την ταυτοτική απεικόνιση (βλέπε Κεφάλαιο 4). Ο Vershynin απέδειξε ότι, για κάθε αναπαράσταση της μορφής m I = v j vj T

26 22 Φασματικη αραιοποιηση και περιορισμενη αντιστρεψιμοτητα και για κάθε γραμμικό τελεστή L : l n 2 l n 2, υπάρχει κάποιο σύνολο S [m] ώστε ο L να είναι αντιστρέψιμος στον υπόχωρο που παράγεται από το {v j : j S}. Επιπλέον, το πλήθος των στοιχείων του S είναι τουλαχιστον ίσο με την ποσότητα L 2 HS, η οποία L 2 2 ονομάζεται ευσταθής δείκτης του L και έχει την εξής φυσική ερμηνεία: είναι το πλήθος των διευθύνσεων τις οποίες ο τελεστής L διατηρεί ή διαστέλλει. Θεώρημα (Vershynin, Spielman-Srivastava). Εστω v 1,..., v m διανύσματα στήλες στον R n ώστε m I = v j vj T, και έστω ɛ (0, 1). Εστω ακόμα L : l n 2 l n 2 γραμμικός τελεστής. Υπάρχει S [m] μεγέθους S ɛ 2 L 2 HS L 2 2 ώστε το σύνολο {Lv j : j S} να είναι γραμμικά ανεξάρτητο, και λ min j S(Lv j )(Lv j ) T > (1 ɛ) 2 L 2 HS m, όπου η ιδιοτιμή λ min υπολογίζεται στον υπόχωρο Lv j : j S. Μπορούμε εύκολα να δούμε ότι το Θεώρημα προκύπτει από το Θεώρημα με σταθερές c(ε) = ε 2 και d(ε) = (1 ε) 2, αν θεωρήσουμε την αναπαράσταση I = n e je T j, όπου {e j : j = 1,..., n} είναι η συνήθης ορθοκανονική βάση του R n, και υποθέσουμε ότι ο τελεστής L ικανοποιεί την Le j 2 = 1 για κάθε j = 1,..., n. 3.2βʹ Απόδειξη του Θεωρήματος Η απόδειξη των Spielman και Srivastava που παρουσιάζουμε εδώ, είναι αρκετά σύντομη, βασίζεται σε στοιχειώδη γραμμική άλγεβρα και πετυχαίνει πολύ καλύτερες σταθερές από αυτήν του Vershynin. Ταυτόχρονα, δίνει και έναν ντετερμινιστικό αλγόριθμο για την εύρεση του συνόλου S. Για την απόδειξη κατασκευάζουμε επαγωγικά μια συνάρτηση δυναμικού (εμπόδιο), παρόμοια με αυτήν της απόδειξης του αποτελέσματος της προηγούμενης ενότητας, με τις εξής όμως διαφορές: Εδώ χρησιμοποιούμε μόνο ένα εμπόδιο, αντί για δύο, μιας και αναζητείται μόνο κάτω φράγμα για τις ιδιοτιμές που συνεισφέρει κάθε καινούριο στοιχείο του συνόλου S. Η επιπλέον ελευθερία που προκύπτει από το γεγονός ότι έχουμε μόνο ένα εμπόδιο, μας επιτρέπει να διασφαλίσουμε ότι τα βάρη (στην απόδειξη) είναι είτε 0 ή 1, χαρακτηρίζοντας με αυτήν την έννοια το σύνολο των διανυσμάτων στηλών που επιλέγονται.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Στη Φυσική ενδιαφερόμαστε για την δυναμική εξέλιξη των διαφόρων συστημάτων. Καίριο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσική Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική Το ζήτημα των τανυστών είναι πολύ σημαντικό τόσο για την Κβαντομηχανική, όσο και για τη Σχετικότητα. Οι δύο

Διαβάστε περισσότερα

Τα θεωρήματα Green, Stokes και Gauss

Τα θεωρήματα Green, Stokes και Gauss Τα θεωρήματα των Green, Stokes και Guss Αντώνης Τσολομύτης Σάμος, 2012 curl F div S F Επειδή αναϕέρθηκε στο μάθημα... Ενεργητική ϕωνή Ενεστώτας παράγω παρέχω Ενεστώτας-υποτακτική να παράγω να παρέχω Ενεστώτας-προστακτική

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ: Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Πίνακες ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας και της άλγεβρας των πινάκων. Το ϕυλλάδιο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Βάση και Διάσταση Διανυσματικού Χώρου

Βάση και Διάσταση Διανυσματικού Χώρου Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα