27 C, a na kraju vožnje 87 C. Uz pretpostavku da se volumen guma nije tijekom vožnje promijenio, nađite

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "27 C, a na kraju vožnje 87 C. Uz pretpostavku da se volumen guma nije tijekom vožnje promijenio, nađite"

Transcript

1 Zaatak (Barny, ginazija) U vonji e zrak u autoobilki guaa grije. Na očetku vonje teeratura zraka u guaa je 7 C, a na kraju vonje 7 C. Uz retotavku a e voluen gua nije tijeko vonje roijenio, nađite ojer tlakova na kraju i na očetku vonje. Rješenje t 7 C > K, t 7 C > K,? Buući a e obuja gua nije roijenio, to je izoorno tanje lina. Mijenja li e teeratura nekoj ai lina talnog obuja (izoorna rojena), ijenjat će e tlak lina rea Carleovo (Šarl) zakonu: U aolutnoj ljetvici teerature taj zakon ia oblik t ( + α t), ri V kont., oakle za različita tanja oeo iati. aa e lako nađe ojer tlakova:.. Vjeba U vonji e zrak u autoobilki guaa grije. Na očetku vonje teeratura zraka u guaa je 7 C, a na kraju vonje 87 C. Uz retotavku a e voluen gua nije tijeko vonje roijenio, nađite ojer tlakova na kraju i na očetku vonje... Zaatak (ina, ginazija) Širi ijelo vooravno oloene cijevi truji voa brzino /. Razlika tlakova šireg i uenog ijela iznoi 8 Pa. Kolika je brzina rotjecanja u ue ijelu cijevi? Rješenje v /, 8 Pa, /, g 9.8 /, v? Buući a je cijev oloena orizontalno (vooravno), irotatki tlakovi u jenaki a e ogu kratiti u Bernullijevoj jenabi: + g + v + g + v + v + v v v ( ) ( ) / / v v v v : v v v + v 8 v + v v + v Vjeba Širi ijelo vooravno oloene cijevi truji voa brzino /. Razlika tlakova šireg i uenog ijela iznoi 8 Pa. Kolika je brzina rotjecanja u ue ijelu cijevi?.7 /. Zaatak (Ivan, ginazija) U orizontalno otavljenoj oui je voa o viine c. Ako u jenako takvu orizontalno otavljenu ouu ulijeo jenaku au neoznate kaljevine razina je na viini c. Kolika je gutoća

2 neoznate kaljevine? (Gutoća voe je /.) Rješenje c., c., /,? Gutoća tijela ana je izrazo, gje je aa tijela, a V obuja tijela. Buući a u ae V kaljevina ite,, lijei V V. Obuja oue je V a oeo iati: V V /: Vjeba U orizontalno otavljenoj oui je voa o viine c. Ako u jenako takvu orizontalno otavljenu ouu ulijeo jenaku au neoznate kaljevine razina je na viini c. Kolika je gutoća neoznate kaljevine? (Gutoća voe je /.) /. Zaatak (Ine, ginazija) Koliki je uzgon kocke o rveta a tranico c u tekućini gutoće 8 /? (g / ) Rješenje a c., t 8 /, g /, F uz? Za uzgon vrijei Arieov zakon: ili kraće F uz tekućine g V uronjenog ijela tijela F uz t g V tijela. F UZ Uzgon kocke je: 8 (. ) 8. Fuz t g V t g a 8 8 N. tijela Vjeba Koliki je uzgon kocke o takla a tranico c u tekućini gutoće 8 /? (g / ) 6 N. G

3 Zaatak (Ion, ginazija) U oogenu tekućinu gutoće 8 / uronjeno je tijelo gutoće 6 /. Koji io obuja tijela je io ovršine tekućine? Rješenje tek 8 /, tijelo 6 /, V ur? F UZ V UR Buući a tijelo liva na voi, teina tijela G u ravnotei je uzgono F uz : G Fuz g tek g Vur tijelo V g tek g Vur /: g tek Vur tij V elo 6 tijelo V ur V V.7 V. tek 8 Vjeba U oogenu tekućinu gutoće 8 / uronjeno je tijelo gutoće /. Koji io obuja tijela je io ovršine tekućine?.v. Zaatak 6 (Zoran, ginazija) Koliko je toline otrebno a e lea teerature C ratoi i a e teeratura tako obivene voe oigne na 8 C? (ecifični tolinki kaacitet lea je J / K, ecifični tolinki kaacitet voe je J / K, a ecifična tolina taljenja lea je. J / ) Rješenje 6, t C, t 8 C, c l J / K, c v J / K, λ. J /, Q? Proce e atoji o tri koraka: zagrijavanja lea o C, taljenja lea i zagrijavanja voe o 8 C. ako će e i izraz za tolinu Q atojati o tri koraka: Q c l t + λ + c v t [c l ( t ) + λ + c v (t )]. J J J Q ( + ) K +. + ( 8 ) K K K J J J J J. Q G Zagrijavanje lea o C. aljenje lea Zagrijavanje voe o 8 C. Vjeba 6 Koliko je toline otrebno a e 6 lea teerature C ratoi i a e teeratura tako obivene voe oigne na 8 C? (ecifični tolinki kaacitet lea je J / K, ecifični tolinki kaacitet voe je J / K, a ecifična tolina taljenja lea je. J / ). 6 J.

4 Zaatak 7 (Marko, ginazija) Helikoter leti brzino / na viini izna ovršine ora. Na to jetu (i u okolici) ubina ora iznoi. Iz elikotera e iuti kaen ae. Za koliko će eanička energija kaena u konačno oloaju (irovanje na nu ora) biti anja o očetne? Rješenje 7 v /,,,, g 9.8 /, E e? Kaa kaen aa na orko no eanička energija iznoi: Na nu je E e g + v g g v g g ( ) v ( ) J. E e. Vjeba 7 Helikoter leti brzino / na viini izna ovršine ora. Na to jetu (i u okolici) ubina ora iznoi. Iz elikotera e iuti kaen ae. Za koliko će eanička energija kaena u konačno oloaju (irovanje na nu ora) biti anja o očetne? 7 J. Zaatak 8 (Ana, ginazija) Koliki treba biti inialni obuja (voluen) rvene ake ( 8 / ) a bi ooba ae, koja toji na njoj u voi, bila otuno izvan voe? Rješenje 8 8 /,, v /, V? F uz G G O + G G o Da bi ooba bila izvan voe ora zbroj njezine teine i teine ake biti o iznou jenak uzgonu: G Fuz o g + g v g V /: g o + v V o + V v V G ( ) V V V V o v o v o v

5 .. 8 Vjeba 8 Koliki treba biti inialni obuja (voluen) rvene ake ( 8 / ) a bi ooba ae, koja toji na njoj u voi, bila otuno izvan voe?.667. Zaatak 9 (Deny, ginazija) Balon ae naunjen je a elija. Koliki je teret otrebno objeiti a bi balon bio uravnoteen? (Gutoća elija je.8 /, gutoća zraka je.9 / ) Rješenje 9, V, Z.9 /, He.8 /,? Buući a je balon uravnoteen, ora ila tee koja jeluje na balon i teret o iznou biti jenaka uzgonu, ali urotnog jera. ila tea iznoi: Uzgon je: ( ) [ V ] ( ). G + + He g + + He V g Fuz z g V. Pretotavili o a je uzgon na teret zaneariv rea uzgonu koji jeluje na balon. Iz uvjeta ravnotee lijei: ( ) / + + He V g z g V :g + + He V z V z V He V ( ) z He V Vjeba 9 Balon ae naunjen je a elija. Koliki je teret otrebno objeiti a bi balon bio uravnoteen? (Gutoća elija je.8 /, gutoća zraka je.9 / ). Zaatak (Ivana, ginazija) Izračunajte gutoću ušika ri norirani uvjetia. (. bar, 7 K) Rješenje. bar. Pa, 7 K, R 8. J/(ol K), A r (N) (iz erionog utava eleenata),? V B 7 N. Relativna olekulka aa ušika je: M ( N ) A ( N ) Molna aa ušika iznoi: Buući a e gutoća efinira, V iz linke jenabe V R lijei M r r 8. g g 8 8 M M r. ol ol ol

6 8. Pa M ol.. V R J 8. 7 K ol K Vjeba Izračunajte gutoću ugljik (IV) okia (CO ) ri norirano tlaku..96 /. Zaatak (Ivana, ginazija) Izračunajte koliki je inaički tlak ri (noralno) trujanju zraka brzine k/. Neka je gutoća zraka noralna i kontantna,.9 /. Rješenje.9 /, v k/ [ :.6] /,? v.9 Pa. Vjeba Izračunajte koliki je inaički tlak ri (noralno) trujanju zraka brzine 8 k/. Neka je gutoća zraka noralna i kontantna,.9 /. 6. Pa. Zaatak (Ivana, ginazija) Na kojoj je ubini ora tlak votruko veći nego na ovršini? (. bar, g 9.8 /, / ) Rješenje. bar. Pa, g 9.8 /, /,? lak ovećava e linearno ubino tekućine, a ovii još o gutoći tekućine i o atoferko tlaku. Iz uvjeta zaatka roizlazi a na traenoj ubini tlak ora iznoiti :. Pa + g + g g.. g 9.8 Vjeba Na kojoj je ubini ora tlak trotruko veći nego na ovršini? (. bar, g 9.8 /, / ).6. Zaatak (iniša, ginazija) Mjeurić zraka u jezeru ia na ubini voluen. c. Ako je teeratura na toj ubini ºC, a ri vru ºC, koliki će biti voluen jeurića neoreno rije izranjanja? Atoferki tlak je Pa, a gutoća voe /. Rješenje, V. c. -6-7, t ºC > K, t ºC > K, Pa Pa. Pa, /, V? U zraku baroetar okazuje norirani tlak, a na ubini io voene ovršine tlak je: + g Pa + 6 Pa. Oćenitu ovinot izeđu tri araetra iealnog lina obuja, tlaka i teerature oeo izraziti zakono koji ari va tri linka zakona: 6

7 V V V V što vrijei za oređenu au lina. Na ubini tlak je, teeratura, a obuja V. Na ovršini tlak je, teeratura, a obuja V. aa je: V 6 7 V V Pa 97 K V 87. K Pa. 6. c. Vjeba Mjeurić zraka u jezeru ia na ubini voluen c. Ako je teeratura na toj ubini ºC, a ri vru ºC, koliki će biti voluen jeurića neoreno rije izranjanja? Atoferki tlak je Pa, a gutoća voe /. 6.6 c. Zaatak (Ana, ginazija) Manji če irauličke reše ia ovršinu c, a veći 8 c. ila 9 N renoi e na anji če vokrako olugo kojoj je ojer krakova 6 :. Koliko ilo tlači veliki če? Rješenje c, 8 c, F 9 N, r : r 6 :, F?, F? Hiraulički tlak je vanjki tlak na tekućinu. Kako e širi na ve trane jenako, ila će na veću ovršinu biti toliko uta veća koliko je uta i ovršina veća: F F F 9 8 N c F 8 N. c Buući a e ila renoi vokrako olugo kojoj je ojer krakova 6 :, vrijei: F r F r F r F F 6 [ zakon votrane oluge] r r F 6 F 6 8 N 68 N. r r : 6 : r 6 r r r r F O Vjeba Manji če irauličke reše ia ovršinu c, a veći 8 c. ila 9 N renoi e na anji če vokrako olugo kojoj je ojer krakova :. Koliko ilo tlači veliki če? N. Zaatak (Ana, ginazija) U valjkatu ouu nalili o količine ive i voe jenaki teina. Ukuna viina tuca obiju tekućina iznoi 9. c. Koliki je tlak tekućina na no oue? Rješenje G G v, 9. c.9, 6 /, v /,? Hirotatički tlak u tekućini nataje zbog njezine teine. Na nu oue tlak iznoi: g, gje je gutoća tekućine, g ubrzanje ile tee, viina tuca tekućine izna jeta na kojeu jerio tlak. 7

8 H O H g - viina tuca voe - viina tuca ive Iz uvjeta zaatka lijei: V G Gv g v g /: g v V Voluen valjka V V V r r r /: r v v π π v π π v /: Ukuni tlak je: g + g Pa v + Vjeba U valjkatu ouu nalili o količine ive i voe jenaki teina. Ukuna viina tuca obiju tekućina iznoi 9. c. Koliki je tlak ao o ive? 668. Pa. Zaatak (Ana, ginazija) Koa olova liva u ivi. Koliki je io njegova obuja uronjen u ivu? Rješenje Pb olovo, Hg iva, Pb /, Hg 6 /, V? Buući a koa olova liva u ivi, znači a je njegova teina o iznou jenaka uzgonu: G Fuz g Hg g V /: g Hg V V Pb Pb Pb V V V V Pb V Hg V.8 V. Pb Hg 6 Vjeba Koa rebra liva u ivi. Koliki je io njegova obuja uronjen u ivu?.77 V. Zaatak 6 (Ana, ginazija) taklena kuglica aa u voi ubrzanje.8 /. Kolika je gutoća takla? (Otor e zanearuje, g 9.8 /, gutoća voe je /.) Rješenje 6 a.8 /, g 9.8 /, v /,? Rezultantna ila koja uvjetuje a kuglica aa u voi ubrzanje a, jenaka je razlici teine kuglice i uzgona: 8

9 F G Fuz a g v g V a g v g / a g v g 9.8 ( ) v g v g g a v g g a.. g a Vjeba 6 taklena kuglica aa u voi ubrzanje.8 /. Kolika je gutoća takla? (Otor e zanearuje, g 9.8 /, gutoća voe je /.).96 /. Zaatak 7 (Ana, ginazija) Dvije oue ojene u ooću cijevi zaneariva voluena na kojoj e nalazi ventil. Ka je ventil zatvoren, tlak lina u rvoj oui je. MPa, a u rugoj. MPa. U ouaa nalaze e jenake količine itog lina na itoj teeraturi. Koiki će tlak biti u ouaa nakon otvaranja ventila? Rješenje 7. MPa,. MPa,? Buući a je to izoterna rojena (talna teeratura), jenake količine itog lina ijenjat će obujove obrnuto razjerno tlakovia: V V. MPa V V V V. V V. MPa Poue u ojene a je ukuni obuja lina jenak: V V + V V + V V. Nakon otvaranja ventila tlak će iznoiti: 9 ( ) V + V V + V V + kont. V V + V V V V +. MPa +. MPa.7 MPa. Vjeba 7 Dvije oue ojene u ooću cijevi zaneariva voluena na kojoj e nalazi ventil. Ka je ventil zatvoren, tlak lina u rvoj oui je. MPa, a u rugoj.6 MPa. U ouaa nalaze e jenake količine itog lina na itoj teeraturi. Koiki će tlak biti u ouaa nakon otvaranja ventila?. MPa. Zaatak 8 (Ornela, ginazija) U voi e na ubini nalazi jeurić zraka oblika kuglice. Na kojoj je ubini rojer jeurića votruko anji ako zaneario rojenu teerature ubino? Atoferki je tlak. Pa. Rješenje 8,,. Pa, /, g 9.8 /,? Ponovio! lak u tekućini nataje zbog njezine teine. U tekućini gutoće na ubini tlak je + g, gje je tlak na ovršini tekućine. Voluen kugle rojera je V π. Buući a je teeratura voe talna, riječ je o izoterno tanju: V V a za tlakove i na ubinaa i vrijei:

10 π π / 8 / 8 π 8 ( ) 8 /: 8. raio ubinu : + g + g + g 8 ( + g ) + g g g 7 8 g 7 g g g g g g 7. Pa Vjeba 8 U voi e na ubini nalazi jeurić zraka oblika kuglice. Na kojoj je ubini rojer jeurića votruko anji ako zaneario rojenu teerature ubino? Atoferki je tlak. Pa. 88. Zaatak 9 (Mira, ginazija) Iz crke u rizelju zgrae voa ulazi u cijev rojera. c o tlako kpa brzino /. Kolika je brzina u otkrovlju zgrae na viini ako je tao rojer cijevi va uta anji nego u rizelju? Rješenje 9. c, kpa Pa, v /,,, v? Količinu tekućine I koja rođe u jeinici vreena neki rejeko cijevi ovršine zoveo jakot truje. Ona iznoi: π I v v, gje je rojer cijevi, v brzina rotjecanja. U tacionarno toku I je kontanta. Zato vrijei: π v v v I I v v v v v. π Vjeba 9 Iz crke u rizelju zgrae voa ulazi u cijev rojera. c o tlako kpa brzino. /. Kolika je brzina u otkrovlju zgrae na viini ako je tao rojer cijevi va uta anji nego u rizelju? 6. Zaatak (Mira, ginazija) Iz crke u rizelju zgrae voa ulazi u cijev rojera. c o tlako kpa brzino /. Koliki je tlak u otkrovlju zgrae na viini ako je tao rojer cijevi va uta anji nego u rizelju? (Gutoća voe je /, g 9.8 / )

11 Rješenje. c, kpa Pa, v /,, /, g 9.8 /,? Iz Bernoullijeve jenabe obije e tlak u otkrovlju zgrae:, + g + v + g + v + g + v g v ( ) ( ) ( ) g v v g v v v g v v π v v v v 6 v v π g v ( 6 ) Pa Pa 9.8 Pa. Vjeba Iz crke u rizelju zgrae voa ulazi u cijev rojera. c o tlako kpa brzino. /. Kolika je brzina u otkrovlju zgrae na viini ako je tao rojer cijevi va uta anji nego u rizelju?.98 Pa.

ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3.

ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3. Zadaak 0 (Ana Marija, ginazija) Koliki obuja ia koad plua ae kg? (guoća plua ρ 50 kg/ ) Rješenje 0 kg, ρ 50 kg/,? Guoću ρ neke vari definirao ojero ae i obuja ijela. kg ρ / 0.004. ρ ρ kg 50 jeba 0 Koliki

Διαβάστε περισσότερα

= = V t gdje je V volumen koji je protekao površinom presjeka S u vremenu t, srednjom brzinom v. Računamo vrijeme protoka: 9 3 V V V 10 m.

= = V t gdje je V volumen koji je protekao površinom presjeka S u vremenu t, srednjom brzinom v. Računamo vrijeme protoka: 9 3 V V V 10 m. Zaatak 6 (Filip, senja škola) Jakost toka ijeke Save ko Slavonskog Boa iznosi posječno 4 /s. Koliko voe poteče za jean an? Rješenje 6 q = 4 /s, t = an = [ 4 6] = 864 s, =? Jakost toka ili voluni potok

Διαβάστε περισσότερα

konst. [ tlak i temperatura su proporcionalne veličin e]

konst. [ tlak i temperatura su proporcionalne veličin e] Zadatak 4 (Goran, ginazija) Pri teeraturi 7 C tlak lina je. Do koje je teerature otrebno lin izovoluno (izoorno) zagrijati da u tlak bude 4? Rješenje 4 t = 7 C => T = 7 + t = 7 + 7 = K, =, = 4, T =?.inačica

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

POGONSKI I RADNI STROJEVI

POGONSKI I RADNI STROJEVI Sveučilište u Rijeci TEHNIČKI FKULTET RIJEK POGONSKI I RDNI STROJEVI Riješeni zadaci Rijeka, 7. SDRŽJ Mjerni utavi Svojtva fluida 4 Statika fluida 4 5 Termodinamika 7 Pare 7 Termodnamički rocei 9 8 Otvoreni

Διαβάστε περισσότερα

m m ( ) m m v v m m m

m m ( ) m m v v m m m Zadatak (Ria, ginazija) Autoobil raketni pogono započne e iz tanja iroanja ubrzaati zbog potika rakete Potiak traje 5, a ubrzanje iznoi 5 / Nakon gašenja raketnog pogona autoobil e natai gibati kontantno

Διαβάστε περισσότερα

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka?

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka? Zadatak (Zoki, elektrotehnička škola) Da zučna ala iaju intenzitete i 5 W/c. Za koliko e decibela razlikuju ta da zuka? Rješenje I = W/c = W/, I = 5 W/c = 5 W/, I = - W/, L L =? Tražio razliku intenziteta

Διαβάστε περισσότερα

10. STATIKA FLUIDA Uvod. -ionizirani plin (visoka temperatura) kvantnomehanički. -odreñen oblik i volumen. -poprimaju oblik posude

10. STATIKA FLUIDA Uvod. -ionizirani plin (visoka temperatura) kvantnomehanički. -odreñen oblik i volumen. -poprimaju oblik posude 10. STATIKA FLUIDA 10.1. Uvod TVARI KRUTINE TEKUĆINE (KAPLJEVINE) PLINOVI PLAZMA BOSE- EINSTEINOV KONDENZAT -odreñen oblik i volumen -orimaju oblik osude volumennestlačiv -ionizirani lin (visoka temeratura)

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom:

( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom: Zadatak 8 (Filip, elektrotehnička škola) Štap od cinka i štap od željeza iaju pri C jednaku duljinu l Kolika je razlika duljina štapova pri C? (koeficijent linearnog rastezanja cinka β cink 9-5 K -, koeficijent

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

t t , 2 v v v 3 m

t t , 2 v v v 3 m Zadatak 4 (Maturantia, ginazija) Zeljin atelit giba e brzino = 9 3 /. Oobi u atelitu prođe reenki interal od jedan at. Koliki je taj reenki interal na Zelji? Kolika je razlika u reenu? ( = 3 8 /) Rješenje

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PITANJA IZ MEHANIKE FLUIDA

PITANJA IZ MEHANIKE FLUIDA PITANJA IZ MEHANIKE FLUIDA 1. Što su fluidi i koja su njihova najvaţnija obiljeţja? 2. Kako se definira tlak? Kojim ga jedinicama iskazujemo? Je li tlak skalarna ili vektorska veličina? 3. Kakva je veza

Διαβάστε περισσότερα

v v 1 m y T s s Vježba 041 Kroz neko sredstvo šire se valovi koji imaju frekvenciju 1320 Hz i amplitudu 0.3 mm. Duljina

v v 1 m y T s s Vježba 041 Kroz neko sredstvo šire se valovi koji imaju frekvenciju 1320 Hz i amplitudu 0.3 mm. Duljina Zadatak 4 (Mirjana, rednja škoa) Kroz neko redto šire e aoi koji iaju frekenciju 66 Hz i apitudu.3. Dujina aa je 5 c. Odredi: a) brzinu širenja aa i b) akianu brzinu jedne četice. Rješenje 4 66 Hz, y.3

Διαβάστε περισσότερα

= 2. N E R T, k. kg mol K mol Vježba 161 molekula amonijaka (NH 3 ) mase 100 g

= 2. N E R T, k. kg mol K mol Vježba 161 molekula amonijaka (NH 3 ) mase 100 g Zaaak 6 (Marijan, eekroehnička škoa) Koika je kineička energija ransaornoga gibanja E k oekua aonijaka (NH ) ase g pri C? (pinska konsana R 8.4 J/(o K), ona asa aonijaka M 7 - kg/o) Rješenje 6 g. kg, C

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Pripreme za predavanja iz Fizike 1 doc. dr. sc. Sanda Pleslić

Pripreme za predavanja iz Fizike 1 doc. dr. sc. Sanda Pleslić . Mehanika tekućina: statika.. Tlak. Pascalov zakon. Hidrostatski tlak Tvar može ostojati u 3 agregatna stanja: čvrstom, tekućem i linovitom. Čvrsta tijela zadržavaju određeni volumen i oblik zbog relativno

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zadaci (teorija i objašnjenja):

Zadaci (teorija i objašnjenja): KOLOKVIJ K, 1-4 F1_I semestar; 9.01.08. (analiza zadataka i rješenja) Napomena: razmatrani su svi zadaci iz četiri grupe, K, 1-4 na način da su obrađeni oni s istim temama; posebno je obraćena pažnja onim

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

m kg Mehanika fluida - hidrostatika Fluidi: plinovi i tekućine Gustoća: ρ 1 lit vode ~ masa od 1kg

m kg Mehanika fluida - hidrostatika Fluidi: plinovi i tekućine Gustoća: ρ 1 lit vode ~ masa od 1kg Mehanika fluida - hidrostatika Fluidi: plinovi i tekućine Čestice fluida su vrlo pokretljive zbog čega fluidi lako mijenjaju oblik. Tekućine poprimaju oblik posude u kojoj se nalaze i gotovo su nestlačive.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE α www.i-raga.co FIZIKA za 8 razred Prijeri riješenih zadataka iz područja ELEKTRIČNE STRUJE U ovo dijelu zbirke obrađena

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Rad, snaga i energija. Dinamika. 12. dio

Rad, snaga i energija. Dinamika. 12. dio Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

( ). Pritom je obavljeni rad motora: 2 2

( ). Pritom je obavljeni rad motora: 2 2 Zadata (Hroje, ginazija) Dizalo ae 5 g brza e aceleracijo / iz iroanja do brzine 4 / Za cijelo rijee gibanja djelje talna ila trenja N Kolii je obaljeni rad? (g = 98 / ) Rješenje = 5 g, a = /, = 4 /, F

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016.

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016. 12 SKUPIN ZDK IZ FIZIKE I 6 linja 2016 Zadatak 121 U osudi - sremniku očetnog volumena nalazi se n molova dvoatomnog lina na temeraturi rema slici) Plin izobarno ugrijemo na temeraturu, adijabatski ga

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

( ) ( ) n. Ukupni kapacitet od n usporedno (paralelno) spojenih kondenzatora možemo naći iz izraza

( ) ( ) n. Ukupni kapacitet od n usporedno (paralelno) spojenih kondenzatora možemo naći iz izraza Zadatak 08 (Maija ginazija) Dva uspoedno spojena kondenzatoa i seijski su spojeni s kondenzatoo kapaciteta. Koliki je ukupni kapacitet? Nactajte sheu. Rješenje 08 =? Ukupni kapacitet od n seijski spojenih

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Pun spremnik benzina sadrži 60 litara. Ako je napunjen pri temperaturi 5 C i ostavljen na suncu tako da se temperatura povisi

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

2. zakon održanja energije, koji se može izraziti poznatom jednadžbom za 1 kg mase:

2. zakon održanja energije, koji se može izraziti poznatom jednadžbom za 1 kg mase: *Ukoliko očio da neke jednadžbe nedostaj ožete ih dodati ovo ois ( to nis kljčeni riješeni zadaci) Pro.dr.sc Katarina Sion Hidralički roračn agistralnih vodova. zakon o kontinitet asa: q vρ A vρ A konst..

Διαβάστε περισσότερα

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Studij racunarstva, Fizika 1, Predavanje siječnja Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Studij racunarstva, Fizika 1, Predavanje siječnja Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2007./2008. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fizika 1 Predavanje 10 Statika fluida. Dr. sc. Ivica Puljak (Ivica.Puljak@fesb.hr) Danas ćemo raditi: Tlak

Διαβάστε περισσότερα

Rad i energija. Rad i energija

Rad i energija. Rad i energija Rad (P 45-46) Snaga (P 46) Energija (P 46-5) Potencijalna energija. Kinetiča energija Zaon održanja energije (P 5-5) Da bi rad bio izvršen neohodno je otojanje ile. Sila vrši rad: ri omerenju tela jednog

Διαβάστε περισσότερα

2 E m v = = s = a t, v = a t

2 E m v = = s = a t, v = a t Zadata 6 (Matea, ginazija) Sila N djeloala je na tijelo 4 eunde i dala u energiju 6.4 J. Kolia je aa tijela? Rješenje 6 = N, t = 4, E = 6.4 J, =? Tijelo obalja rad W ao djeluje neo ilo na putu na drugo

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina ŽUPANIJSKO NATJECANJE IZ FIZIKE 6..9. Srednje škole. skupina. zadatak ( bodova) Tramvaj vozi između dvije stanice udaljene 6 m tako da polazi sa prve stanice iz mirovanja i ubrzava ubrzanjem m/s dok ne

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Zadatci za vježbanje Termodinamika

Zadatci za vježbanje Termodinamika Zadatci za vježbanje Termodinamika 1. Električnim bojlerom treba zagrijati 22 litre vode 15 ⁰C do 93 ⁰C. Koliku snagu mora imati grijač da bi se to postiglo za 2 sata zagrijavanja? Specifični toplinski

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

Masa i gustina. zadaci

Masa i gustina. zadaci Masa i gustina zadaci 1.)Vaga je u ravnote i dok je na jednom njenom tasu telo, a na drugom su tegovi od: 10 g, 2 g, 500 mg i 200 mg.kolika je masa ovog tela? 2.)Na jednom tasu vage se nal azi telo i teg

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

TEHNIČKA TERMODINAMIKA

TEHNIČKA TERMODINAMIKA Prof. dr. sc. Nedjeljka Petric Prof. dr. sc. Ivo Vojnović Prof. dr. sc. Vanja Martinac EHNIČKA ERMODINAMIKA. neromijenjeno izdanje KEMIJSKO-EHNOLOŠKI FAKULE U SPLIU Slit, 007. UDŽBENICI SVEUČILIŠA U SPLIU

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

2 k s k s k m. m m m 0.2 kg s. Odgovor je pod B.

2 k s k s k m. m m m 0.2 kg s. Odgovor je pod B. Zadata (Ana, inazija) Opruu ontante 5 N/ tineo za c i putio titrati. Odredite najeću brzinu tijea ae da pri titranju. A. 3 B. 5 C. D. 4 Rješenje = 5 N/, = c =., = da =., =? Eatična oprua produžena za ia

Διαβάστε περισσότερα

[ρ] = [ ] ρ= V = kg [ ] [p] = A = N

[ρ] = [ ] ρ= V = kg [ ] [p] = A = N FIZIK podloge za studij strojarsta 08. Fluidi 8. Sojsta i osnne eličine stanja fluida Tekućine popriaju oblik sprenika dok ga plini u cjelini ispunjaaju (diskusija: E p i E k olekula, F g ). Najčešće sretana

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Ε. Κ. Παλούρα, ΦΥΣΙΚΗ ΦΑΡΜΑΚΕΥΤΙΚΟΥ 2013

Ε. Κ. Παλούρα, ΦΥΣΙΚΗ ΦΑΡΜΑΚΕΥΤΙΚΟΥ 2013 1 Εισαγωγικές έννοιες στα ρευστά 1 Ρευστάά είναι τα υγρά και τα αέρια που έχουν την ικανότητα να ρέουν. Στα ρευστά τα μόρια κατανέμονται στον χώρο με τυχαίο τρόπο και συνδέονται μεταξύ τους με ασθενείς

Διαβάστε περισσότερα

-Volumetrijski protok: volumen fluida koji prolazi neku točku u jedinici vremena (m 3 s -1 )

-Volumetrijski protok: volumen fluida koji prolazi neku točku u jedinici vremena (m 3 s -1 ) 6. MJERENJE PROTOKA - Mjerenje protoka vrlo je važan dio svakog industrijskog procesa -Volumetrijski protok: volumen fluida koji prolazi neku točku u jedinici vremena (m 3 s -1 ) -Maseni protok: masa fluida

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου.

2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου. 2.3 Γενικά για το χημικό δεσμό - Παράγοντες που καθορίζουν τη χημική συμπεριφορά του ατόμου. 10.1. Ερώτηση: Τι ονομάζουμε χημικό δεσμό; Ο χημικός δεσμός είναι η δύναμη που συγκρατεί τα άτομα ή άλλες δομικές

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 5: Tα Άκλιτα µέρη του λόγου. Μπορόβας Γεώργιος Τµήµα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 5: Tα Άκλιτα µέρη του λόγου. Μπορόβας Γεώργιος Τµήµα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 5: Tα Άκλιτα µέρη του λόγου Μπορόβας Γεώργιος Τµήµα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje zima 2016.) drugi razred (do magnetizma)

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje zima 2016.) drugi razred (do magnetizma) Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje zima 2016.) Sve primjedbe na facebook stranicu Fizikagfp drugi razred (do magnetizma) TEKUĆINE (priprema za

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

VJEŽBA 1: MJERENJE TLAKA

VJEŽBA 1: MJERENJE TLAKA VJEŽBA 1: MJERENJE TLAKA 2. OPĆENITO O MJERENJU TLAKA 2.1. Definicija tlaka Tlaka je definiran djelovanjem sile na jedinicu ovršine. Silom na neku ovršinu mogu djelovati kruto tijelo, tekućine ili linovi.

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

Matematika 1. kolokviji. Sadržaj

Matematika 1. kolokviji. Sadržaj Matematika kolokviji Sadržaj. kolokvij, 2..2004.............................................. 2. kolokvij, 2..2004.............................................. 3 2. kolokvij, 7.2.2004..............................................

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα