çfrykse f=dks.kferh; Qyu (Inverse trigonometric functions)
|
|
- Αἴσων Λούλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Download FREE Stud Package from & Learn on Video Phone : , fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksMs rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksMs /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~q# Jh j.knksmnklth egkjkt çfrkse fdks.kferh; Qu (Inverse trigonometric functions) There are three sides to an argument: our side, m side and the right side. Introduction : ge fdks.kehfr; Quksa tsls, cos,, cosec, sec, cot ds ckjs esa i< pqds gsa] ftuds fd izkur Øe k% R, R, R - {(n ) / g}r - { R-(-, ), R- (-, ), R gsa n } R - {(n ) / }, R - { n } vksj ifjlj Øe k% [-, ], [-, ] R, Sin - : izrhd - ;k arc dks.k θ dks bl rjg fu:fir dgrs gs fd θ. bldk lh/kk vfkz gs fd -,d Qu ugha gs D;ksafd ;g Qu gksus ds f;s vko ;d fu;eksa dk larq V ugha djrk gs] sfdu mi;qdr fodyi ds :i esa [-, ] dks izkur ds :i esa vksj ekud leqpp; [ /, / ] dks blds ifjlj :i esa sus ij -,d,d eku Qu (gle valued function) cu tkrk gsa vr% - dks izkur [-, ] vksj ifjlj [ /, / ] esa,d Qu ds :i esa f;k tk ldrk gsa - dk vks[k uhps n kkz;k ;k gs] ftls ds / izfrfcec sdj izkir fd;k ;k gsa ls / rd ds Hkk dks js[kk ij niz.k cos - : Åij fn;s ;s dfkuksa ds vuqlkj cos - ;k arccos dks,d Qu dks rjg f;k tkrk gs ftldk izkur [-, ] vksj ifjlj [, ] gsa cos - dk vks[k Hkh blh rjg cos ds ls rd ds Hkk dks js[kk ij niz.k izfrfcec sdj izkir fd;k ;k gsa Page
2 Download FREE Stud Package from & Learn on Video Phone : , : an - ;k arc dks,d Qu ds :i esa sus ds f;s mldk izkur R vksj ifjlj ( /, / ) j[krs gsa - dk vks[k cosec - : cosec - ;k arccosec,d Qu gs ftldk izkur R - (-, ) vksj ifjlj [ /, / ] { } srs gsa cosec - dk vks[k sec - : sec - ;k arcsec,d Qu gs ftldk izkur R - (-, ) vksj ifjlj [, ] { / } gsa sec - dk vks[k cot - : cot - ;k arccot,d Qu gs ftldk izkur R vksj ifjlj (, ) gsa cot - dk vks[k Page
3 Download FREE Stud Package from & Learn on Video Phone : , Propert : - -, -, cosec - ds vks[k ewfcunq ds lkis{k lefer gsa vr% ge dg ldrs gs fd - (-) (-) - - cosec - (-) - cosec -. rfkk cos -, sec -, cot - ds vks[k fcunq (, / ) ds lkis{k lefer gs] blls ge dg ldrs gsa fd cos - (-) - cos - sec - (-) - sec - cot - (-) - cot -. Propert : T(T - ) (i) ( - ), - Proof : ekuk θ -. rks [, ] vksj [ /, /.] θ, izrhd ds vfkz }kjk ( - ) blh rjg ge fueu dk fl) dj ldrs gsa (ii) cos (cos - ). (iii) ( - ), R (iv) cot (cot - ), R (v) sec (sec - ),, (vi) cosec (cosec - ), ( - ) - cos (cos - ) dk vks[k ( - ) cot (cot - ) dk vks[k Page
4 Download FREE Stud Package from & Learn on Video Phone : , cosec (cosec - ) sec (sec - ) dk vks[k Propert : T - (T) (i) - ( ) n, [ n /, n / ] n ), [( n ) /,( n )] /,n Z Proof : ;fn [ n /, n / ], rks n [ /, / ] vksj ( n ). vr% ( ) n for [ n /, n / ]. nd Hkk dk lr;kiu Lo;a djsa - ( ) dk vks[k n, (ii) cos - (cos ) n, cos - (cos ) dk vks[k [n,(n ) ] [(n ), n ], n Ι Page
5 Download FREE Stud Package from & Learn on Video Phone : , (iii) - ( ) - n, / < < n /,n Z - ( ) dk vks[k (iv) cosec - (cosec ) dk vks[k Hkh - ds leku fg gsa cosec - (cosec ) dk vks[k (v) sec - (sec ) dk vks[k cos - (cos ) ds leku gsa sec - (sec ) dk vks[k Page
6 Download FREE Stud Package from & Learn on Video Phone : , (vii) cot - (cot ) n, (n,(n ) ),n Z cot - (cot ) dk vks[k Remark : ( - ), cos (cos - ),... cot (cot - ) vuko`rhd (non periodic) Qu gs tcfd - ( ),..., cot - (cot ) vko`fr Qu gsa Propert : / (i) cosec - () - (/), g% ekuk cosec - θ / θ - (/) - ( θ ) θ (as θ [, / ]) cos ec (ii) sec - cos - {/}, (iii) cot - { / ), > ( / ), < Propert : / (i) - cos - - g% ekuk A - vksj B cos - A vksj cos B A cos B A ( / B) A / - B D;ksafd A vksj / B [ /, / ] A B /. blh rjg ge dg ldrs gs fd (ii) - cot -, R (iii) cosec - sec -, Propert 6: ;ks o vurj dh lozlfedk, (Identities on additioin and substractioin): (i) - - -,,,oa ( ),,,oa 6 Page 6
7 Download FREE Stud Package from & Learn on Video Phone : , Page 7 g% ekuk A - vksj B - tgk ], [, (A B) - (A B) - - B A / B) (A / B A B A tc tc ), (, (ii) ], [, ; (iii) cos - cos - cos - ], [, ' (iv) cos - - cos - < ; cos ], [, ; cos (v) - - > < < > &, &, &, / &, / fn ; (vi) ,, uksv % uksv % uksv % uksv % (i) &, vksj &, (ii) < vksj, > < ; vksj < <, (iii) < ;k > ds f, bu lozlfedkvksa dks q.k/kez - dh lgk;rk ls iz;qdr dj ldrs gsa vfkkzr~ dks -,oa dks - esa cnrs gs tks fd /kukred gs Propert 7 : dqn mi;ks lozlfedk, dqn mi;ks lozlfedk, dqn mi;ks lozlfedk, dqn mi;ks lozlfedk, (More useful identities) (i) ( ) < < dk zkq
8 Download FREE Stud Package from & Learn on Video Phone : , (ii) cos ( ) cos cos cos - ( - ) dk zkq if if < (iii) ( ) < < > dk zkq (iv) ( ) < > dk zkq (v) cos > cos dk zkq (vi) ;fn z rks z (vii) ;fn z rks z (viii) (i) Page 8
9 Download FREE Stud Package from & Learn on Video Phone : , Eercise - -A ¼cgqfodYih; iz u½ dso,d fodyi lgh - dk eku gs& 7 (B) (D) - f() cos - cos - cosec - dk izlr gs& [-, ] (B) R (, ] [, ) (D) {-, } - f() - - sec dk ifjlj gs&, (B),, (D) bueas ls dksbz ugha - cosec - (cos ) oklrfod gksk ;fn& [, ] (B) R - ;fn cos[ {(cot )}] gks rks& (B), dk fo ke q.kt gs(d), dk q.kt gsa (D) 6- dk eku gs& 6 7 (B) (D) 6 7- ;fn gks] rks cos (cos ) (B) (D) 8- ;fn gks] rks cos cos (B) 6 (D) 9- ;fn rfkk θ cos gks] rks & 9 Page 9
10 Download FREE Stud Package from & Learn on Video Phone : , θ (B) θ (D) θ - ;fn < gks rks () dk eku gs& (B) (D) buesa ls dksbz ugha - a b, ¼tgk a >, b >, ab > ) dk eku gs& a b ab a b ab a b (B) ab a b (D) ab - dk eku gs& (B) (D) buesa ls dksbz ugha - cos cos dk ekugs& cos (B) 6 cos cos (D) buesa ls dksbz ugha lehdj.k cos cos dk & dksbz g ugha gsa (B) vf}rh; g gsa vuur g gsa (D) buesa ls dksbz ugha - ;fn cos gks] rks (B) (D) 6- lehdj.k dk g gs& 6 (B) - (D) buesa ls dksbz ugha n 7- ;fn cos αi gks] rks α i i n i Page
11 Download FREE Stud Package from & Learn on Video Phone : , n (B) -n (D) buesa ls dksbz ugha 8- lq ( ) ds lr; gksus sd f, ds ekuksa dk leqpp; gs& (-, ) (B) [, ], (D), _,d ls vf/kd fodyi lgh 9- ;fn z gks] rks z (B) z z z z z (D) 9 (z) - ;fn α vlfedk - - > dks larq V djrk gks] rks fueuff[kr esa ls fdldk eku fo eku gksk& α (B) cos α sec α (D) cos ec α gs ;fn& (B) (D) B ¼fo k;kred iz u½ - fueuff[kr ds eku Kkr dhft,& (i) (iii) (v) (ii) cos cos ec (iv) sec ( ) cos - fueuff[kr ds eku Kku dhft,& (i) (iii) (ii) cos cos - fueuff[kr ds zkq [khafp,& (i) - ( ) (ii) cos - () Page
12 Download FREE Stud Package from & Learn on Video Phone : , (iii) - ( - ) - fueuff[kr vlfedkvksa dks g dhft,& (i) > (ii) cos < (iii) cos < - fueuff[kr dk eku Kkr dhft,& (i) cos (ii) cos (iii) (v) 6 cos ec sec (iv) cos ec 6 cos (vi) cos cos 6 6- sec dk eku Kkr dhft,& 7- fueuff[kr ds eku Kkr dhft,& (i) cos (ii) (iii) 7 cos cos (iv) sec sec 8- fueuff[kr ds eku Kkr dhft,& (i) - () (ii) cos - (cos) (iii) - ((-6)) (iv) cot - (cot(-)) (v) cos 9 9 cos 9- ( θ),cos (cos θ), ( θ) cot (cot θ ) dk θ, ds f, eku Kkr dhft,& - fueuff[kr dk eku Kkr dhft,& (i) cot( a cot a) (ii) ( cos ), Page
13 Download FREE Stud Package from & Learn on Video Phone : , (iii) cos sec - fl) dhft, fd& (i) (ii) (iii) (iv) cos 8 7 cos cos cot cos( ) dks ds f, g dhft,& - lehdj.k cot dks g dhft,& - fueuff[kr lehdj.kksa dk g dhft,& (i) (ii) - fueuff[kr lehdj.kksa dks dhft,& (i),( > ) (ii) 6- ;fn > > gks] rks cos dk eku Kkr dhft,& 7- - (cos( - ) cos - ( (cos - ) dk eku Kkr dhft,a Eercise - -A ¼cgqfodYih; iz u½ dso,d fodyi lgh Page
14 Download FREE Stud Package from & Learn on Video Phone : , cos cos, dk eku gs& (B) (D) - ;fn, gks] rks [cos{cos (cos ) ( )}] dk eku gs & (B) (D) - ;fn gks] rks& (B) (/) (D) 8 - cot, < <, dk eku gs & (B) (D) - lehdj.k cos ( ) ( ) ds gksa dh la[;k gs& (B) (D) ls vf/kd 6-, dk U;wure,oa vf/kdre eku gs&, (B),, (D), n 7- ;fn cos >,n N gks] rks n dk vf/kdre eku gs& 6 (B) 9 (D) buesa ls dksbz ugha 8- vlfedk [cot ] 6[cot ] 9 tgk [.] egrre iw.kkzad Qu dks n kkzrk gs] ds leiw.kz gksa dk leqpp; gs& (B) 9 (D) buesa ls dksbz ugha 9- ;fn θ gks] rks θ dk eku gs& cos θ / (B) (D) - _,d ls vf/kd lgh Page
15 Download FREE Stud Package from & Learn on Video Phone : , cos cos cos dk eku gs& 7 cos (B) cos (D) cos - ds fdu ekuks ds f, > cos lr; gs& ] ds lhkh ekuks ds f, (B),, (D).7 - ;fn < < gks] rks cos dk eku gs& (B) cos (D) - ;fn cos ] rks & (B) (cos ) (D) (cos ) - n n n n dk eku gs& - - (B) - / (D) sec ( ) -B ¼fo k;kred iz u½ - ;fn X cos ec cos cot sec a vksj Y sec cot cos ec cos a; tgk a gks rks X,oa Y ds e/; lecu/k Kkr dhft,a mldk a ds inksa eas folrkj dhft,a - ;fn (i) f () cos cos gks] rks fueuff[kr ds eku Kkr dhft,& f (ii) f : Page
16 Download FREE Stud Package from & Learn on Video Phone : , fueuff[kr dks fl) dhft,& (i) cot cos when <. (ii) cos sec cot when < < - ;fn a b cos c gks] rks b cos dk eku Kkr dhft,a - fueuff[kr vflfedkvksa dks g dhft,& (i) cos - > cos - (ii) - > cot -. (iii) arccot arccot 6 > 6- lehdj.k ( ( )) dks larq V djus oks ds ekuksa dh la[;k Kkr dhft,a 7- fueuff[kr lehdj.k dks g dhft,& sec sec a sec b b sec a a ;b,a b. 8- fl) dhft, fd α < ds f, lehdj.k ( ) (cos ) α dk dksbz ew fo eku ugha gsa 9- fueuff[kr Jsf.k;ksa dk ;ksq Kkr dhft,& (i) (ii) 9... n n 7... n 7 (iii)... 6 n n... n(n ) - (i) lehdj.k cot ds lhkh /kukred iw.kkzad g Kkr dhft,a (ii) ;fn k /kukred iw.kkzad gks] rks iznf kzr dhft, fd lehdj.k k dk dksbz v kwu; iw.kkzad g ugha gksrk gsa 6 Page 6
17 Download FREE Stud Package from & Learn on Video Phone : , ;fn < < ds f, α rfkk rks α β dk eku D;k gksk \ β gks] rks fl) dhft, fd α β. ;fn > gks] - ;fn cos cos cos z, tgk,, gks] rks z z dk eku Kkr dhft,a Eercise - -A ¼LrEHk feku½ - LrEHk feku dhft,& LrEHk & ΙΙ LrEHk & Ι (B) (D) cos dk eku gs & (p) dk lkaf[;d eku gs & (q) cos 8 cos dk eku gs & (r) cos cot dk eku gs & (d) LrEHk feku dhft,& LrEHk & Ι LrEHk & ΙΙ cos ij vf/kdre gs & (p) (B) (D) ( ( ) ) ) (cos ) ij vf/kdre gs & (q) (cot ) ij U;wure gs & (r) (cot ) ij U;wure gs & (d) -B ¼dFku@dkj.k½ - dfku&% ;fn α, β lehdj.k 6 ds ew gs] rks cos α fo eku gs sfdu cos β ugha ( α > β). dfku&% cos dfku& lr; gs] dfku& lr; gs ; dfku&] dfku& dk lgh Li Vhdj.k gsa 7 Page 7
18 Download FREE Stud Package from & Learn on Video Phone : , (B) dfku& lr; gs] dfku& lr; gs ; dfku&] dfku& dk lgh Li Vhdj.k ugha gsa dfku& lr; gs] dfku& vlr; gsa (D) dfku& vlr; gs] dfku& lr; gsa - dfku&% (sec ) cot (cos ec ). dfku &% θ sec θ cot θ cos ec θ. dfku& lr; gs] dfku& lr; gs ; dfku&] dfku& dk lgh Li Vhdj.k gsa (B) dfku& lr; gs] dfku& lr; gs ; dfku&] dfku& dk lgh Li Vhdj.k ugha gsa dfku& lr; gs] dfku& vlr; gsa (D) dfku& vlr; gs] dfku& lr; gsa a b - dfku& % ;fn a >,b >, ab. m m n m dfku& % ;fn m,n N,n m gks] rks. n n n m dfku& lr; gs] dfku& lr; gs ; dfku&] dfku& dk lgh Li Vhdj.k gsa (B) dfku& lr; gs] dfku& lr; gs ; dfku&] dfku& dk lgh Li Vhdj.k ugha gsa dfku& lr; gs] dfku& vlr; gsa (D) dfku& vlr; gs] dfku& lr; gsa -C ¼vuqPNsn½ 6- vuqpnsn izfrkse o`rh; Quksa ds izkur vksj ifjlj uhps ifjhkkf kr fd; ;s GSA izkur ifjlj - [-, ], cos - [-, ] [, ] - R, cot - R (, ) cosec - (, ] [, ) sec - (, ] [, ). { } [, ] 6- <, rks ds gksa dk leqpp; gsa, (B),, (D) buesa ls dksbz ugha 8 Page 8
19 Download FREE Stud Package from & Learn on Video Phone : , ij cos ec cjkcj gs& (B) (D) 6- ;fn [, ], rks () dk ifjlj gsa 7, (B), [, ] (D), 7- vuqpnsn θ, < θ < ( θ) θ, < θ <, ( θ) θ, < θ < q θ θ,,, θ < θ, < θ θ, θ cos (cosθ ) θ, o θ θ, < θ mijksdr ifj.kkeksa ds vk/kkj ij fueu ds mrrj nhft, & 7- cos cjkcj gs& 7- ;fn < < (B) ;fn < < ;fn < < (D) ;fn < < cjkcj gs& cos ;fn < < (B) cos ;fn < < cos ;fn < < (D) cos ;fn < < 7- cos cjkcj gs& ;fn < < (B) ;fn < < ;fn < < (D) ;fn < < -D ¼lR;@vlR; dfku½ 8- dks.kksa A ( ) vksj B esa ls cmk dks.k A gsa 9 Page 9
20 Download FREE Stud Package from & Learn on Video Phone : , O;atd A (cot A) (cot A) dk eku < A < ( / ) ds f, A ls Lora gsa - vlfedk ( ) > lhkh > 9 ds f; lr; gsa n n(n ) - ;fn i n rks i n i - ;fn > rks. -E ¼fjDr LFkku dh iwfrz½ - ekuk a,b,c rhu /kukred oklrfod la[;k, gs vksj a(a b c) b(a b c) c(a b c) θ rks θ cjkcj gs& bc ca ab - ;fn cos 7 f () e ] rks f dk eku cjkcj gsa - cos dk eku arc ds inksa esa gksk A 6- dk g gsa 7- lehdj.k cos ( ) dk ds f, oklrfod gksa dh la[;k gsa Eercise - -A ¼iwoZorhZ JEE ijh{kk iz u½ IIT - JEE - 8 / - ;fn < <, rc [{ cos(cot ) (cot )} } (B) (D) IIT-JEE-7 Page
21 Download FREE Stud Package from & Learn on Video Phone : , ekuk fd (, ) bl izdkj gs fd (a) cos () cos (b ) dkwe (Column) ΙΙ esa fn;s ;s odro;ksa dks dkwd Column - ΙΙ esa fn;s ;s odro;ksa ls lqes djk;saa viuk mrrj ORS esa f;k ;k esfvªdl ds mfpr cqyksa (bubbles) dk dkk djds n kkz,aa dkwe - I dkwe -II ;fn a rfkk b, rc (, ) (p) o`rr flfkr gs (B) ;fn a rfkk b, rc (, ) (q) ( - ) ( - ) ij flfkr gs ;fn a rfkk b, rc (, ) (r) ij flfkr gs (D) ;fn a rfkk b, rc (, ) (s) ( - ) ( - ) ij flfkr gsa IIT-JEE- - dk og eku Kkr dhft, ftlds f, (cos ( )) cos( ) gs& / (B) (D) -/ IIT-JEE- - fl) dhft, fd cos cos. IIT-JEE- - ;fn < < ds f, 6... cos... gks rks dk eku gs & (B) (D) - IIT-JEE ( ) ds oklrfod gksa dh la[;k gs& (B) (D) vuur IIT-JEE ;fn ge izfrks fdks.kfefr; Quksa ds dso eq[; ekuksa dks gh s rks cos dk eku cjkcj 7 gksk& 9 (B) 9 9 (D) 9 -B ¼iwoZorhZ AIEEE/DCE ijh{kk iz u½ 8- ;fn cos ec, rks dk eku gs& (B) (D) Page
22 Download FREE Stud Package from & Learn on Video Phone : , ;fn cos cos α gks] rks cos α cjkcj gs& α (B α (D) α - dk eku tks ( ) cos dks larq V djrk gs&, (B), - (D) buesa ls dksbz ugha t t d - tc, tgk < <, rks cjkcj gs& t t d (B) - (D) Answers EXERCISE # - A. B. D. C. D. B 6. D 7. D (iii) 8. B 9. D. B. C. A. B. B. B 6. C 7. A 8. D 9. AB. CD. BD EXERCISE # - B. (i) < (ii) cos < (iii) no solution.. (i) (ii) (iii) 6 (iv) 6. (i) (ii) 6 6 (iii) (iv) (v) (v) 8 (vi) 6. (i) (ii) (iii) (i) (ii) 6 (iii) (iv). (i) (ii) 8. (i) (ii) (iii) 6 (iv) 7 (v) Page
23 Download FREE Stud Package from & Learn on Video Phone : , θ, θ 9. ( θ) ; θ, < θ.. X Y a. (i) ab c(a b) a b (ii) cos cos (cos θ) θ, θ < ; θ, θ. (i) [-, ) (ii) > (iii) (,cot ) (cot, ) θ, ( θ) θ, < θ < ; < θ 6. Infinite 7. ab 9. (i) ( n) (ii) (iii) cot (cot θ) θ, θ < θ, < θ <. Two solutions (, ) (, 7).. EXERCISE #. (i) (ii) (iii). ±. (p), (B) (q) (r) (D) (s). (p), (B) (p) (q)... (i) ± (ii). A. D. B 6. A 6. C 6. B 7. D 7. C 7. D 8. lr; 9. lr;. vlr;. (i) (ii) 6.. vlr;. vlr;.. e / 7. EXERCISE # -A. C. D. D. B. B 6. B 7. B 8. A 9. B. BCD. CD. ABC. AC. AD EXERCISE # B EXERCISE #. C. (p), (B) (q) (p) (D) (s). D. B 6. C 7. D 8. B 9. B. B. C Page
24 Download FREE Stud Package from & Learn on Video Phone : , MQB EXERCISE # ¼cgqfodYih; iz u½ dso,d fodyi lgh - cos. cos cos lurq V gksrk gs ;fn& (B) R (D) - lehdj.k ( ) ( ) dk,d g gs& (B) - (D) - a ds ekuksa dk leqpp; ftuds f, a ( ) cos ( ) dk de ls de,d g gks] gs& (, ] [, ) (B) (, ) (, ) R (D) buesa ls dksbz ugha - p,oa q ds lhkh lahko eku ftuds f, cos p cos p cos q larq V gks] rs& p, q (B) q >, q p, q (D) buesa ls dksbz ugha - fueuff[kr esa ls dksu lk,d lgh gs \ > (B) < (D) buesa ls dksbz ugha 6- lehdj.k ( ) ds gksa dh la[;k gs& (B) (D) nks ls vf/kd 7- ;fn [cot ] [cos ] tgk [.] egrre iw.kkzad Qu dks iznf kzr djrk gks] rks ds ekuksa dk leiw.kz leqpp; gs& (cos, ] (B) (cot, cos ) (cot, ] (D) buesa ls dksbz ugha 8- cot cos ec dk eku gs& (B) (D) 6 u 9- ;fn u cot α α gks] rks dk eku gs& α (B) cot α α (D) cot α Page
25 Download FREE Stud Package from & Learn on Video Phone : , a b - b c c a (B) dk eku gs ;fn fhkqt ABC esa C 9 gks& (D) (B) (D) - lehdj.k ds gksa dh la[;k gs& - cos cos dk eku gs& 8 / (B) -/ /6 (D) /,d ld vf/kd fodyi lgh - ;fn cos b cot gks] rks & a b 7 / (B) a b 7 / a b 7 / (D) a b / - rhu dks.k α, β,oa γ fueu izdkj fn, tkrs gs& β a ( ),,oa γ cos, rc & α > β (B) β > γ α < γ (D) α > γ - ekuk f() cos. rc f (B) f(k k ),k R f,k R (D) f(-) k 6- lehdj.k ( - a) ( - a - a ) ds f, fueuff[kr esa ls dksulk veku; gs\ a a (B) a a (D) a -, 7- ;fn (cos - (/) - (/) dk la[;kred eku a/b gks] rks & a b (B) a - b b a (D) a b 8- ;fn cos ec gks] rks dk eku gks ldrk gs& Page
26 Download FREE Stud Package from & Learn on Video Phone : , (B) (D) EXERCISE # ¼fo k;kred iz u½ - n kkzb;s fd f?kkrh; lehdj.k ( - ) ds ew r, s vksj t oklrfod vksj /kukred gs rfkk (r) (s) (t) dk eku Hkh Kkr dhft,a - ;fn ( - ),oa gks] rks,oa esa lecu/k Kkr dhft,a - ;fn arc arc arc, (,, > ) z gks] rks iznf kzr dhft, fd& (i) z z z (ii) z z ( z z z ) - ;fn c gks] rks iznf kzr dhft, fd b a b c a c a b ab - fl) dhft, fd & (i) cos cos cos 6 cos (ii) (iii) cos (cos ec cot ) ¼tgk ½ 6 6 (iv) ( z) cot(cot cot cot z) 6- ;fn X ( ) ( ) ( ); Y gks] rks ( - Y) dk eku Kkr dhft,a 7- fueuff[kr vlfedkvksa dks g dhft, & (i) (arc ) > (ii) - - (iii) fudk; arc arc > vksj [ ] > [cos ] tgk [] egrre iw.kkzad o Qu dks iznf kzr djrk gsa 8- uhps nh bz lfeej Jsf.k;ksa dk n inksa rd dk ;ks Kkr dhft, vksj rc vuur inksa dk ;ks Hkh Kkr dhft,a 6 Page 6
27 Download FREE Stud Package from & Learn on Video Phone : , (i) cot 9 9 cos cot... cot n (ii) n θ 9- ;fn θ ( θ) gks] rks θ dk O;kid eku Kkr dhft,a cos θ - eq[; ekuksa dk mi;ks djds dks,d dks.k esa ff[k,a a b -, tgk a b c, c dks g dhft,a c cos - fl) dhft, fd cos cot tgk (, ) cos Answers 6 EXERCISE #. C. C. D. C. A 6. B 7. C 8. C 9. A. A. B. A. AC. BC. AC 6. BC 7. ABC 8. ACD EXERCISE #. X Y n 8. (i) n inksa dk ;ksq cot vuur n inksa dk ;ksq n (ii) n inksa dk ;ksq vksj vuur n inksa dk ;ksq ( ) 9. θ n,n ( / ), n where n Ι 7. (i),, (ii).. {,, } for 9 Yrs. Que. of IIT-JEE & Yrs. Que. of AIEEE we have distributed alread a book 7 Page 7
ikb~;øe l= ek/;fed f'k{kk e.my] e/;izns'k] Hkksiky d{kk 12oha xf.kr ikb~;øe vk/kkfjr v/;kiu izf'k{k.k funszf'kdk
ikb~;øe l= 008-09 ikb~;øe vk/kkfjr v/;kiu if'k{k.k funszf'kdk d{kk oha f.kr ek/;fed f'k{kk e.my] e/;ins'k] Hkksiky lokzf/kdkj lqjf{kr ek/;fed f'k{kk e.my] e/;ins'k] Hkksiky i'u&i= CywfiUV BLUE PRINT OF
f=hkqt ds lokzaxle gksus ds fy, 'krsz ज य म त 3 le:irk vksj lokzaxlerk जब द आक त य सम न आक र और सम न आक त क ह ह, व आक त य सव गसम कहल ह द न आक त य क ब च क इस घटन क सव न ग सम कह ह f=hkqt ds lokzaxle gksus
f}in izes; (Binomial Theorem)
Dowlod FREE Study Pcge fo www.teolsses.co & Le o Video www.mthsbysuhg.co Phoe : 9 9 7779, 989 888 fo/u fopj Hh# tu] ugh vjehs de] foif s[ NsMs qj e/;e eu dj ';ea iq#" flg ldyi dj] lgs foif vusd] ^cu^ u
# % # & & ( ) +,. /! , ), %, 0 ) 1,2 / % ) (,2 / 3 % ) 7,2 / # % & (
! # % #&& () +,. /!,), %,0) 1,/ # % %) (,/ & ( %456 0 ) 7,/ )! SET-1, 8 9 Choose the correct option :, ; : ;,= If then value of will be
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
2742/ 207/ /07.10.1999 «&»
2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,
! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$
"#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
WORKSHEETS OF CLASS XI- WINTER VACATIONS-2017 WORKSHEET I. Q1. Define, Stress, Strain and Youngs Modulus of Elasticity for a solid.
WORKSHEETS OF CLASS XI- WINTER VACATIONS-2017 WORKSHEET I Q1. Define, Stress, Strain and Youngs Modulus of Elasticity for a solid. Q2. A steel wire of length 4 m and diameter 5mm is stretched by 5kg-wt.
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..
இர மத ப பண கள வ ன க கள 1.கணங கள ம ச ப கள ம 1. A ={4,6.7.8.9}, B = {2,4,6} C= {1,2,3,4,5,6 } i. A U (B C) ii. A \ (C \ B). 2.. i. (A B)' ii. A (BUC) iii. A U (B C) iv. A' B' v. A\ (B C) 3. A = { 1,4,9,16
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
! " #! $ %! & & $ &%!
!" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος
/&25*+* 24.&6,2(2**02)' 24
!! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &
!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*
!" #$ %#&! '( (* + #*,*(**!',(+ *,*( *(** *. * #*,*(**( 0* #*,*(**(***&, 1#,2 (($3**330%#&!" #$ 4*30*335* ( 6777330"$% 8.9% '.* &(",*( *(** *. " ( : %$ *.#*,*(**." %#& 6 &;" * (.#*,*(**( #*,*(**(***&,
1 Elementary Functions
Elementary Functions. Power of Binomials. Power series.0 + q =+q + qq + +! qq...q + + =! q If q is neither a natural number nor zero, the series converges absolutely for < and diverges for >. For =, the
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
TARGET IIT JEE CHEMISTRY, MATHEMATICS & PHYSICS
S -- I - TAGET IIT JEE CHEMISTY, MATHEMATICS & PHYSICS HINTS & SLUTIN CHEMISTY Single Choice Questions.[C].[C].[] (i) KCl(s) + H (l) KCl. H H. kj. (ii) KCl(s) + H (l) KCl. H H 8.8 kj. ur air is KCl. H
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
Section 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
TRIGONOMETRIC FUNCTIONS
Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΚΟΙΝΟΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΥΠΟΔΟΜΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΕΦΑΡΜΟΓΗΣ ΠΑΑ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΓΕΩΡΓΙΚΟ ΤΑΜΕΙΟ
www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS
Differentiation of Trigonometric Functions MODULE - V DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has mae itself inispensable for other branches of higher
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.
Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
!"# '1,2-0- +,$%& &-
"#.)/-0- '1,2-0- "# $%& &'()* +,$%& &- 3 4 $%&'()*+$,&%$ -. /..-. " 44 3$*)-),-0-5 4 /&30&2&" 4 4 -&" 4 /-&" 4 6 710& 4 5 *& 4 # 1*&.. #"0 4 80*-9 44 0&-)* %&9 4 %&0-:10* &1 0)%&0-4 4.)-0)%&0-44 )-0)%&0-4#
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
Κεφάλαιο 2 Πίνακες - Ορίζουσες
Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος
Principles of Mathematics 12 Answer Key, Contents 185
Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ 60 86 Lesson Solving Trigonometric Equations for 0 θ 60
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
. visual basic. int sum(int a, int b){ return a+b;} : : :
: : : : (),, : (),( )-,() - :,, -,( ) -1.... visual basic int sum(int a, int b){ return a+b; float f=2.5; main(){ float A[10]; A[f]=15; int x=sum(int(f), 10, A[2]);. -2.... -3.foolowpos(3) * ( a b c) (
CAMI Wiskunde: Graad 10
10.9 Trigonometrie ie GRA RAAD 10_KABV Kurrikulum 1.1 Definieer ieer trigonometriese verhoudings as sinθ, cosθ en tanθ deur reghoekige driehoeke te gebruik. (a (b cosa sinc tana... sina tanc cosc (c (d
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)
Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =
Chapter 5 Chapter 5 Exercise 5. minor arc = 50 60.4 0.8cm. major arc = 5 60 4.7 60.cm. minor arc = 60 90 60 6.7 8.cm 4. major arc = 60 0 60 8 = 6 = cm 5. minor arc = 50 5 60 0 = cm 6. major arc = 80 8
C F E E E F FF E F B F F A EA C AEC
Proceedings of the International Multiconference on Computer Science and Information Technology pp. 767 774 ISBN 978-83-60810-27-9 ISSN 1896-7094 CFEEEFFFEFBFFAEAC AEC EEEDB DACDB DEEE EDBCD BACE FE DD
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)