27 C, a na kraju vožnje 87 C. Uz pretpostavku da se volumen guma nije tijekom vožnje promijenio, nađite

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "27 C, a na kraju vožnje 87 C. Uz pretpostavku da se volumen guma nije tijekom vožnje promijenio, nađite"

Transcript

1 Zaatak (Barny, ginazija) U vonji e zrak u autoobilki guaa grije. Na očetku vonje teeratura zraka u guaa je 7 C, a na kraju vonje 7 C. Uz retotavku a e voluen gua nije tijeko vonje roijenio, nađite ojer tlakova na kraju i na očetku vonje. Rješenje t 7 C > K, t 7 C > K,? Buući a e obuja gua nije roijenio, to je izoorno tanje lina. Mijenja li e teeratura nekoj ai lina talnog obuja (izoorna rojena), ijenjat će e tlak lina rea Carleovo (Šarl) zakonu: U aolutnoj ljetvici teerature taj zakon ia oblik t ( + α t), ri V kont., oakle za različita tanja oeo iati. aa e lako nađe ojer tlakova:.. Vjeba U vonji e zrak u autoobilki guaa grije. Na očetku vonje teeratura zraka u guaa je 7 C, a na kraju vonje 87 C. Uz retotavku a e voluen gua nije tijeko vonje roijenio, nađite ojer tlakova na kraju i na očetku vonje... Zaatak (ina, ginazija) Širi ijelo vooravno oloene cijevi truji voa brzino /. Razlika tlakova šireg i uenog ijela iznoi 8 Pa. Kolika je brzina rotjecanja u ue ijelu cijevi? Rješenje v /, 8 Pa, /, g 9.8 /, v? Buući a je cijev oloena orizontalno (vooravno), irotatki tlakovi u jenaki a e ogu kratiti u Bernullijevoj jenabi: + g + v + g + v + v + v v v ( ) ( ) / / v v v v : v v v + v 8 v + v v + v Vjeba Širi ijelo vooravno oloene cijevi truji voa brzino /. Razlika tlakova šireg i uenog ijela iznoi 8 Pa. Kolika je brzina rotjecanja u ue ijelu cijevi?.7 /. Zaatak (Ivan, ginazija) U orizontalno otavljenoj oui je voa o viine c. Ako u jenako takvu orizontalno otavljenu ouu ulijeo jenaku au neoznate kaljevine razina je na viini c. Kolika je gutoća

2 neoznate kaljevine? (Gutoća voe je /.) Rješenje c., c., /,? Gutoća tijela ana je izrazo, gje je aa tijela, a V obuja tijela. Buući a u ae V kaljevina ite,, lijei V V. Obuja oue je V a oeo iati: V V /: Vjeba U orizontalno otavljenoj oui je voa o viine c. Ako u jenako takvu orizontalno otavljenu ouu ulijeo jenaku au neoznate kaljevine razina je na viini c. Kolika je gutoća neoznate kaljevine? (Gutoća voe je /.) /. Zaatak (Ine, ginazija) Koliki je uzgon kocke o rveta a tranico c u tekućini gutoće 8 /? (g / ) Rješenje a c., t 8 /, g /, F uz? Za uzgon vrijei Arieov zakon: ili kraće F uz tekućine g V uronjenog ijela tijela F uz t g V tijela. F UZ Uzgon kocke je: 8 (. ) 8. Fuz t g V t g a 8 8 N. tijela Vjeba Koliki je uzgon kocke o takla a tranico c u tekućini gutoće 8 /? (g / ) 6 N. G

3 Zaatak (Ion, ginazija) U oogenu tekućinu gutoće 8 / uronjeno je tijelo gutoće 6 /. Koji io obuja tijela je io ovršine tekućine? Rješenje tek 8 /, tijelo 6 /, V ur? F UZ V UR Buući a tijelo liva na voi, teina tijela G u ravnotei je uzgono F uz : G Fuz g tek g Vur tijelo V g tek g Vur /: g tek Vur tij V elo 6 tijelo V ur V V.7 V. tek 8 Vjeba U oogenu tekućinu gutoće 8 / uronjeno je tijelo gutoće /. Koji io obuja tijela je io ovršine tekućine?.v. Zaatak 6 (Zoran, ginazija) Koliko je toline otrebno a e lea teerature C ratoi i a e teeratura tako obivene voe oigne na 8 C? (ecifični tolinki kaacitet lea je J / K, ecifični tolinki kaacitet voe je J / K, a ecifična tolina taljenja lea je. J / ) Rješenje 6, t C, t 8 C, c l J / K, c v J / K, λ. J /, Q? Proce e atoji o tri koraka: zagrijavanja lea o C, taljenja lea i zagrijavanja voe o 8 C. ako će e i izraz za tolinu Q atojati o tri koraka: Q c l t + λ + c v t [c l ( t ) + λ + c v (t )]. J J J Q ( + ) K +. + ( 8 ) K K K J J J J J. Q G Zagrijavanje lea o C. aljenje lea Zagrijavanje voe o 8 C. Vjeba 6 Koliko je toline otrebno a e 6 lea teerature C ratoi i a e teeratura tako obivene voe oigne na 8 C? (ecifični tolinki kaacitet lea je J / K, ecifični tolinki kaacitet voe je J / K, a ecifična tolina taljenja lea je. J / ). 6 J.

4 Zaatak 7 (Marko, ginazija) Helikoter leti brzino / na viini izna ovršine ora. Na to jetu (i u okolici) ubina ora iznoi. Iz elikotera e iuti kaen ae. Za koliko će eanička energija kaena u konačno oloaju (irovanje na nu ora) biti anja o očetne? Rješenje 7 v /,,,, g 9.8 /, E e? Kaa kaen aa na orko no eanička energija iznoi: Na nu je E e g + v g g v g g ( ) v ( ) J. E e. Vjeba 7 Helikoter leti brzino / na viini izna ovršine ora. Na to jetu (i u okolici) ubina ora iznoi. Iz elikotera e iuti kaen ae. Za koliko će eanička energija kaena u konačno oloaju (irovanje na nu ora) biti anja o očetne? 7 J. Zaatak 8 (Ana, ginazija) Koliki treba biti inialni obuja (voluen) rvene ake ( 8 / ) a bi ooba ae, koja toji na njoj u voi, bila otuno izvan voe? Rješenje 8 8 /,, v /, V? F uz G G O + G G o Da bi ooba bila izvan voe ora zbroj njezine teine i teine ake biti o iznou jenak uzgonu: G Fuz o g + g v g V /: g o + v V o + V v V G ( ) V V V V o v o v o v

5 .. 8 Vjeba 8 Koliki treba biti inialni obuja (voluen) rvene ake ( 8 / ) a bi ooba ae, koja toji na njoj u voi, bila otuno izvan voe?.667. Zaatak 9 (Deny, ginazija) Balon ae naunjen je a elija. Koliki je teret otrebno objeiti a bi balon bio uravnoteen? (Gutoća elija je.8 /, gutoća zraka je.9 / ) Rješenje 9, V, Z.9 /, He.8 /,? Buući a je balon uravnoteen, ora ila tee koja jeluje na balon i teret o iznou biti jenaka uzgonu, ali urotnog jera. ila tea iznoi: Uzgon je: ( ) [ V ] ( ). G + + He g + + He V g Fuz z g V. Pretotavili o a je uzgon na teret zaneariv rea uzgonu koji jeluje na balon. Iz uvjeta ravnotee lijei: ( ) / + + He V g z g V :g + + He V z V z V He V ( ) z He V Vjeba 9 Balon ae naunjen je a elija. Koliki je teret otrebno objeiti a bi balon bio uravnoteen? (Gutoća elija je.8 /, gutoća zraka je.9 / ). Zaatak (Ivana, ginazija) Izračunajte gutoću ušika ri norirani uvjetia. (. bar, 7 K) Rješenje. bar. Pa, 7 K, R 8. J/(ol K), A r (N) (iz erionog utava eleenata),? V B 7 N. Relativna olekulka aa ušika je: M ( N ) A ( N ) Molna aa ušika iznoi: Buući a e gutoća efinira, V iz linke jenabe V R lijei M r r 8. g g 8 8 M M r. ol ol ol

6 8. Pa M ol.. V R J 8. 7 K ol K Vjeba Izračunajte gutoću ugljik (IV) okia (CO ) ri norirano tlaku..96 /. Zaatak (Ivana, ginazija) Izračunajte koliki je inaički tlak ri (noralno) trujanju zraka brzine k/. Neka je gutoća zraka noralna i kontantna,.9 /. Rješenje.9 /, v k/ [ :.6] /,? v.9 Pa. Vjeba Izračunajte koliki je inaički tlak ri (noralno) trujanju zraka brzine 8 k/. Neka je gutoća zraka noralna i kontantna,.9 /. 6. Pa. Zaatak (Ivana, ginazija) Na kojoj je ubini ora tlak votruko veći nego na ovršini? (. bar, g 9.8 /, / ) Rješenje. bar. Pa, g 9.8 /, /,? lak ovećava e linearno ubino tekućine, a ovii još o gutoći tekućine i o atoferko tlaku. Iz uvjeta zaatka roizlazi a na traenoj ubini tlak ora iznoiti :. Pa + g + g g.. g 9.8 Vjeba Na kojoj je ubini ora tlak trotruko veći nego na ovršini? (. bar, g 9.8 /, / ).6. Zaatak (iniša, ginazija) Mjeurić zraka u jezeru ia na ubini voluen. c. Ako je teeratura na toj ubini ºC, a ri vru ºC, koliki će biti voluen jeurića neoreno rije izranjanja? Atoferki tlak je Pa, a gutoća voe /. Rješenje, V. c. -6-7, t ºC > K, t ºC > K, Pa Pa. Pa, /, V? U zraku baroetar okazuje norirani tlak, a na ubini io voene ovršine tlak je: + g Pa + 6 Pa. Oćenitu ovinot izeđu tri araetra iealnog lina obuja, tlaka i teerature oeo izraziti zakono koji ari va tri linka zakona: 6

7 V V V V što vrijei za oređenu au lina. Na ubini tlak je, teeratura, a obuja V. Na ovršini tlak je, teeratura, a obuja V. aa je: V 6 7 V V Pa 97 K V 87. K Pa. 6. c. Vjeba Mjeurić zraka u jezeru ia na ubini voluen c. Ako je teeratura na toj ubini ºC, a ri vru ºC, koliki će biti voluen jeurića neoreno rije izranjanja? Atoferki tlak je Pa, a gutoća voe /. 6.6 c. Zaatak (Ana, ginazija) Manji če irauličke reše ia ovršinu c, a veći 8 c. ila 9 N renoi e na anji če vokrako olugo kojoj je ojer krakova 6 :. Koliko ilo tlači veliki če? Rješenje c, 8 c, F 9 N, r : r 6 :, F?, F? Hiraulički tlak je vanjki tlak na tekućinu. Kako e širi na ve trane jenako, ila će na veću ovršinu biti toliko uta veća koliko je uta i ovršina veća: F F F 9 8 N c F 8 N. c Buući a e ila renoi vokrako olugo kojoj je ojer krakova 6 :, vrijei: F r F r F r F F 6 [ zakon votrane oluge] r r F 6 F 6 8 N 68 N. r r : 6 : r 6 r r r r F O Vjeba Manji če irauličke reše ia ovršinu c, a veći 8 c. ila 9 N renoi e na anji če vokrako olugo kojoj je ojer krakova :. Koliko ilo tlači veliki če? N. Zaatak (Ana, ginazija) U valjkatu ouu nalili o količine ive i voe jenaki teina. Ukuna viina tuca obiju tekućina iznoi 9. c. Koliki je tlak tekućina na no oue? Rješenje G G v, 9. c.9, 6 /, v /,? Hirotatički tlak u tekućini nataje zbog njezine teine. Na nu oue tlak iznoi: g, gje je gutoća tekućine, g ubrzanje ile tee, viina tuca tekućine izna jeta na kojeu jerio tlak. 7

8 H O H g - viina tuca voe - viina tuca ive Iz uvjeta zaatka lijei: V G Gv g v g /: g v V Voluen valjka V V V r r r /: r v v π π v π π v /: Ukuni tlak je: g + g Pa v + Vjeba U valjkatu ouu nalili o količine ive i voe jenaki teina. Ukuna viina tuca obiju tekućina iznoi 9. c. Koliki je tlak ao o ive? 668. Pa. Zaatak (Ana, ginazija) Koa olova liva u ivi. Koliki je io njegova obuja uronjen u ivu? Rješenje Pb olovo, Hg iva, Pb /, Hg 6 /, V? Buući a koa olova liva u ivi, znači a je njegova teina o iznou jenaka uzgonu: G Fuz g Hg g V /: g Hg V V Pb Pb Pb V V V V Pb V Hg V.8 V. Pb Hg 6 Vjeba Koa rebra liva u ivi. Koliki je io njegova obuja uronjen u ivu?.77 V. Zaatak 6 (Ana, ginazija) taklena kuglica aa u voi ubrzanje.8 /. Kolika je gutoća takla? (Otor e zanearuje, g 9.8 /, gutoća voe je /.) Rješenje 6 a.8 /, g 9.8 /, v /,? Rezultantna ila koja uvjetuje a kuglica aa u voi ubrzanje a, jenaka je razlici teine kuglice i uzgona: 8

9 F G Fuz a g v g V a g v g / a g v g 9.8 ( ) v g v g g a v g g a.. g a Vjeba 6 taklena kuglica aa u voi ubrzanje.8 /. Kolika je gutoća takla? (Otor e zanearuje, g 9.8 /, gutoća voe je /.).96 /. Zaatak 7 (Ana, ginazija) Dvije oue ojene u ooću cijevi zaneariva voluena na kojoj e nalazi ventil. Ka je ventil zatvoren, tlak lina u rvoj oui je. MPa, a u rugoj. MPa. U ouaa nalaze e jenake količine itog lina na itoj teeraturi. Koiki će tlak biti u ouaa nakon otvaranja ventila? Rješenje 7. MPa,. MPa,? Buući a je to izoterna rojena (talna teeratura), jenake količine itog lina ijenjat će obujove obrnuto razjerno tlakovia: V V. MPa V V V V. V V. MPa Poue u ojene a je ukuni obuja lina jenak: V V + V V + V V. Nakon otvaranja ventila tlak će iznoiti: 9 ( ) V + V V + V V + kont. V V + V V V V +. MPa +. MPa.7 MPa. Vjeba 7 Dvije oue ojene u ooću cijevi zaneariva voluena na kojoj e nalazi ventil. Ka je ventil zatvoren, tlak lina u rvoj oui je. MPa, a u rugoj.6 MPa. U ouaa nalaze e jenake količine itog lina na itoj teeraturi. Koiki će tlak biti u ouaa nakon otvaranja ventila?. MPa. Zaatak 8 (Ornela, ginazija) U voi e na ubini nalazi jeurić zraka oblika kuglice. Na kojoj je ubini rojer jeurića votruko anji ako zaneario rojenu teerature ubino? Atoferki je tlak. Pa. Rješenje 8,,. Pa, /, g 9.8 /,? Ponovio! lak u tekućini nataje zbog njezine teine. U tekućini gutoće na ubini tlak je + g, gje je tlak na ovršini tekućine. Voluen kugle rojera je V π. Buući a je teeratura voe talna, riječ je o izoterno tanju: V V a za tlakove i na ubinaa i vrijei:

10 π π / 8 / 8 π 8 ( ) 8 /: 8. raio ubinu : + g + g + g 8 ( + g ) + g g g 7 8 g 7 g g g g g g 7. Pa Vjeba 8 U voi e na ubini nalazi jeurić zraka oblika kuglice. Na kojoj je ubini rojer jeurića votruko anji ako zaneario rojenu teerature ubino? Atoferki je tlak. Pa. 88. Zaatak 9 (Mira, ginazija) Iz crke u rizelju zgrae voa ulazi u cijev rojera. c o tlako kpa brzino /. Kolika je brzina u otkrovlju zgrae na viini ako je tao rojer cijevi va uta anji nego u rizelju? Rješenje 9. c, kpa Pa, v /,,, v? Količinu tekućine I koja rođe u jeinici vreena neki rejeko cijevi ovršine zoveo jakot truje. Ona iznoi: π I v v, gje je rojer cijevi, v brzina rotjecanja. U tacionarno toku I je kontanta. Zato vrijei: π v v v I I v v v v v. π Vjeba 9 Iz crke u rizelju zgrae voa ulazi u cijev rojera. c o tlako kpa brzino. /. Kolika je brzina u otkrovlju zgrae na viini ako je tao rojer cijevi va uta anji nego u rizelju? 6. Zaatak (Mira, ginazija) Iz crke u rizelju zgrae voa ulazi u cijev rojera. c o tlako kpa brzino /. Koliki je tlak u otkrovlju zgrae na viini ako je tao rojer cijevi va uta anji nego u rizelju? (Gutoća voe je /, g 9.8 / )

11 Rješenje. c, kpa Pa, v /,, /, g 9.8 /,? Iz Bernoullijeve jenabe obije e tlak u otkrovlju zgrae:, + g + v + g + v + g + v g v ( ) ( ) ( ) g v v g v v v g v v π v v v v 6 v v π g v ( 6 ) Pa Pa 9.8 Pa. Vjeba Iz crke u rizelju zgrae voa ulazi u cijev rojera. c o tlako kpa brzino. /. Kolika je brzina u otkrovlju zgrae na viini ako je tao rojer cijevi va uta anji nego u rizelju?.98 Pa.

Unutarnji je volumen čaše V 1. Budući da je do polovice napunjena vodom masa te vode iznosi: 2 Ukupna masa čaše i vode u njoj je 1 kg

Unutarnji je volumen čaše V 1. Budući da je do polovice napunjena vodom masa te vode iznosi: 2 Ukupna masa čaše i vode u njoj je 1 kg Zadatak 6 (Josi, ginazija) Staklena čaša nalazi se u sudoeru naunjena vodo. Čaša je do olovice naunjena vodo. Unutarnji voluen čaše je 5 c, a njezina asa kada je razna iznosi 9 g. Ako oduzeo sao alo vode

Διαβάστε περισσότερα

ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3.

ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3. Zadaak 0 (Ana Marija, ginazija) Koliki obuja ia koad plua ae kg? (guoća plua ρ 50 kg/ ) Rješenje 0 kg, ρ 50 kg/,? Guoću ρ neke vari definirao ojero ae i obuja ijela. kg ρ / 0.004. ρ ρ kg 50 jeba 0 Koliki

Διαβάστε περισσότερα

= = V t gdje je V volumen koji je protekao površinom presjeka S u vremenu t, srednjom brzinom v. Računamo vrijeme protoka: 9 3 V V V 10 m.

= = V t gdje je V volumen koji je protekao površinom presjeka S u vremenu t, srednjom brzinom v. Računamo vrijeme protoka: 9 3 V V V 10 m. Zaatak 6 (Filip, senja škola) Jakost toka ijeke Save ko Slavonskog Boa iznosi posječno 4 /s. Koliko voe poteče za jean an? Rješenje 6 q = 4 /s, t = an = [ 4 6] = 864 s, =? Jakost toka ili voluni potok

Διαβάστε περισσότερα

8 O H = =

8 O H = = Zadatak (arko, ginazija) U zatvorenoj osudi obuja nalazi se. kg vode i.6 kg kisika. Odredi tlak u osudi ri C ako znao da ri toj teeraturi sva voda rijeñe u aru. (linska konstanta R = 8. J/(ol K)) Rješenje

Διαβάστε περισσότερα

konst. [ tlak i temperatura su proporcionalne veličin e]

konst. [ tlak i temperatura su proporcionalne veličin e] Zadatak 4 (Goran, ginazija) Pri teeraturi 7 C tlak lina je. Do koje je teerature otrebno lin izovoluno (izoorno) zagrijati da u tlak bude 4? Rješenje 4 t = 7 C => T = 7 + t = 7 + 7 = K, =, = 4, T =?.inačica

Διαβάστε περισσότερα

podijelimo p V p V jednadžbe p V = k 1 N N T T N N N N T 300 K 1 T Vježba 101

podijelimo p V p V jednadžbe p V = k 1 N N T T N N N N T 300 K 1 T Vježba 101 Zadatak (Dijana, ginazija) U rostoriji koja nije heretički zatvorena teeratura zraka oveća se od C do 7 C. Za koiko se ostotaka sanji broj oekua zraka u rostoriji? Rješenje t C > 7 + t 7, t 7 C > 7 + t

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

POGONSKI I RADNI STROJEVI

POGONSKI I RADNI STROJEVI Sveučilište u Rijeci TEHNIČKI FKULTET RIJEK POGONSKI I RDNI STROJEVI Riješeni zadaci Rijeka, 7. SDRŽJ Mjerni utavi Svojtva fluida 4 Statika fluida 4 5 Termodinamika 7 Pare 7 Termodnamički rocei 9 8 Otvoreni

Διαβάστε περισσότερα

m m ( ) m m v v m m m

m m ( ) m m v v m m m Zadatak (Ria, ginazija) Autoobil raketni pogono započne e iz tanja iroanja ubrzaati zbog potika rakete Potiak traje 5, a ubrzanje iznoi 5 / Nakon gašenja raketnog pogona autoobil e natai gibati kontantno

Διαβάστε περισσότερα

m p V = n R T p V = R T, M

m p V = n R T p V = R T, M Zadata 4 (Ante, tehniča šola) Pri C asa g vodia nalazi se od tlao 5.7 5 Pa. Naon širenja ri stalno tlau obuja lina je 5 litara. a) Kolii je rad utrošio lin ri širenju? b) Kolia je rojena unutrašnje energije

Διαβάστε περισσότερα

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka?

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka? Zadatak (Zoki, elektrotehnička škola) Da zučna ala iaju intenzitete i 5 W/c. Za koliko e decibela razlikuju ta da zuka? Rješenje I = W/c = W/, I = 5 W/c = 5 W/, I = - W/, L L =? Tražio razliku intenziteta

Διαβάστε περισσότερα

U Z G O N. Iz iskustva je poznato da je tijela (npr., kamen) lakše podizati u vodi ili nekoj drugoj tekućini nego u zraku.

U Z G O N. Iz iskustva je poznato da je tijela (npr., kamen) lakše podizati u vodi ili nekoj drugoj tekućini nego u zraku. U Z G O N Iz iskustva je poznato da je tijela (npr., kamen) lakše podizati u vodi ili nekoj drugoj tekućini nego u zraku. U to se možemo lako uvjeriti izvodeći sljedeći pokus. POKUS: Mjerenje težine utega

Διαβάστε περισσότερα

10. STATIKA FLUIDA Uvod. -ionizirani plin (visoka temperatura) kvantnomehanički. -odreñen oblik i volumen. -poprimaju oblik posude

10. STATIKA FLUIDA Uvod. -ionizirani plin (visoka temperatura) kvantnomehanički. -odreñen oblik i volumen. -poprimaju oblik posude 10. STATIKA FLUIDA 10.1. Uvod TVARI KRUTINE TEKUĆINE (KAPLJEVINE) PLINOVI PLAZMA BOSE- EINSTEINOV KONDENZAT -odreñen oblik i volumen -orimaju oblik osude volumennestlačiv -ionizirani lin (visoka temeratura)

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA JEDNADŽBA KONTINUITETA. s1 =

HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA JEDNADŽBA KONTINUITETA. s1 = HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA Hidrodinamika proučava fluide (tekućine i plinove) u gibanju. Gibanje fluida naziva se strujanjem. Ovdje ćemo razmatrati strujanje tekućina.

Διαβάστε περισσότερα

5. Rad, snaga, energija, Zakon očuvanja mehaničke energije, Zakon kinetičke energije

5. Rad, snaga, energija, Zakon očuvanja mehaničke energije, Zakon kinetičke energije 5. Rad, naga, energija, Zakon očuvanja mehaničke energije, Zakon kinetičke energije RAD SILE Rad je djelovanje ile na putu. Diferencijal rada jednak je kalarnom produktu ile i diferencijala pomaka vektora

Διαβάστε περισσότερα

T O P L I N A P l i n s k i z a k o n i

T O P L I N A P l i n s k i z a k o n i 1. Da bi mogli matematički oisati lin uvodimo ojam tzv. idealnog lina. Koji odgovor nije točan? Idealni lin o retostavci je onaj lin kod kojeg: a) možemo zanemariti međudjelovanje između molekula, tj.

Διαβάστε περισσότερα

( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom:

( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom: Zadatak 8 (Filip, elektrotehnička škola) Štap od cinka i štap od željeza iaju pri C jednaku duljinu l Kolika je razlika duljina štapova pri C? (koeficijent linearnog rastezanja cinka β cink 9-5 K -, koeficijent

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

t t , 2 v v v 3 m

t t , 2 v v v 3 m Zadatak 4 (Maturantia, ginazija) Zeljin atelit giba e brzino = 9 3 /. Oobi u atelitu prođe reenki interal od jedan at. Koliki je taj reenki interal na Zelji? Kolika je razlika u reenu? ( = 3 8 /) Rješenje

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PITANJA IZ MEHANIKE FLUIDA

PITANJA IZ MEHANIKE FLUIDA PITANJA IZ MEHANIKE FLUIDA 1. Što su fluidi i koja su njihova najvaţnija obiljeţja? 2. Kako se definira tlak? Kojim ga jedinicama iskazujemo? Je li tlak skalarna ili vektorska veličina? 3. Kakva je veza

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

ZADATCI S OPĆINSKIH NATJECANJA

ZADATCI S OPĆINSKIH NATJECANJA ZADATCI S OPĆINSKIH NATJECANJA Tlak i sila, idrostatski, idraulički i atmosferski tlak 1. U-cijev jednolikog poprečnog presjeka otvorena je prema atmosferi i dijelom napunjena živom. Zatim se u oba njena

Διαβάστε περισσότερα

= 2. N E R T, k. kg mol K mol Vježba 161 molekula amonijaka (NH 3 ) mase 100 g

= 2. N E R T, k. kg mol K mol Vježba 161 molekula amonijaka (NH 3 ) mase 100 g Zaaak 6 (Marijan, eekroehnička škoa) Koika je kineička energija ransaornoga gibanja E k oekua aonijaka (NH ) ase g pri C? (pinska konsana R 8.4 J/(o K), ona asa aonijaka M 7 - kg/o) Rješenje 6 g. kg, C

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

v v 1 m y T s s Vježba 041 Kroz neko sredstvo šire se valovi koji imaju frekvenciju 1320 Hz i amplitudu 0.3 mm. Duljina

v v 1 m y T s s Vježba 041 Kroz neko sredstvo šire se valovi koji imaju frekvenciju 1320 Hz i amplitudu 0.3 mm. Duljina Zadatak 4 (Mirjana, rednja škoa) Kroz neko redto šire e aoi koji iaju frekenciju 66 Hz i apitudu.3. Dujina aa je 5 c. Odredi: a) brzinu širenja aa i b) akianu brzinu jedne četice. Rješenje 4 66 Hz, y.3

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Primjeri zadataka iz Osnova fizike

Primjeri zadataka iz Osnova fizike Mjerne jedinice 1. Koja je od navedenih jedinica osnovna u SI-sustavu? a) džul b) om c) vat d) amper 2. Koja je od navedenih jedinica osnovna u SI-sustavu? a) kut b) brzina c) koncentracija d) količina

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Pripreme za predavanja iz Fizike 1 doc. dr. sc. Sanda Pleslić

Pripreme za predavanja iz Fizike 1 doc. dr. sc. Sanda Pleslić . Mehanika tekućina: statika.. Tlak. Pascalov zakon. Hidrostatski tlak Tvar može ostojati u 3 agregatna stanja: čvrstom, tekućem i linovitom. Čvrsta tijela zadržavaju određeni volumen i oblik zbog relativno

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Svojstva tvari. 1. poglavlje. 1. Uvod Materijalna točka

Svojstva tvari. 1. poglavlje. 1. Uvod Materijalna točka . poglavlje Svojstva tvari. Uvo. Posjetnik iz mehanike materijalne točke 3. Osnovni pojmovi i fizikalna svojstva 4. Jenažba stanja tvari 5. Termoinamički zakoni. Uvo Uovomće se poglavlju prikazat osnovni

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

m kg Mehanika fluida - hidrostatika Fluidi: plinovi i tekućine Gustoća: ρ 1 lit vode ~ masa od 1kg

m kg Mehanika fluida - hidrostatika Fluidi: plinovi i tekućine Gustoća: ρ 1 lit vode ~ masa od 1kg Mehanika fluida - hidrostatika Fluidi: plinovi i tekućine Čestice fluida su vrlo pokretljive zbog čega fluidi lako mijenjaju oblik. Tekućine poprimaju oblik posude u kojoj se nalaze i gotovo su nestlačive.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

1 bar (-197 C) Sl Područja primjene plinskog i parnog rashladnog procesa Parni rashladni proces s jednostupanjskom kompresijom

1 bar (-197 C) Sl Područja primjene plinskog i parnog rashladnog procesa Parni rashladni proces s jednostupanjskom kompresijom .. ARNI RASHLADNI ROCESI Korištenjem višesteene komresije i eksanzije mogli smo ribližiti Jouleov roces Carnotovu rocesu. eđutim, kod zraka kao radne tvari, roces se odvija daleko u regrijanom odručju.

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE α www.i-raga.co FIZIKA za 8 razred Prijeri riješenih zadataka iz područja ELEKTRIČNE STRUJE U ovo dijelu zbirke obrađena

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

( ). Pritom je obavljeni rad motora: 2 2

( ). Pritom je obavljeni rad motora: 2 2 Zadata (Hroje, ginazija) Dizalo ae 5 g brza e aceleracijo / iz iroanja do brzine 4 / Za cijelo rijee gibanja djelje talna ila trenja N Kolii je obaljeni rad? (g = 98 / ) Rješenje = 5 g, a = /, = 4 /, F

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

v =. . Put s koji automobil mora prijeći jednak je zbroju duljine automobila l 1 i duljine autobusa l 2. . Vrijeme t mimoilaženja iznosi: + l s s

v =. . Put s koji automobil mora prijeći jednak je zbroju duljine automobila l 1 i duljine autobusa l 2. . Vrijeme t mimoilaženja iznosi: + l s s adatak 4 (Marija, ginazija) utoobil duljine 4 ozi brzino 90 k/h, a autobu duljine 0 brzino 6 k/h Izračunaj koliko reena treba da e ioiñu Rješenje 4 l = 4, = 90 k/h = [90 : 6] = 5 /, l = 0, = 6 k/h = [6

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016.

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016. 12 SKUPIN ZDK IZ FIZIKE I 6 linja 2016 Zadatak 121 U osudi - sremniku očetnog volumena nalazi se n molova dvoatomnog lina na temeraturi rema slici) Plin izobarno ugrijemo na temeraturu, adijabatski ga

Διαβάστε περισσότερα

Zadaci (teorija i objašnjenja):

Zadaci (teorija i objašnjenja): KOLOKVIJ K, 1-4 F1_I semestar; 9.01.08. (analiza zadataka i rješenja) Napomena: razmatrani su svi zadaci iz četiri grupe, K, 1-4 na način da su obrađeni oni s istim temama; posebno je obraćena pažnja onim

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Rad, snaga i energija. Dinamika. 12. dio

Rad, snaga i energija. Dinamika. 12. dio Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka

Διαβάστε περισσότερα

( ) ( ) n. Ukupni kapacitet od n usporedno (paralelno) spojenih kondenzatora možemo naći iz izraza

( ) ( ) n. Ukupni kapacitet od n usporedno (paralelno) spojenih kondenzatora možemo naći iz izraza Zadatak 08 (Maija ginazija) Dva uspoedno spojena kondenzatoa i seijski su spojeni s kondenzatoo kapaciteta. Koliki je ukupni kapacitet? Nactajte sheu. Rješenje 08 =? Ukupni kapacitet od n seijski spojenih

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

2. zakon održanja energije, koji se može izraziti poznatom jednadžbom za 1 kg mase:

2. zakon održanja energije, koji se može izraziti poznatom jednadžbom za 1 kg mase: *Ukoliko očio da neke jednadžbe nedostaj ožete ih dodati ovo ois ( to nis kljčeni riješeni zadaci) Pro.dr.sc Katarina Sion Hidralički roračn agistralnih vodova. zakon o kontinitet asa: q vρ A vρ A konst..

Διαβάστε περισσότερα

Fluidi. fluid je bilo koja tvar koja može teći. plinovi i tekućine razlika: plinovi su stlačivi, tekućine nisu (u većini slučajeva)

Fluidi. fluid je bilo koja tvar koja može teći. plinovi i tekućine razlika: plinovi su stlačivi, tekućine nisu (u većini slučajeva) MEHANIKA FLUIDA Fluidi fluidi igraju vitalnu ulogu u raznim aspektima naših života pijemo ih, dišemo, plivamo u njima oni cirkuliraju našim tijelima i kontroliraju meteorološke uvjete zrakoplovi lete kroz

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

5. PRIJENOS TOPLINE IZMEĐU RASHLADNOG UREĐAJA I HLADIONICE

5. PRIJENOS TOPLINE IZMEĐU RASHLADNOG UREĐAJA I HLADIONICE EHNIKA HAĐENJA 5. PRIJENOS OPINE IZMEĐU RASHADNOG UREĐAJA I HADIONICE 5.1. HAĐENJE S NEPOSREDNIM ISPARIVANJEM Kod neosrednog je hlađenja hladnjak zraka izveden kao isarivač rashladnog uređaja. Isarivač

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Područno (općinsko) natjecanje iz fizike Zagreb, razred (skupina)

Područno (općinsko) natjecanje iz fizike Zagreb, razred (skupina) Područno (općinko) natjecanje iz fizike Zagreb,... razred (kupina). Iz zadanog v-t dijagraa odredi -t i a-t dijagra, te naći rednju brzinu za prvih ekundi gibanja?. Prvo tijeo e izbaci na viinu H u horizontano

Διαβάστε περισσότερα

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Pun spremnik benzina sadrži 60 litara. Ako je napunjen pri temperaturi 5 C i ostavljen na suncu tako da se temperatura povisi

Διαβάστε περισσότερα

Nastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav,

Nastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav, 1. UVOD 1. * Odgovorite na sljedeća pitanja tako da dopunite tvrdnje. 1.1 Što je gibanje tijela? Gibanje tijela je... tijela u... 1.2 Osnovni parametri u kinematici su... i... 1.3 Na koji način opisujemo

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Studij racunarstva, Fizika 1, Predavanje siječnja Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Studij racunarstva, Fizika 1, Predavanje siječnja Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2007./2008. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fizika 1 Predavanje 10 Statika fluida. Dr. sc. Ivica Puljak (Ivica.Puljak@fesb.hr) Danas ćemo raditi: Tlak

Διαβάστε περισσότερα

2 E m v = = s = a t, v = a t

2 E m v = = s = a t, v = a t Zadata 6 (Matea, ginazija) Sila N djeloala je na tijelo 4 eunde i dala u energiju 6.4 J. Kolia je aa tijela? Rješenje 6 = N, t = 4, E = 6.4 J, =? Tijelo obalja rad W ao djeluje neo ilo na putu na drugo

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina ŽUPANIJSKO NATJECANJE IZ FIZIKE 6..9. Srednje škole. skupina. zadatak ( bodova) Tramvaj vozi između dvije stanice udaljene 6 m tako da polazi sa prve stanice iz mirovanja i ubrzava ubrzanjem m/s dok ne

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE (Generatori are) List: TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE Generator are je energetski uređaj u kojemu se u sklou Clausius-Rankineova kružnog rocesa redaje tolina

Διαβάστε περισσότερα

9.1. ZADATAK. Parametri tla: Dimenzije temelja: RJEŠENJE. a) Terzaghi. Granična nosivost tla ispod temelja prema Terzaghi-ju:

9.1. ZADATAK. Parametri tla: Dimenzije temelja: RJEŠENJE. a) Terzaghi. Granična nosivost tla ispod temelja prema Terzaghi-ju: 9.1. ZADATAK Za entrično opterećen temelj stalnom konentriranom silom, koji se nalazi na vooravno uslojenom tlu za koje su laboratorijskim mjerenjem oređeni parametri tla, treba oreiti: a) graničnu nosivost

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

Rad i energija. Rad i energija

Rad i energija. Rad i energija Rad (P 45-46) Snaga (P 46) Energija (P 46-5) Potencijalna energija. Kinetiča energija Zaon održanja energije (P 5-5) Da bi rad bio izvršen neohodno je otojanje ile. Sila vrši rad: ri omerenju tela jednog

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Masa i gustina. zadaci

Masa i gustina. zadaci Masa i gustina zadaci 1.)Vaga je u ravnote i dok je na jednom njenom tasu telo, a na drugom su tegovi od: 10 g, 2 g, 500 mg i 200 mg.kolika je masa ovog tela? 2.)Na jednom tasu vage se nal azi telo i teg

Διαβάστε περισσότερα

Zadatci za vježbanje Termodinamika

Zadatci za vježbanje Termodinamika Zadatci za vježbanje Termodinamika 1. Električnim bojlerom treba zagrijati 22 litre vode 15 ⁰C do 93 ⁰C. Koliku snagu mora imati grijač da bi se to postiglo za 2 sata zagrijavanja? Specifični toplinski

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Sa slike vidi se: r h r h. r r. za slobodan pad s visine h:

Sa slike vidi se: r h r h. r r. za slobodan pad s visine h: Zadatak (Ljiljana, ednja škola) Uteg ae kg ii na niti koju o iz etikalnog položaja otklonili za kut α 3. Nađi napetot niti kad o uteg iputili te on polazi položaje anoteže. (g 9.8 / ) Rješenje kg, α 3,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K 1 Zadatak temperatura K- C Telo A se nalazi na temperaturi 50 C i zagreje se za 50 K. Telo B se nalazi na temperaturi 313 K.i zagreje se za 40 C. Koje je telo toplije posle zagravanja i kolika je razlika

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα