, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ", t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką."

Transcript

1 5 m. Lietuvos 7-ojo fizikos čempionato UŽDUOČIŲ SPENDIMI 5 m. gruodžio 5 d. (Kiekvienas uždavinys vertinamas taškų, visa galimų taškų suma ). L 5 m ilgio ir s m pločio baseino dugno profilis pavaizduotas paveiksle: kas l,5 m baseino gylis padidėja h m. Tuščias baseinas pradedamas užpildyti vandeniu, pilant v litrų per minutę greičiu. Nustatykite, per kiek laiko t baseinas bus užpildytas vandeniu iki viršaus. Nubraižykite vandens lygio virš giliausios baseino dugno dalies aukščio h priklausomybės nuo laiko t grafiką. pskaičiuojame baseino tūrį: V s(l+l +l +4l)h (,5x+5x+7,5x+5x) m 5 m. ( taškai) Kadangi per vieną minutę priteka vienas kubinis metras vandens, vadinasi, baseinas užpildomas V vandeniu iki viršaus per t 5 min., t.y. per 4 valandą ir 4 minučių. ( taškai) v raižome h f(t) priklausomybės grafiką. (4 taškai). Iš povandeninio laivo, kuris tolygiai leidžiasi gilyn, skleidžiamas garsinis signalas, kuris trunka t 5, s. Nuo jūros dugno atsispindėjęs ir grįžęs iki laivo signalas fiksuojamas t 4,9 s trukmės. Kokiu greičiu v grimzta laivas? Garso greitis vandenyje v g 5 m/s.

2 Per laiką t, kol skleidžiamas signalas, garsas nueina atstumą h v g t. ( taškas) Per tą patį laiką laivas nusileidžia gilyn atstumu h v t. ( taškas) tstumas nuo sklindančio vandenyje impulso pradžios ir jo pabaigos l h - h, ( taškai) l (v g - v )t. ( taškas) Toks pat atstumas tarp signalo fiksavimo pradžios ir pabaigos bus ir garsui grįžtant, t.y. atsispindėjus nuo dugno. Tik dabar laivas ir signalas juda priešingomis kryptimis. Tuomet, l (v g + v) t. ( taškai) v g t - v t v g t + v t. ( taškas), v 6 m/s. ( taškai). Devintos klasės mokiniams per fizikos pamoką buvo suformuluota grupinė užduotis eksperimentiškai nustatyti automobilių alyvos tankį. Viena moksleivių grupė sugalvojo alyvos tankio l l nustatymo metodą, kurio schema parodyta paveiksle. Indą vertikalia pertvara padalino į dvi dalis. Į vieną indo dalį pripylė vandens, į kitą tiriamosios alyvos. Į pertvarą įmontavo be trinties galintį suktis vyrį, o ant jo vienalytę medinę liniuotę taip, kad ji būtų pusiausvira. Kairės (esančios vandenyje) liniuotės dalies ilgis yra l 4 cm, dešinės l 6 cm. Vandens tankis yra ρ v kg/m, liniuotės tankis ρ 6 kg/m. Kokį alyvos tankį ρ a gavo mokiniai eksperimento metu? Kairiąją V tūrio liniuotės dalį veikia žemyn nukreipta sunkio jėga ρgv ( taškas) ir aukštyn nukreipta rchimedo jėga ρ v gv ( taškas). Šių jėgų atstojamoji yra lygi (ρ v - ρ) gv ir yra nukreipta aukštyn ( taškas). nalogiškai, dešiniąją V tūrio liniuotės dalį veikia aukštyn nukreipta atstojamoji jėga (ρ a - ρ) gv ( taškas). Šių jėgų pečių ilgiai yra proporcingi kairės ir dešinės liniuotės dalių ilgiams l : l ( taškas). Pagal sverto pusiausvyros sąlygą pečių ilgių santykis yra atvirkščiai proporcingas veikiančių jėgų santykiui:

3 l /l ((ρ a - ρ) gv )/((ρ v - ρ) gv ). ( taškas) Kadangi l /l V /V, gauname (ρ a - ρ)/(ρ v - ρ) (l /l ). ( taškai) Iš čia ρ a ρ + (ρ v - ρ) (l /l ). ρ a 78 kg/m. ( taškai) 4. Šiuolaikinių vėjo jėgainių naudingumo koeficientas praktiškai nepriklauso nuo vėjo greičio jų darbinių vėjų (nuo 5 m/s iki 5 m/s) diapazone. askite, kaip vėjo jėgainės galia priklauso nuo vėjo greičio. I būdas Naudosime dimensijų metodą. Vėjo jėgainės galia N gali priklausyti ne tik nuo vėjo greičio V, bet ir nuo oro tankio ρ (pvz.: vanduo perneša žymiai daugiai energijos negu oras). išku, kad galia priklausys ir nuo pačios jėgainės dydžio, naudosime jos sraigto spindulį. ( taškas) Tarkime N i j k cρ V, čia c bedimensinis daugiklis, o i, j ir k laipsnio rodikliai. ( taškai) eikia rasti k. Galios dimensija [ ] kg m N. ( taškas) s j k kg m i kg m Pagal aukščiau užrašytą formulę m. s m s ( taškai) Sulyginus sekundžių laipsnius, gauname k. Vadinasi, N ~ V. ( taškai) Nesunku papildomai rasti, kad j ir i. II būdas Jėgainės galia N proporcinga per laiką t vėjo prarastai kinetinei energijai E. ( taškas) N E k, čia k jėgainės naudingumo koeficientas. ( taškas) t m v m v m E, E ( v v ). ( taškai) Čia v oro greitis prieš jėgainę, v oro greitis po jėgainės. Galima tarti, kad v mažai skiriasi nuo v ir v cv. ( taškas)

4 Čia c artimas bet mažesnis už daugiklis. m - tai tankio ρ oro masė, praeinanti pro įsivaizduojamo cilindro, apribojančio jėgainės sraigtą, skerspjūvį S per laiko tarpą t. ( taškas) m ρ S v t. ( taškas) Sustatę viską į N išraišką gauname: N ρ. ( taškas),5 k S ( c ) v Vadinasi, N ~ V. ( taškai) Kitų dydžių laipsniai irgi sutampa su gautais, sprendžiant I būdu. 5. Gamtinės dujos, naudojamos buityje, susideda iš metano ( CH 4 ) ir etano ( C H 6 ). Užrašykite jų degimo lygtis. Yra žinoma, kad šilumos kiekis, išsiskiriantis sudegus dujų molekulei, yra proporcingas jos vandenilio atomų skaičiui. askite metano ir etano savitųjų degimo šilumų santykį M β. Kokias dujas ir kiek kartų λ naudingiau naudoti buityje, jeigu mes mokame už sunaudotų E dujų tūrį? Degimo lygtys: Metano degimo lygtis: CH 4 + O СO + H O. Etano degimo lygtis: C H O 4 СO + 6 H O. ( taškas) ( taškas) Savitoji degimo šiluma - tai santykis išsiskyrusios degimo metu šilumos kiekio su kuro mase Q. ( taškas) m Šilumos kiekį, išsiskiriantį sudegant vienam vandenilio atomui, pažymėkime α. Sudegant vienai metano molekulei išsiskiria µ M 4α šilumos, o sudegant etano - µ E 6α. ( taškas) Žinoma, kad anglies atomo masė m C lygi vandenilio atomo masių m H. ( taškas) 4

5 Tokiu atveju M 4α ir 6m H E 6α. ( taškas) m H Vadinasi: β 4α m 6m 6α H H,5. ( taškas) Naudodami dujas, mes mokame ne už sunaudotą jų masę, o už jų tūrį. Esant vienodoms sąlygoms tame pačiame tūryje yra vienodas bet kurių dujų molekulių skaičius. ( taškas) Dėl to kubinio metro dujų degimo metų išsiskiriantis šilumos kiekis proporcingas molekulės degimo šilumai. µ λ E,5. ( taškas) µ M Etaną naudoti pusantro karto naudingiau. ( taškas) 6. Stačiame cilindriniame inde su plokščiu dugnu yra oras, uždarytas ritinio formos stūmokliu, kuris gali slankioti be trinties. Oro slėgis po stūmokliu yra, karto didesnis nei virš jo. Kiek kartų pakis atstumas tarp stūmoklio ir indo dugno, indą apvertus dugnu į viršų? Nubraižome brėžinį. ( taškas) Čia p oro slėgis. p p h Jei stūmoklio svorio sukeliamas slėgis p s, tai stūmoklio pusiausvyros sąlygos pirmu ir antru atvejais p + p s, ( taškas) p p h p p + p s ( taškas) p Pagal sąlygą p, p, todėl p s p p, ( taškas) p, p p, p s p. ( taškas) p p p, p, 8 5

6 Iš oilio ir Marioto dėsnio p. ( taškai) Sh psh Čia S stūmoklio plotas. Tada, p p h ir ( taškas) h, 8 h h,,8,5 karto padidėtų. ( taškai) 7. erniukas į U formos indą (žiūr. pav., vamzdelio plotis > ) įpylė aliejaus, kurio tankis skirtumą h 8 ρ ir išmatavo drėkinančio skysčio paviršių aukščių,9 g / cm mm. Vėliau išvalė indą, įpylė amoniako, kurio tankis ρ,69 g / cm, ir nustatė, kad aukščių skirtumas sumažėjo iki h 5 mm. pskaičiuokite aliejaus ir amoniako paviršiaus įtempties koeficientų santykį. raižome brėžinius: h h ρ ) ) ρ ( taškas) Užrašome susisiekiančiųjų indų skysčio pusiausvyros sąlygą: p p, () ( taškas) čia p ir p lygio slėgis vienoje ir kitoje vamzdelio šakoje. Pirmu atveju p p p ir x p p p + p, ( taškas) y h čia p x σ, p y σ ir p ρ gh h. ( taškas) 6

7 Čia p atmosferos slėgis, σ paviršiaus įtempties koeficientas pirmu atveju, ir atitinkamai pirmos ir antros kanalo šakos spinduliai. Pastarąsias slėgių išraiškas įrašę į () lygtį, gauname: p σ σ p + ρgh. ( taškai) Iš šios lygties išreiškiame paviršiaus įtempties koeficientą indui su aliejumi: gh σ ρ. ( taškas) ( ) Tuo pat būdu užrašome šią formulę indui su amoniaku: gh σ ρ. ( taškas) ( ) pskaičiuojame drėkinančio skysčio paviršiaus įtempties koeficientų santykį: σ σ sant σ. ( taškas) ρ h ρ h 9 kg/m,8 m σ,5. ( taškas) sant 69 kg/m,5 m Palyginimui: aliejui σ, N/m, o amoniakui σ, N/m. 8. Keturi teigiami taškiniai krūviai, kurių dydžiai,, ir 4 ( > > > 4 ), yra eilės tvarka išdėstyti kvadrato, kurio kraštinės ilgis a, viršūnėse. Kokio stiprio elektrinį lauką kuria šie krūviai kvadrato centre? Nubraižykite brėžinį. raižome brėžinį (nurodomi atitinkami atstumai, elektrinio lauko stiprio vektorių dydžiai). ( taškai) a E E tstojamasis laukas tai vektorinė suma atskirų krūvių kuriamų elektrinių laukų. ( taškas) a E 4 Patogu sumuoti laukus, kuriuos kuria priešinguose kvadrato kampuose esantys krūviai. ( taškas) 7

8 Tada E, ( taškas) πε a E 4. ( taškas) πε a E +. ( taškai) Taigi, E E E ( ) + ( 4 ). ( taškai) πε a 9. Vieną kartą jonizuoti deguonies atomai (gali būti teigiami arba C neigiami jonai), pagreitinti potencialų skirtumo U, kv, per įėjimo plyšį patenka į sritį su vienalyčiu magnetinės indukcijos mt lauku, kurio kryptis statmena brėžiniui ir nukreipta nuo mūsų (žiūr. pav.). Visų jonų greitis statmenas srities su magnetniu lauku ribai. Judėdami pusapskritimio trajektorija jonai pasiekia išėjimo plyšį C. ) Koks deguonies jono krūvio ženklas? ) Kokia deguonies jono masė m, jei deguonies atominė masė µ 6? ) Kokį spindulį turi pusapskritimis, kuriuo skrieja jonai? v 4) Kokiu kampu α patekdamas į magnetinio lauko sritį gali skėstis deguonies jonų pluoštelis, kad visi patektų į plyšį C, kurio plotis l, mm? Laikyti, kad jonų pluoštelis skečiasi simetriškai statmens magnetinės srities ribai atžvilgiu. ) Kad kūnas judėtų apskritimine trajektorija, jį turi veikti įcentrinė jėga, kurios vaidmenį atlieka Lorenco jėga. Jei kryptis brėžinyje nuo mūsų, nurodyta brėžinyje trajektorija galima neigiamo krūvio dalelei (pagal kairės rankos taisyklę). Deguonies jono krūvio ženklas neigiamas. ( taškas) ) Deguonies atomo (taigi, ir jono) masę randame kg-molio masę dalindami iš vogadro skaičiaus µ 6 6 kilomoliui, t.y. m,66 kg. ( taškas) N 6 6, ) Kadangi įcentrinės jėgos vaidmenį atlieka Lorenco jėga, tai mv v, o iš čia mv. ( taškas) Greitį surandame iš kinetinės energijos, kurią jonas įgyja įveikęs U potencialų skirtumą mv U, t.y. U v. ( taškas) m 8

9 Taigi, mu µ U N, 6,6 6, 9 6, m. ( taškai) 4) Iš brėžinio [ brėžinys ( taškas)] matyti, kad esant jonų pluoštelio skėsties kampui α pluoštelis išplinta išėjimo plyšio plokštumoje iki l. Jį galime apskaičiuoti tokiu būdu: v α/ α/ α l cos. ( taškas) l Taigi, α arccos 8, arba tardami, kad α<< α/ α/ v (radianais), α α l cos 4. Tada l α 8,. ( taškai) Δl C. Vakuuminio sferinio fotoelemento vidinis elektrodas yra metalas, kurį apšvietus tam tikro bangos ilgio spinduliuote stebimas fotoefektas. pšvietus tokį fotoelementą vieną kartą bangos ilgio λ, o kitą kartą λ monochromatine šviesa, išmatuotos fotosrovės stiprio priklausomybės nuo prijungtos įtampos. Jos parodytos paveiksle ir atitinkamai pažymėtos ir. Tarti, kad fotoefekto atveju fotonas iš metalo išmuša elektroną, o į elektronų debesėlio įtaką potencialui nekreipti dėmesio. Fotosrovės stipris -,5,5, U, V (a) Kodėl fotosrovės sotinasi, o pati srovės stiprio soties vertė vienoda abiem atvejais? (b) Jei λ 75 Å, pasinaudodami grafikais, raskite vidinio elektrodo metalo išlaisvinimo darbą ir bangos ilgį λ. (c) Koks šviesos šaltinių galių santykis? (a) Išlėkę elektronai turi kinetinę energiją nuo iki maksimalios vertės Wkin hν, čia hν - fotono energija, išlaisvinimo darbas. Fotosrovė sotinasi, kai pakanka potencialų skirtumo (įtampos) surinkti visus dėl fotoefekto išlėkusius elektronus, net turinčius nulinę kinetinę energiją. Visas išmuštų iš metalo elektronų skaičius nepriklauso nuo bangos ilgio, jei tik spinduliuotė gali sukelti fotoefektą (o taip ir yra). ( taškai) 9

10 (b) Iš grafiko randame, kad maksimali elektronų energija kreivės atveju atitinka U,5 +,8, V, o -os - U, +,8, V. Tada atitinkamos kvantų energijos h ν +, ev ir h ν +, ev. ( taškai) 4 8 hc 6,66,998 9 et hν (ev) 8,6 J 5, ev. ( taškai) 7 λ,75 Tada 5,,,9 ev. Taigi, h ν +, ev,9 ev +, ev 4,9 ev. Iš 4 8 hc 6,66,998 7,5 m 9 hν 4,9,6 čia λ ct 5 Å. ( taškai) (c) Fotosrovė sotinasi vienodoms srovės stiprio vertėms, vadinasi, abiem atvejais išmušamas vienodas elektronų skaičius per laiko vientą, t.y. į fotoelementą abiem atvejais per laiko krenta ir vienodas fotonų skaičius. Tada šviesos šaltinių galių santykis lygus fotonų energijų santykiu, t.y. P P hν hν λ λ,6. ( taškai).

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof. Papildoo ugdyo okykla izikos olipas Mechanika Dinaika (Paskaitų konspektas) 9. sausio -8 d. Prof. Edundas Kuokštis Vilnius Paskaita # Dinaika Jei kineatika nagrinėja tik kūnų judėjią, nesiaiškindaa tą

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

1 teorinė eksperimento užduotis

1 teorinė eksperimento užduotis 1 teorinė eksperimento užduotis 2015 IPhO stovykla DIFERENCINIS TERMOMETRINIS METODAS Šiame darbe naudojame diferencinį termometrinį metodą šiems dviems tikslams pasiekti: 1. Surasti kristalinės kietosios

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Rimantas DEKSNYS, Robertas STANIULIS Elektros sistemų katedra Kauno technologijos universitetas

Διαβάστε περισσότερα

klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2016 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2016 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S (miestas / rajonas, mokykla) klasės (grupės) mokinio (-ės) (vardas ir pavardė) 06 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 06 m. gegužės

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS

SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS Bronislovas SPRUOGIS SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS Projekto kodas VP1-.-ŠMM 07-K-01-03 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų

Διαβάστε περισσότερα

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t Cheminė kineika ir pusiausyra Nagrinėja cheminių reakcijų greiį ir mechanizmą. Cheminių reakcijų meu kina reaguojančių iagų koncenracijos: c ų koncenracija, mol/l laikas, s c = Reakcijos greičio io ()

Διαβάστε περισσότερα

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS Palmira Pečiuliauskienė Fizika Vadovėlis XI XII klasei lektra ir magnetizmas KAUNAS UDK 53(075.3) Pe3 Turinys Leidinio vadovas RGIMANTAS BALTRUŠAITIS Recenzavo mokytoja ekspertė ALVIDA LOZDINĖ, mokytojas

Διαβάστε περισσότερα

Termochemija. Darbas ir šiluma.

Termochemija. Darbas ir šiluma. Termochemija. Darbas ir šiluma. Energija gyvojoje gamtoje. saulės šviesa CO 2 H 2 O O 2 gliukozė C 6 H 12 O 6 saulės šviesa Pavyzdys: Fotosintezė chloroplastas saulės 6CO 2 + 6H 2 O + šviesa C 6 H 12 O

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 2006 m. liepos 8 17 d., Singapūras

XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 2006 m. liepos 8 17 d., Singapūras XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 006 m. liepos 8 17 d., Singapūras Teorinė užduotis 1 Gravitacija neutronų interferometre Nagrinėsime Collela, Overhauser and Werner neutronų interferencijos eksperimentą

Διαβάστε περισσότερα

Oksidacija ir redukcija vyksta kartu ir vienu metu!!!

Oksidacija ir redukcija vyksta kartu ir vienu metu!!! Valentingumas Atomo krūviui molekulėje apibūdinti buvo pasirinkta sąvoka atomo oksidacijos laipsnis. Oksidacijos laipsnis Oksidacijos laipsnio vertė gali būti teigiama, neigiama arba lygi nuliui. Teigiama

Διαβάστε περισσότερα

Matavimo vienetų perskaičiavimo lentelės

Matavimo vienetų perskaičiavimo lentelės Matavimo vienetų perskaičiavimo lentelės Matavimo vieneto pavadinimas Santrumpa Daugiklis Santrumpa ILGIO MATAVIMO VIENETAI Perskaičiuojamo matavimo Pavyzdžiui:centimetras x 0.3937 = colis centimetras

Διαβάστε περισσότερα

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Fizika doc. dr. Vytautas Stankus Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Studentų 50 58 kab. Darbo tel.: 861033946 Vytautas.Stankus@ktu.lt Bendrosios fizikos

Διαβάστε περισσότερα

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

Tirpalai ir jų savybės

Tirpalai ir jų savybės Tirpalai ir jų savybės Terminologija Tirpalai yra homogeniniai mišiniai. Tirpalą sudaro: Tirpiklis. Apibūdina tirpalo agregatinę būseną (fazę). Dažnai (bet ne visuomet) didesnę tirpalo dalį sudarantis

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

FDMGEO4: Antros eilės kreivės I

FDMGEO4: Antros eilės kreivės I FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių

Διαβάστε περισσότερα

AUTOMATINIO VALDYMO TEORIJA

AUTOMATINIO VALDYMO TEORIJA Saulius LISAUSKAS AUTOMATINIO VALDYMO TEORIJA Projekto kodas VP1-.-ŠMM-7-K-1-47 VGTU Elektronikos fakulteto I pakopos studijų programų esminis atnaujinimas Vilnius Technika 1 VILNIAUS GEDIMINO TECHNIKOS

Διαβάστε περισσότερα

1 iš 8 RIBOTO NAUDOJIMO M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

1 iš 8 RIBOTO NAUDOJIMO M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis iš 8 RIBT NAUDJIM PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 00 m. birželio 0 d. įsakymu 6.-S- 00 M. EMIJS VALSTYBINI BRANDS EGZAMIN UŽDUTIES VERTINIM INSTRUKIJA Pagrindinė sesija I dalis Kiekvienas

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs

Διαβάστε περισσότερα

Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį.

Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį. 1 Darbo tikslai Ištirti dujų spinduliuotės spektrų ypatumus ir spalvoto tirpalo šviesos sugertį. Užduotys 1. Atlikti gardelinio spektrometro kalibravimą. 2. Išmatuoti vandenilio dujų spinduliuotės spektro

Διαβάστε περισσότερα

Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams

Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams Suvestinė Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams Danfoss centralizuoto šildymo padalinys parengė šias rekomendacijas, vadovaujantis p. Marie Louise Petersen, Danfoss

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

XI. MIKROSKOPAI OPTINĖS SISTEMOS. XI. Mikroskopai. sites.google.com/site/optinessistemos/ 2016 pavasario semestras

XI. MIKROSKOPAI OPTINĖS SISTEMOS. XI. Mikroskopai. sites.google.com/site/optinessistemos/ 2016 pavasario semestras OPTINĖS SISTEMOS XI. Mikroskopai sites.google.com/site/optinessistemos/ Mikroskopas Pagrindiniai mikroskopijos principai Vaizdų susidarymas Kohler apšvietimas Tiesioginis ir invertuotas mikroskopas Objektyvai

Διαβάστε περισσότερα

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! 2004-2006 m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto

Διαβάστε περισσότερα

Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo

Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo Πλυντήριο πιάτων Indaplovė Машинa за прање посуђа Pomivalni stroj ESL 46010 2 electrolux Περιεχόμενα Electrolux. Thinking of

Διαβάστε περισσότερα

PAPILDOMA INFORMACIJA

PAPILDOMA INFORMACIJA PAPILDOMA INFORMACIJA REKOMENDACIJOS, KAIP REIKIA ĮRENGTI, PERTVARKYTI DAUGIABUČIŲ PASTATŲ ANTENŲ ŪKIUS, KAD BŪTŲ UŽTIKRINTAS GEROS KOKYBĖS SKAITMENINĖS ANTŽEMINĖS TELEVIZIJOS SIGNALŲ PRIĖMIMAS I. BENDROSIOS

Διαβάστε περισσότερα

AVIACINĖS RADIOLOKACINĖS SISTEMOS

AVIACINĖS RADIOLOKACINĖS SISTEMOS VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Romualdas Malinauskas AVIACINĖS RADIOLOKACINĖS SISTEMOS Mokomoji knyga Vilnius 2007 UDK 621.396.9:629.7(075.8) Ma 308 Romualdas Malinauskas. AVIACINĖS RADIOLOKACINĖS

Διαβάστε περισσότερα

TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla. Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m.

TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla. Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m. TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m. Turinys: Archimedo jėga Archimedo dėsnis Kūnų plūduriavimas Vandens

Διαβάστε περισσότερα

STATYBOS TECHNINIS REGLAMENTAS STR :2006 LANGAI IR IŠORINĖS ĮĖJIMO DURYS

STATYBOS TECHNINIS REGLAMENTAS STR :2006 LANGAI IR IŠORINĖS ĮĖJIMO DURYS PATVIRTINTA Lietuvos Respublikos aplinkos ministro 2006 m. vasario 1 d. įsakymu Nr. D1-62 STATYBOS TECHNINIS REGLAMENTAS STR 2.05.20:2006 LANGAI IR IŠORINĖS ĮĖJIMO DURYS I. BENDROSIOS NUOSTATOS 1. Reglamentas

Διαβάστε περισσότερα

6 laboratorinis darbas DIODAS IR KINTAMOSIOS ĮTAMPOS LYGINTUVAI

6 laboratorinis darbas DIODAS IR KINTAMOSIOS ĮTAMPOS LYGINTUVAI Kauno technologijos universitetas...gr. stud... Elektros energetikos sistemų katedra p =..., n =... 6 laboratorinis darbas DIODAS IR KINTAMOSIOS ĮTAMPOS LYGINTUVAI Darbo tikslas Susipažinti su diodo veikimo

Διαβάστε περισσότερα

AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA. Plotis, mm 99,149,199,249,299 Aukštis, mm 199

AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA. Plotis, mm 99,149,199,249,299 Aukštis, mm 199 AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA Statinio sienos bei pertvaros projektuojaos ūrinės iš piros kategorijos akytojo betono blokelių AEROC CLASSIC pagal standartą

Διαβάστε περισσότερα

Regina Jasiūnienė Virgina Valentinavičienė. Vadovėlis X klasei

Regina Jasiūnienė Virgina Valentinavičienė. Vadovėlis X klasei Regina Jasiūnienė Virgina Valentinavičienė Vadovėlis X klasei UDK 54(075.3) Ja61 Recenzavo mokytoja ekspertė JANĖ LIUTKIENĖ, mokytoja metodininkė REGINA KAUŠIENĖ Leidinio vadovas REGIMANTAS BALTRUŠAITIS

Διαβάστε περισσότερα

Ląstelės biologija. Laboratorinis darbas. Mikroskopavimas

Ląstelės biologija. Laboratorinis darbas. Mikroskopavimas Ląstelės biologija Laboratorinis darbas Mikroskopavimas Visi gyvieji organizmai sudaryti iš ląstelių. Ląstelės yra organų, o kartu ir viso organizmo pagrindinis struktūrinis bei funkcinis vienetas. Dauguma

Διαβάστε περισσότερα

Žinios ir supratimas. Apibrėţkite santykinę dielektrinę skvarbą.

Žinios ir supratimas. Apibrėţkite santykinę dielektrinę skvarbą. Žinios ir supratimas Nr. Mokiniai parodo žinias ir supratimą 1. Nurodydami ir apibrėţdami pagrindinius fizikos faktus, dėsnius, sąvokas, fizikinius dydţius, procesus Pavyzdžiai Kokiu reiškiniu paaiškinamas

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis

Διαβάστε περισσότερα

Riebalų rūgščių biosintezė

Riebalų rūgščių biosintezė Riebalų rūgščių biosintezė Riebalų rūgščių (RR) biosintezė Kepenys, pieno liaukos, riebalinis audinys pagrindiniai organai, kuriuose vyksta RR sintezė RR grandinė ilginama jungiant 2C atomus turinčius

Διαβάστε περισσότερα

Elektrotechnika ir elektronika modulio konspektas

Elektrotechnika ir elektronika modulio konspektas KAUNO TECHNIKOS KOLEGIJA ELEKTROMECHANIKOS FAKULTETAS MECHATRONIKOS KATEDRA Elektrotechnika ir elektronika modulio konspektas Parengė: doc. dr. Marius Saunoris KAUNAS, 0 TURINYS ĮŽANGINIS ŽODIS...6 3.

Διαβάστε περισσότερα

Elektrotechnikos pagrindai

Elektrotechnikos pagrindai Valentinas Zaveckas Elektrotechnikos pagrindai Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Vilnius Technika 2012 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius

Διαβάστε περισσότερα

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2010 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 2010 m. birželio 8 d. valstybinį matematikos

Διαβάστε περισσότερα

Kodėl mikroskopija? Optinė mikroskopija: įvadas. Žmogaus akis. Žmogaus akis. Žmogaus akis. Vaizdo formavimasis žmogaus akyje

Kodėl mikroskopija? Optinė mikroskopija: įvadas. Žmogaus akis. Žmogaus akis. Žmogaus akis. Vaizdo formavimasis žmogaus akyje Kodėl mikroskopija? Todėl, kad pamatyti reiškia patikėti... Optinė mikroskopija: įvadas Žmogaus akis Žmogaus akis Mato šviesą, kurios bangų ilgis nuo 400 nm (violetinė) iki 750 nm (mėlyna) Stiebelių ir

Διαβάστε περισσότερα

TRANSPORTO PRIEMONIŲ DINAMIKA

TRANSPORTO PRIEMONIŲ DINAMIKA Marijonas Bogdevičius RANSPORO PRIEMONIŲ DINAMIKA Projekto kodas VP-.-ŠMM 7-K--3 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius studijų metodus Vilnius

Διαβάστε περισσότερα

9. KEVALŲ ELEMENTAI. Pavyzdžiai:

9. KEVALŲ ELEMENTAI. Pavyzdžiai: 9. KEVALŲ ELEMENTAI Kealai Tai ploni storio krptii kūnai, sudarti iš kreių plokštuų. Geoetrija nusakoa iduriniu pairšiui ir storiu t. Kiekiena pairšiaus taške galia rasti di kreies, atitinkančias inialius

Διαβάστε περισσότερα

APLINKOS RADIACINIO FONO MATAVIMAS DOZIMETRAIS

APLINKOS RADIACINIO FONO MATAVIMAS DOZIMETRAIS VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra Taikomosios branduolio fizikos laboratorija Laboratorinis darbas Nr. 6 APLINKOS RADIACINIO FONO MATAVIMAS DOZIMETRAIS Parengė A. Poškus 2014-02-03

Διαβάστε περισσότερα

Aviacinės elektronikos pagrindai

Aviacinės elektronikos pagrindai Antanas Savickas Aviacinės elektronikos pagrindai Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius studijų metodus

Διαβάστε περισσότερα

Fotodetektoriai. Fotodetektoriai. Fotodetektoriai. Fotodetektoriai: suskirstymas 6/2/2017

Fotodetektoriai. Fotodetektoriai. Fotodetektoriai. Fotodetektoriai: suskirstymas 6/2/2017 Fotodetektoriai Fotodetektoriai Galios detektoriai Signalas proporcingas krentančios šviesos galiai; Fotonų detektoriai Signalas proporcingas krentančiam fotonų skaičiui per laiko vienetą. Kai spinduliuotė

Διαβάστε περισσότερα

seka Suintegravus pagal x nuo 0 iki d gauname maksimalią injektuotos srovės tankį (erdvinio krūvio ribotą srovė EKRS)

seka Suintegravus pagal x nuo 0 iki d gauname maksimalią injektuotos srovės tankį (erdvinio krūvio ribotą srovė EKRS) Srovė dielektrike Krūvininų pernaša dielektrike skiriasi nuo pernašos puslaidininkyje, kur judantis krūvis yra neutralizuojamas pusiausvyrųjų krūvininkų greičiau negu nudreifuoja tarp elektrodų. Dielektrike

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

Patekimo į darbo vietas aukštyje priemonės

Patekimo į darbo vietas aukštyje priemonės Patekimo į darbo vietas aukštyje priemonės Patekimo į darbo vietas aukštyje priemonės Turinys Pratarmė... 5 I. Fiksuotų priėjimo priemonių tarp dviejų lygių darbo vietų parinkimas... 6 1. Pagrindinės

Διαβάστε περισσότερα

KOMPIUTERINIS PROJEKTAVIMAS

KOMPIUTERINIS PROJEKTAVIMAS LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Statybinių konstrukcijų katedra Tatjana Sankauskienė KOMPIUTERINIS PROJEKTAVIMAS AutoCAD sistemoje Mokomoji knyga inžinerinių specialybių

Διαβάστε περισσότερα

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC 60364-6 standartą TURINYS 1. Įžanga 2. Standartai 3. Iki 1000V įtampos skirstomojo tinklo sistemos 4. Kada turi būti atliekami bandymai?

Διαβάστε περισσότερα

KIETOJO BIOKURO APSKAITOS ENERGIJOS GAMYBOS ŠALTINIUOSE TAISYKLĖS. Galutinė ataskaita. Habil. dr. V.Miškinis m. lapkričio 30 d.

KIETOJO BIOKURO APSKAITOS ENERGIJOS GAMYBOS ŠALTINIUOSE TAISYKLĖS. Galutinė ataskaita. Habil. dr. V.Miškinis m. lapkričio 30 d. ENERGETIKOS KOMPLEKSINIŲ TYRIMŲ LABORATORIJA KIETOJO BIOKURO APSKAITOS ENERGIJOS GAMYBOS ŠALTINIUOSE TAISYKLĖS Galutinė ataskaita Habil. dr. V.Miškinis 2011 m. lapkričio 30 d. Ataskaitos pavadinimas: Kietojo

Διαβάστε περισσότερα

MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ

MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ Romualdas NAVICKAS Vaidotas BARZDĖNAS MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ Projekto kodas VP1-2.2-ŠMM-07-K-01-047 VGTU Elektronikos fakulteto I pakopos studijų programų esminis atnaujinimas Vilnius Technika

Διαβάστε περισσότερα

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009 1 Integriniai diodai Integrinių diodų pn sandūros sudaromos formuojant dvipolių integrinių grandynų tranzistorius. Dažniausiai integriniuose grandynuose kaip diodai naudojami tranzistoriniai dariniai.

Διαβάστε περισσότερα

TEDDY Vartotojo vadovas

TEDDY Vartotojo vadovas TEDDY Vartotojo vadovas Jūsų PRESIDENT TEDDY ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje) ir

Διαβάστε περισσότερα

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] ) ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

Kengūra Užduotys ir sprendimai. Senjoras

Kengūra Užduotys ir sprendimai. Senjoras Kengūra 2014 Užduotys ir sprendimai Senjoras KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS KENGŪRA 2014 TARPTAUTINIO MATEMATIKOS KONKURSO UŽDUOTYS IR SPRENDIMAI Autorius ir sudarytojas Aivaras Novikas Redaktorius

Διαβάστε περισσότερα

EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ LT INDAPLOVĖ SK UMÝVAČKA ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 NAUDOJIMO INSTRUKCIJA 22 NÁVOD NA POUŽÍVANIE 40

EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ LT INDAPLOVĖ SK UMÝVAČKA ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 NAUDOJIMO INSTRUKCIJA 22 NÁVOD NA POUŽÍVANIE 40 ESI4500LOX EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ LT INDAPLOVĖ SK UMÝVAČKA ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 NAUDOJIMO INSTRUKCIJA 22 NÁVOD NA POUŽÍVANIE 40 2 ΠΕΡΙΕΧΌΜΕΝΑ 1. ΠΛΗΡΟΦΟΡΊΕΣ ΓΙΑ ΤΗΝ ΑΣΦΆΛΕΙΑ... 3 2. ΟΔΗΓΊΕΣ ΓΙΑ ΤΗΝ ΑΣΦΆΛΕΙΑ...

Διαβάστε περισσότερα

Paskait u konspektas. Jam padėjo Aristidas Vilkaitis ir Donatas Šepetys 2006 metais

Paskait u konspektas. Jam padėjo Aristidas Vilkaitis ir Donatas Šepetys 2006 metais Paskait u konspektas AKTUARINĖ MATEMATIKA Surašė Jonas Šiaulys Ja padėjo Aristidas Vilkaitis ir Donatas Šepetys 26 etais Naudota literatūra Bowers N.L., Gerber H.U., Hickan J.C., Jones D.A., Nesbitt C.J.,

Διαβάστε περισσότερα

Automobilių degalų sąnaudų nustatymo ir normavimo metodikos

Automobilių degalų sąnaudų nustatymo ir normavimo metodikos VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Valentinas Mickūnaitis, Alvydas Pikūnas Automobilių degalų sąnaudų nustatymo ir normavimo metodikos Metodikos nurodymai Vilnius 2005 V. Mickūnaitis, A. Pikūnas.

Διαβάστε περισσότερα

SINOPTINĖS METEOROLOGIJOS PAGRINDŲ PRAKTIKOS DARBAI

SINOPTINĖS METEOROLOGIJOS PAGRINDŲ PRAKTIKOS DARBAI SINOPTINĖS METEOROLOGIJOS PAGRINDŲ PRAKTIKOS DARBAI VILNIAUS UNIVERSITETAS GAMTOS MOKSLŲ FAKULTETAS Mokomosios knygos parengimą parėmė 2007 2013 m. Žmogiškųjų išteklių plėtros veiksmų programos 2 prioriteto

Διαβάστε περισσότερα

Techninis katalogas Plokščių radiatoriai LIETUVA 2012

Techninis katalogas Plokščių radiatoriai LIETUVA 2012 Techninis katalogas Plokščių radiatoriai LIETUVA 2012 2 turinys plokščių radiatoriai charakteristika...4 plokščių radiatoriai charakteristika... 88 Compact... 10 Ventil Compact 200 mm... 91 Ventil Compact...

Διαβάστε περισσότερα

TRUMAN. Vartotojo vadovas

TRUMAN. Vartotojo vadovas TRUMAN Vartotojo vadovas Jūsų PRESIDENT TRUMAN ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje)

Διαβάστε περισσότερα

Logamax plus. Montavimo ir techninės priežiūros instrukcija kvalifikuotiems specialistams. GB ik GB i/35 ik GB i

Logamax plus. Montavimo ir techninės priežiūros instrukcija kvalifikuotiems specialistams. GB ik GB i/35 ik GB i Dujinis kondensacinis įrenginys 6720856652 (2015/11) LT 0010005913-003 Montavimo ir techninės priežiūros instrukcija kvalifikuotiems specialistams Logamax plus GB172-30 ik GB172-35 i/35 ik GB172-42 i Prieš

Διαβάστε περισσότερα

1. Klasifikavimo su mokytoju metodai

1. Klasifikavimo su mokytoju metodai 1. Klasifikavimo su mokytoju metodai Klasifikacijos uždavinys yra atpažinimo uždavinys, kurio esmė pagal pateiktus objekto (vaizdo, garso, asmens, proceso) skaitinius duomenis priskirti ji kokiai nors

Διαβάστε περισσότερα

ESI4500LAX EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 LT INDAPLOVĖ NAUDOJIMO INSTRUKCIJA 22 RO MAŞINĂ DE SPĂLAT VASE MANUAL DE UTILIZARE 41

ESI4500LAX EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 LT INDAPLOVĖ NAUDOJIMO INSTRUKCIJA 22 RO MAŞINĂ DE SPĂLAT VASE MANUAL DE UTILIZARE 41 ESI4500LAX EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 LT INDAPLOVĖ NAUDOJIMO INSTRUKCIJA 22 RO MAŞINĂ DE SPĂLAT VASE MANUAL DE UTILIZARE 41 2 ΠΕΡΙΕΧΌΜΕΝΑ 1. ΠΛΗΡΟΦΟΡΊΕΣ ΓΙΑ ΤΗΝ ΑΣΦΆΛΕΙΑ... 3 2. ΟΔΗΓΊΕΣ ΓΙΑ ΤΗΝ

Διαβάστε περισσότερα

MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU

MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS HALFEN-DEHA Bronius Jonaitis, Arnoldas Šneideris MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU Mokomoji knyga Vilnius

Διαβάστε περισσότερα

ISOVER GYPROC PERTVAROS IR KONSTRUKCIJOS. Garso izoliacija Atsparumas ugniai

ISOVER GYPROC PERTVAROS IR KONSTRUKCIJOS. Garso izoliacija Atsparumas ugniai ISOVER GYPROC PERTVAROS IR KONSTRUKCIJOS Garso izoliacija Atsparumas ugniai 2017 Psl. Sistema Eskizas PERTVAROS 1) Maksimalus 1 2 Atsparumas ugniai A(GKB) arba H2 (GKBI) DF (GKF) arba DFH2(GKFI) 4 3.40.02

Διαβάστε περισσότερα

STOGAS PLOKŠTELĖS DACORA PLANAVIMAS IR PRITAIKYMAS 2012 VASARA

STOGAS PLOKŠTELĖS DACORA PLANAVIMAS IR PRITAIKYMAS 2012 VASARA STOGAS FASADAS INTERJERAS PLOKŠTELĖS DACORA PLANAVIMAS IR PRITAIKYMAS 12 VASARA PLOKŠTELIŲ DACORA APRAŠYMAS Vokiskas dengimas 30 x 40 Deutsche Deckung 30x40 Kilpinis dengimas, nupjautasis x Geschaulfte

Διαβάστε περισσότερα

Kompiuterinė lazerių fizika. Viktorija Pyragaitė

Kompiuterinė lazerių fizika. Viktorija Pyragaitė Kompiuterinė lazerių fizika Viktorija Pyragaitė VILNIAUS UNIVERSITETAS FIZIKOS FAKULTETAS Viktorija Pyragaitė KOMPIUTERINĖ LAZERIŲ FIZIKA Elektroninis leidinys Mokomoji knyga Vilnius 2013 Apsvarstė ir

Διαβάστε περισσότερα

PRAKTINIO TAIKYMO VADOVAS ĮVADAS

PRAKTINIO TAIKYMO VADOVAS ĮVADAS STR.05.05:005 prieas PRAKTINIO TAIKYMO VADOVAS ĮVADAS Šiame praktinio nauojimo vaove yra pateikti reikalavimai pastatų ir statinių betonin ms ir gelžbetonin ms konstrukcijoms projektuoti iš sunkaus ir

Διαβάστε περισσότερα

1648 J.B. van Helmont pademonstravo, kad augalai auga asimiliuodami kažkokią medžiagą iš oro

1648 J.B. van Helmont pademonstravo, kad augalai auga asimiliuodami kažkokią medžiagą iš oro 5 paskaita Fotosintez : šviesos reakcijos. Bendros sąvokos ir trumpa istorija. Fotosintez s aparato struktūra. Šviesą sugeriančios sistemos. Elektronų ir protonų transporto mechanizmai. http://www.johnkyrk.com/photosynthesis.html

Διαβάστε περισσότερα

201_ m... d. INFRASTRUKTŪROS NUOMOS SUTARTIS NR. 5 PRIEDĖLIS. FIZINĖ BENDRO NAUDOJIMO VIETA TECHNOLOGINĖSE PATALPOSE

201_ m... d. INFRASTRUKTŪROS NUOMOS SUTARTIS NR. 5 PRIEDĖLIS. FIZINĖ BENDRO NAUDOJIMO VIETA TECHNOLOGINĖSE PATALPOSE 2 priedo 5 priedėlis 201_ m....... d. INFRASTRUKTŪROS NUOMOS SUTARTIS NR. 5 PRIEDĖLIS. FIZINĖ BENDRO NAUDOJIMO VIETA TECHNOLOGINĖSE PATALPOSE 1. Bendrosios nuostatos 1.1. Technologinės patalpos patalpos,

Διαβάστε περισσότερα

GEOMETRINĖS OPTIKOS PAGRINDAI

GEOMETRINĖS OPTIKOS PAGRINDAI OPTINĖS SISTEMOS GEOMETRINĖS OPTIKOS PAGRINDAI sites.google.com/site/optinessistemos/ I. ĮVADAS Ženklai geometrinėje optikoje LABAI SVARBU! Fizikinė optika ir geometrinė optika Fizikinė optika - bangų

Διαβάστε περισσότερα

STUDIJŲ DALYKO PROGRAMOS ATNAUJINIMAS

STUDIJŲ DALYKO PROGRAMOS ATNAUJINIMAS 1 2007-201 m. Žmogiškųjų išteklių pl tros veiksmų programos 2 prioriteto Mokymasis visą gyvenimą VP1-2.2-ŠMM-09-V priemon Studijų programų pl tra Nacionalin se kompleksin se programose Projekto SFMIS arba

Διαβάστε περισσότερα

LAUKO VANDENTIEKIS. Vamzdynų armatūra. Skląstinės sklendės. Ventilinės sklendės. Istorija

LAUKO VANDENTIEKIS. Vamzdynų armatūra. Skląstinės sklendės. Ventilinės sklendės. Istorija LAUKO VANDENTIEKIS VGTU Vandentvarkos katedra doc. dr. Mindaugas Rimeika dr. Mindaugas Rimeika VGTU, Vandentvarkos katedra 1 Istorija Romos akvedukai (100 m.pr.kr.); 1455 - pirmasis ketaus vamzdis, Vokietijoje;

Διαβάστε περισσότερα

BIOMECHANIKOS PRAKTIKUMAS

BIOMECHANIKOS PRAKTIKUMAS Julius Griškevičius Kristina Daunoravičienė BIOMECHANIKOS PRAKTIKUMAS 1 DALIS Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant

Διαβάστε περισσότερα

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje V.Gineityt Gamtos moksluose teorijoms keliami du pagrindiniai uždaviniai: paaiškinti stebimų objektų savybes

Διαβάστε περισσότερα

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA JONAS DUMČIUS (1905 1986) TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA 1975 metais rotaprintu spausdintą vadovėlį surinko klasikinės filologijos III kurso studentai Lina Girdvainytė Aistė Šuliokaitė Kristina

Διαβάστε περισσότερα

Jūsų PRESIDENT TAYLOR III ASC iš pirmo žvilgsnio

Jūsų PRESIDENT TAYLOR III ASC iš pirmo žvilgsnio Vartotojo vadovas Jūsų PRESIDENT TAYLOR III ASC iš pirmo žvilgsnio . DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje) ir

Διαβάστε περισσότερα

AKREDITAVIMO SRITIS. Bandymo/tyrimo arba tikrinamų parametrų (charakteristikų) pavadinimas Vilnius, Žolyno g. 36, Antakalnio g. 10

AKREDITAVIMO SRITIS. Bandymo/tyrimo arba tikrinamų parametrų (charakteristikų) pavadinimas Vilnius, Žolyno g. 36, Antakalnio g. 10 1 (23) puslapis NACIONALINĖS VISUOMENĖS SVEIKATOS PRIEŽIŪROS LABORATORIJOS Žolyno g. 36, Antakalnio g. 10, Vilnius Aušros g. 44, Kaunas Bijūnų g. 6, Klaipėda Dubijos g. 40, Šiauliai AKREDITAVIMO SRITIS

Διαβάστε περισσότερα

TEORINĖ ELEKTROTECHNIKA

TEORINĖ ELEKTROTECHNIKA Zita SAVICKIENĖ TEORINĖ ELEKTROTECHNIKA Prjekt kdas VP1-2.2-ŠMM-07-K-01-047 VGTU Elektrniks fakultet I pakps studijų prgramų esminis atnaujinimas Vilnius Technika 2012 VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Διαβάστε περισσότερα

Išorės nuotekų sistemos

Išorės nuotekų sistemos Išorės nuotekų sistemos UB Pipelife ietuva yra koncerno Pipelife International GmbH ukterinė įmonė. Pipelife International GmbH koncerną įkūrė ir valo vi įmonės Wieneberger G (ustrija) bei Solvay S.. (Belgija).

Διαβάστε περισσότερα

Disbopox 442 GaragenSiegel

Disbopox 442 GaragenSiegel Sustiprinta anglies (karbono) pluoštu, vandeninė, 2-jų komponentų epoksidinės dervos danga garažų, sandėlių, rūsių grindims. Produkto aprašymas Paskirtis Savybės Mineralinės grindų ir kietojo asfalto išlyginamosios

Διαβάστε περισσότερα