0.1. Bendrosios sąvokos

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "0.1. Bendrosios sąvokos"

Transcript

1 .1. BENDROSIOS SĄVOKOS 1.1. Bendrosios sąvokos.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε =, xt;ε) C n T), T [,+ ), < ε ε ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε, x t) = lim ε + xt;ε) F x n),xn 1),...,x,x,t; ) =.1 apibrėžimas. Uždavinys vadinamas reguliariuoju, jei lim sup xt;ε) x t) = ε + t T Priešingu atveju uždavinys vadinamas singuliariuoju..1 pavyzdys. žr. 1 pav.) εx + x = s, x;ε) = 1. 1 pav. Pasienio sluoksnis xs;ε) = 1 + ε)e s ε + s ε

2 2.2 pavyzdys. Pakeiskime.1.1. pavyzdžio kintamuosius: Tada ir gauname: t = s, xs;ε) = yt;ε). ε dx ds = 1 dy ε dt, s = εt y + y = εt, y;ε) = 1. Tikslusis.2 pavyzdžio sprendinys yra yt;ε) = e t + ε e t + t 1 ). Artinys yt;ε) e t taikytinas tik kai εt 1 ir netinka, jei εt = O1). Turintys daugiklius εt asimptotinių skeidinių nariai vadinami sekuliariaisiais Antrosios eilės lygtys x = f x,x,t;ε ). Antrosios eilės silpnai netiesinės lygtys at)x + bt)x + ct)x = εf x,x,t;ε ). Diufingo lygtis y + y + εy 3 = Tiesioginio skleidimo metodas Nagrinėsime diferencialinę lygtį Asimptotinio sprendinio ieškome pavidalu x + x = εf x,x,t;ε ). 1) xt;ε) = x t) + εx 1 t) + ε 2 x 2 t) + 2) Įstatome 2) į 1) ir prilyginame koeficientus prie vienodu ε laipsniu: x + x =, x 1 + x 1 = F 1 fx,x,t;), x 2 + x 2 = F 2 x,x,x 1,x 1,t ),...

3 .1. BENDROSIOS SĄVOKOS 3.1 pratimas. Išreikšti funkciją F 2..3 pavyzdys. Tiesinis osciliatorius su slopinimu x + x + εx =. xt;ε) = x t) + εx 1 t) + ε 2 x 2 t) + ε 3 x 3 t) + x + x =, x n + x n = x n 1, n = 1,2,... x t ) = C1 sin t + C 2 cos t = acos t + ϕ). x 1 + x 1 = acos t + ϕ), x 1 t) = C1 1 sin t + at C1 2 cos t + sint + ϕ). 2.2 pratimas. Raskite x 2 t)..4 pavyzdys. Konstruojame Diufingo lygties tiesioginį asimptotinį skleidinį. x + x + εx 3 = xt;ε) = x t) + εx 1 t) + O ε 2), x + εx 1 + O ε 2)) 3 = x 3 + 3εx 2 x1 + O ε 2)) + 3x εx1 + O ε 2)) 2 = x 3 + 3εx2 x 1 + O ε 2). x + x =, x 1 + x 1 + x 3 =, x t ) = C 1 sin t + C 2 cos t = acos t + ϕ), x 1 + x 1 = a 3 cos 3 t + ϕ) = a3 3cos t + ϕ) + cos 3t + 3ϕ)). 4 x 1 t ) = C 1 1 sin t + C1 2 cos t 3a3 t 8 a3 sint + ϕ) + cos 3t + 3ϕ) pavyzdys. Savaiminiai virpesiai svyravimai su susižadinimu) x + x + ε x 1 x ) ) 3 = 3

4 4.6 pavyzdys. Kvadratiniai ir kubiniai netiesiškumai x + x + α x 2 + β x 3 = Nagrinėjami mažos amplitudės svyravimai: xt;ε) = εx 1 t) + ε 2 x 2 t) +.7 pavyzdys. Priverstiniai svyravimai x + x + ε x 3 + αu ) = Acos ω t)..8 pavyzdys. Daugiadažniai sužadinimai x + x + ε x 2 + α u ) = A 1 cos ω 1 t) + A 2 cos ω 2 t)..9 pavyzdys. Matjė lygtis x + x + εcos ω t)x =.

5 .2. KELIŲ MASTELIŲ METODAS 5.2. Kelių mastelių metodas Metodo idėja ieškoti sprendinio pavidalu m 1 k= Čia T j skirtingi laiko t masteliai: Diferencijavimo taisyklė: xt;ε) = X T,T 1,...,T m ;ε) = ε k X k T,T 1,...,T m ) + O εt m ). T = t, T 1 = εt, T 2 = ε 2 t, T 3 = ε 3 t,... d dt = T + ε T 1 + ε 2 T Dviejų mastelių metodas Pažymėkime lėtąjį laiką τ = εt ir nagrinėsime funkciją yt;ε) = Y t,τ). Tada dy dt = Y t + ε Y τ, d 2 y dt 2 = 2 Y 2 t + 2ε 2 Y τ t + ε2 2 Y 2 τ..1 pavyzdys. Tiesinis osciliatorius su slopinimu y + y + εy =. yt;ε) = Y t,τ,ε) = Y t,τ) + εy 1 t,τ) + 2 Y t 2 + ε 2 Y 1 t 2 + 2ε 2 Y t τ + Y + εy 1 + ε Y t + =. Funkcijai Y t,τ) rasti gauname lygtį kurios bendrasis sprendinys yra 2 Y t 2 + Y =, Y t,τ) = aτ)cost + ψτ)).

6 6 Sudarome lygtį funkcijai Y 1 t,τ) ieškoti: 2 Y 1 t 2 + Y 1 = 2 2 Y t τ Y t = 2 a sint + ψ) acost + ψ)ψ ) + asint + ψ). Norėdami panaikinti sekuliariuosius narius turime pareikalauti 2a sint + ψ) + asint + ψ), 2acost + ψ)ψ =. Taigi ψτ) = ψ const, a = 1 2 a, aτ) = Ce τ 2 ir todėl Lygties Y t,τ) = Ce τ 2 cost + ψ)..3 pratimas. Raskite funkciją Y pavyzdys. Diufingo lygtis y + y + εy 3 =. yt;ε) = Y t,τ,ε) = Y t,τ) + εy 1 t,τ) + 2 Y t 2 + ε 2 Y 1 t 2 + 2ε 2 Y t τ + Y + εy 1 + εy )3 + =. bendrasis sprendinys 2 Y t 2 + Y = Y t,τ) = C τ) e it + C τ) e it. Funkcijai Y 1 t,τ) rasti sprendžiame lygtį 2 Y 1 t 2 + Y 1 = Y 2 2 t τ Y )3 = 2i C e it C e it) Ce 3 3it + 3CC 2 e it + 3C C 2 e it + C 3 e 3it). Asimptotinis skleidinys neturės sekuliariųjų narių, kai e it ir e it koeficientai lygūs nuliui. Taigi 2iC + 3C2 C =, 2iC 3C C2 =.

7 .2. KELIŲ MASTELIŲ METODAS 7 Pažymėję C τ) = aτ) + ibτ), turime ia + ib ) a + ib)2 a ib) =, ia ib ) 3 2 a + ib)a ib)2 =. Iš čia gauname a = 3 2 ba2 + b 2 ), b = 3 2 aa2 + b 2 ). Todėl aτ) = C cos ωτ + ψ), bτ) = C sin ωτ + ψ), ωc = 3 2 C3. Šaknis C = neleidžia rasti bendrojo sprendinio. Asimptotinį skleidinį gauname, 2ω kai C = ± 3. Taigi C τ) = ±Ce 3C2 τ +ψ 2 ir arba ) Y t,τ) = ±2C cos t + 3C2 2 τ + ψ ) Y t,τ) = acos t + 3a2 8 τ + ψ Trijų mastelių metodas.12 pavyzdys. Lygtis su kvadratiniais ir kubiniais netiesiškumais y + y + αy 2 + βy 3 =. yt;ε) = εy 1 t,τ,t) + ε 2 y 2 t,τ,t) +, τ = εt, T = ε 2 t dy dt = εy 1t + ε 2 y 1τ + ε 3 y 1T + ε 2 y 2t + ε 3 y 2τ + ε 4 y 2T + d 2 y dt 2 = εy 1tt +2ε2 y 1τt +ε 3 y 1ττ +2ε 3 y 2tτ +2ε 4 y 2Tt +ε 4 y 2ττ +2ε 5 y 2Tτ +ε 6 y 2TT + y 1tt + y 1 =, y 2tt + y 2 = 2y 1tτ αy2 1, y 3tt + y 3 = y 1ττ 2y 1tT 2y 2tτ 2αy 1 y 2 βy2 1. y 1 t,τ,t) = Cτ,T)e it + Cτ,T)e it.

8 8 y 1tτ = i C τ e it C τ e it). y 2 1 = C 2 e 2it + CC + C 2 e 2it. Skleidinys neturės sekuliariųjų narių, jei C τ = arba C = CT). Tada y 2tt + y 2 = α C 2 e 2it + CC + C 2 e 2it) ir šios lygties atskirasis sprendinys yra y 2 = α C 2 e 2it + C 2 e 2it) 2βCC. 3 Funkcijos y 2 dalinė išvestinė y 2tτ =. Taigi y 3tt + y 3 = Ae it + Ae it 2i A e it A e it) α 2α A 2 e 2it + A 2 e 2it) ) 2αAA Ae it + Ae it) 3 β A 3 e i3t + 3A 2 Ae it + 3AA 2 e it + A 3 e i3t) Skleidinys neturės sekuliariųjų narių, kai 2iA Lygties sprendinio ieškome pavidalu Turime Todėl Iš čia gauname Taigi ) α 2 3β AT) = at)e ibt) A = a + iab ) e ib ) A 2 A =. 2i ) a + iab ) 1 e ib + 3 α2 3β a 3 e ib = ) 1 2ia =, 2ab + 3 α2 3β a 3 = 5 at) = a const, bt) = 3 α2 3 ) 2 β a 2 T + b

9 .2. KELIŲ MASTELIŲ METODAS 9 ir y 1 t,t) = ae it e ib + ae it e ib = 2acos t + bt) = 5 2acos t 3 α2 3 ) )a 2 β 2 T + b = 3 ãcos t + 8 β 5 ) ) 12 α2 ã 2 ε 2 t + b.2.3. Metodo modifikavimas skleidimas pagal du kintamuosius.13 pavyzdys. y + εy + y = Asimptotinis skleidinys ieškomas tokiu pavidalu: y = y τ,η) + εy 1 τ,η) + ε 2 y 2 τ,η) + τ = εt, η = 1 + ε 2 w 2 + ε 3 w ε M ) w M t Paimsime M = 2. Tada y = εy τ ε 2 w 2 )y η + y = ε 2 y ττ + 2ε1 + ε 2 w 2 )y ητ ε 2 w 2 ) 2 y ηη + Gauname y ηη + y =, y = Aτ)e iη + Aτ)e iη Antroji lygtis: y 1ηη + y 1 = 2y τη y η Išvestinės: y η = i Ae iη Ae iη) y ητ = i A e iη A e iη) Sekuliariųjų narių naikinimas: 2iA ia =, 2iA ia = Gauname Aτ) = Aτ) = ae τ 2. Trečioji lygtis: y 2ηη + y 2 + 2ω 2 y ηη + 2y τη + y ττ + y 1η + y τ =

10 1 Gauname Naikiname sekuliariuosius narius: y = ae τ 2 e iη + e iη) a 4 2ω a) a ) =, ω = Taigi y = ae τ 2 cos t 1 ) 2 ε2 t + ϕ.3. Linštedto Puankarė metodas A.Lindstedt, H.Poincaré).14 pavyzdys. Diufingo lygtis Metodo idėja kintamųjų keitinys: Išvestinės: Gauname lygtį: Iš čia y + y + εy 3 = yt;ε) = Y z;ε) = Y z) + εy 1 z) + ε 2 Y 2 z) + z = wt, w = 1 + εw 1 + ε 2 w 2 + y = wy, y = w 2 Y w 2 Y + Y + εy 3 = 1 + εw1 + ε 2 w 2 + )2 Y + εy 1 + ε 2 Y 2 + ) + +Y + εy 1 + ε 2 Y ε Y + εy 1 + ε 2 Y 2 + )3 = Taigi Turime Y + Y = Y 1 + Y 1 = Y 3 2w 1Y Y z) = Ce iz + Ce iz = acosz + ϕ) Y 3 = a 3 cos 3 z + ϕ) = a3 3cosz + ϕ) + cos 3z + ϕ)) 4

11 .3. LINŠTEDTO PUANKARĖ METODASA.LINDSTEDT, H.POINCARÉ)11 Y Naikiname sekuliariuosius narius: = acosz + ϕ) 3a3 4 cosz + ϕ) + 2w 1acosz + ϕ) = Iš čia w 1 = 3a2 8 ) yt;ε) acos t + 3a2 εt + ϕ 8.15 pavyzdys. Tiesinis osciliatorius y + y + εy = w 2 Y + Y + εy = Y + Y = Y 1 + Y 1 = Y 2w 1 Y = = ice iz + ice iz + 2w 1 Ce iz + Ce iz) Gauname w 1 = i 2 ir w 1 = i 2. Taigi sekuliariųjų narių panaikinti nepavyksta ir todėl metodas neleidžia sukonstruoti tolygiai tinkamos ilgajame laiko intervale t [,O 1 ε)] asimptotikos. Gauname.16 pavyzdys. Lygtis su kvadratiniais ir kubiniais netiesiškumais y + y + αy 2 + βy 3 = yt;ε) = εy 1 z) + ε 2 Y 2 z) εw1 + ε 2 w 2 + )2 εy 1 + ε2 Y 2 + ) + α εy 1 z) + ε 2 Y 2 z) + )2 + β εy1 z) + ε 2 Y 2 z) + )3 = Y 1 + Y 1 = Y 2 + Y 2 = 2w 1 Y 1 αy1 2 Sekuliariųjų narių nebus, jei w 1 =. Taigi yt;ε) εacost + ϕ).

12 12.4. Vidurkinimo metodas.4.1. Kintamųjų variacija.17 pavyzdys. Diufingo lygtis Kai ε =, bendrasis sprendinys Pastebėkime, kad y + y + εy 3 = yt) = acos t + ϕ) y t) = asin t + ϕ) 3) Tarkime, kad yt;ε) = at;ε)cos t + ϕt;ε)) ir pareikalaukime, kad y t;ε) būtų lygi 3) reiškiniui. Gauname a cos t + ϕ) aϕ sin t + ϕ) = 4) Tada y = a sin t + ϕ) acos t + ϕ) aϕ cos t + ϕ) ir įstatę y į Diufingo lygtį turime a sin t + ϕ) aϕ cos t + ϕ) = εa 3 cos 3 t + ϕ) 5) Sprendžiame 4), 5) sistemą Kramerio metodu: D = cos t + ϕ) acos t + ϕ) sint + ϕ) acos t + ϕ) = a D 1 = acos t + ϕ) εa 3 cos 3 t + ϕ) acos t + ϕ), D 2 cos t + ϕ) sin t + ϕ) εa 3 cos 3 t + ϕ) a = D 1 D = εa3 cos 3 t + ϕ) sin t + ϕ), ϕ = D 2 D = εa2 cos 4 t + ϕ) 6).4.2. Vidurkinimas ft) = k Z f k e ikt t fs)ds = f t + k f k e ikt ik

13 .4. VIDURKINIMO METODAS 13 Nagrinėsime lygtį 1 T f = f = lim fs)ds T + T x = εfx,t) 7) ir ieškosime jos asimptotinio skleidinio tokiu pavidalu xt;ε) = x τ) + εx 1 τ,t) +, τ = εt Skleidinys neturės sekuliariųjų narių, jei daτ) dτ dx τ) dτ 1 =< f >= lim T + T T fx,s)ds Raskime 6) sistemos asimptotinį sprendinį vidurkinimo metodu: dϕτ) dτ = a 3 sint + ϕ)cost + ϕ) = a sin2t + ϕ) sin4t + ϕ) = = a 2 cos 4 t + ϕ) = a cos 2t + ϕ) + cos 4t + ϕ) = 3a2 8 Taigi aτ) = a const, ϕτ) = 3a2 τ 8 + ϕ ir ) xt;ε) acos t + 3a2 εt + ϕ 8.18 pavyzdys. Tiesinis osciliatorius y + εy + y =, y) = 1, y ) = Ieškome sprendinio xt;ε) = at;ε)cost + ϕt;ε)) iš sistemos Taigi ir gauname Arba a cost + ϕ) aϕ sint + ϕ) = a sint + ϕ) + aϕ cost + ϕ) = εasint + ϕ) a = εasin 2 t + ϕ), ϕ = εsin t + ϕ) cos t + ϕ) T. y. yt;ε) e εt 2 cos t daτ) = a sin 2 t + ϕ) = a dτ 2 dϕτ) = sint + ϕ) cos t + ϕ) = dτ yt;ε) ae εt 2 cos t + ϕ ), a = 1, ϕ =

14 14 Asimptotikos analizė 2 pav. Tikslusis sprendinys ir jo asimptotinis artinys ) yt;ε) = e εt ε ) 2 2 cos 1 t, 2 Y t;ε) = e εt 2 cos t, t = 1 ε ε y Y y Y y Y ε

15 .5. DIUFINGO LYGTIS SU ŽADINIMU Diufingo lygtis su žadinimu.5.1. Rezonansinis atvejis Kelių mastelių metodas y + y + εy 3 + αcos t) = yt;ε) = y τ,t) + εy 1 τ,t) +, τ = εt y = y t + ε y τ + y 1t ) + O ε 2 ) y = y tt + ε 2y τt + ) y 1tt + O ε 2 ) y tt + y = y 1tt + y 1 + 2y τt + y )3 + α cos t = y τ,t) = Cτ)e it + Cτ)e it y τt = ic e it ic e it y 1tt + y 1 + 2i C e it C e it) + +C 3 e 3it + 3C 2 Ce it + 3CC 2 e it + C 3 e 3it + α 2 Naikiname sekuliariuosius narius: 2iC e it + 3C 2 Ce it + α 2 eit = e it + e it) = 2iC e it + 3C 2 Ce it + α 2 e it = Sprendinio ieškome tokiu pavidalu Cτ) = aτ)e ibτ) Tada Cτ) = aτ)e ibτ) C τ) = a + iab ) e ib Įstatome šiuos reiškinius į lygtį: 2i a + iab ) + 3a 3 + α 2 = Gauname a =, 2b a + 3a 3 + α 2 =

16 16 Vidurkinimo metodas yt;ε) = at;ε)cost + ϕt;ε)) a cost + ϕ) aϕ sint + ϕ) = y = asint + ϕ) y = a sint + ϕ) a1 + ϕ )cost + ϕ) a sint + ϕ) aϕ cost + ϕ) + εa 3 cos 3 t + ϕ) + αcos t) = ) ) cost + ϕ) asint + ϕ) a asint + ϕ) acost + ϕ) ϕ = ε a 3 cos 3 t + ϕ) + αcos t ) Spendžiame tiesinių lygčių sistemą a = εsint + ϕ) a 3 cos 3 t + ϕ) + α cos t ) ϕ = ε a 2 cos 4 t + ϕ) + α a cos2 t ).5.2. Artimas rezonansui atvejis Perrašome lygtį y + y + εy 3 + α cos 1 + σε)t)) = y + y + εy 3 + αcos t cosστ) sin t sinστ))) = Kartojame kelių mastelių pertvarkius: y 1tt + y 1 + 2y τt + y ) 3 + αcos t cosστ) sin t sinστ)) = 2i a + iab ) + 3a 3 + α cosστ) 1i ) 2 sinστ) = ) a τ) = α 4 sinστ) b τ) = 3 2 a2 + α 4a cosστ).4 pratimas. Išnagrinėkite atvejį, kai ω 3 y + y + ε y 3 + α cos ωt) ) =

17 .6. VIDURKINIMO METODO PAGRINDIMAS Vidurkinimo metodo pagrindimas Nagrinėsime silpnai netiesinę sistemą, užrašyta standartine forma dx j dt = εf j t,x 1,...,x n ), j = 1,2,...,n 8) Tarkime, kad funkcijos f j t,x) x = x 1,x 2,...,x n )) yra tolydžiai diferencijuojamos ir periodinės pagal t: f j t + 2π,x) f j x,t) 9) ir f j t,x) = k Z f k x)e ikt Pažymėkime F m 1,...,m n) jk = max j=1,2,...,n max a 1 x 1 b 1 a 2 x 2 b 2 a n x n b n m 1 + +m n fk x) m 1x 1 m nx n Pareikalaukime eilučių F d jk = F d j + max m 1 d,... m n d Fm 1,...,m n) jk Fjk d + Fj, k d, d =,1 1) k=1 k=1 konvergavimo. Užrašykime 8) sistemos suvidurkintą sistemą dx j dt = ε f j x 1,...,x n ), j = 1,2,...,n 11) 1 T fj = lim f T + T j t,x)dt Spręsime 8) ir 11) sistemas, esant toms pačioms pradinėms sąlygoms: x j t;ε) t= = x j t;ε) t= = x j, j = 1,2,...,n 12)

18 18.1 teorema. Tarkime, kad 1) uždaviniai 8), 12) ir 11), 12), kai t [, τ ε ] turi sprendinius xj, x j j = 1,2,...,n) a j x j t;ε) b j, a j x j t;ε) b j ; 2) galioja 9) periodiškumo sąlyga; 3) f j t,x) tolydžiai diferencijuojamos ir1) eilutės konverguoja. Tada egzistuoja tokia teigiama konstanta C, kad [ t, τ ] max x ε j t;ε) x j t;ε) Cε 13) j=1,2,...,n Įrodymas. Iš 9) periodiškumo sąlygos, gauname Turime įvertį ε 1 ik k fj = 1 2π 2π f j t,x)dt = f j x). xj t;ε) x t;ε) t = ε fj ) f j dt = t ε k t f jk de iks ε k +ε k 1 k f jk xs;ε)) e iks ds t n m=1 f jk xt;ε)) + f jk dx m x m dt k ds. Pastebėję, kad x j = Oε), gauname xj t;ε) xt;ε) εf + εf 1 nτ = εc. f jk x ) + Čia F = 2max j F jk, F 1 = k

19 .6. VIDURKINIMO METODO PAGRINDIMAS pavyzdys. Tikslusis sprendinys Suvidurkintoji lygtis Taigi xt;ε) = 1 ir dx dt = εxsin t, x) = 1 ε cos t xt;ε) = e dx dt =, x) = 1. e ε cos t 1 = εcos t + ε2 cos 2 t ε3 cos 3 t pavyzdys. + < ε Tikslusis sprendinys dx dt = εxsin2 t, x) = 1. Suvidurkintoji lygtis Jos sprendinys Turime xt;ε) = e ε t 2t cos 2 4 ). dx dt = εx, x) = 1. 2 xt;ε) = e εt 2. e ε t 2t εt cos 2 4 ) e 2 = e εt Oε)).

0.1. Bendrosios sąvokos

0.1. Bendrosios sąvokos 0.1. BENDROSIOS SĄVOKOS 1 0.1. Bendrosios sąvokos 0.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε = 0, xt;ε) C n T), T [0,+ ), 0 < ε ε 0 ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε

Διαβάστε περισσότερα

Dviejų kintamųjų funkcijos dalinės išvestinės

Dviejų kintamųjų funkcijos dalinės išvestinės Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė

Διαβάστε περισσότερα

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

1.4. Rungės ir Kuto metodas

1.4. Rungės ir Kuto metodas .4. RUNGĖS IR KUTO METODAS.4. Rungės ir Kuto metodas.4.. Prediktoriaus-korektoriaus metodas Palyginkime išreikštinį ir simetrinį Eulerio metodus. Pirmojo iš jų pagrindinis privalumas tas, kad išreikštinio

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

1. Individualios užduotys:

1. Individualios užduotys: IV. PAPRASTOSIOS DIFERENCIALINĖS LYGTYS. Individualios užduots: - trumpa teorijos apžvalga, - pavzdžiai, - užduots savarankiškam darbui. Pirmosios eilės diferencialinių lgčių sprendimas.. psl. Antrosios

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo

Διαβάστε περισσότερα

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7

Διαβάστε περισσότερα

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................

Διαβάστε περισσότερα

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R

Διαβάστε περισσότερα

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ

Διαβάστε περισσότερα

Įžanginių paskaitų medžiaga iš knygos

Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio

Διαβάστε περισσότερα

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 Teiginio

Διαβάστε περισσότερα

AIBĖS, FUNKCIJOS, LYGTYS

AIBĖS, FUNKCIJOS, LYGTYS AIBĖS, FUNKCIJOS, LYGTYS Aibės sąvoka ir pavyzdžiai Atskirų objektų rinkiniai, grupės, sistemos, kompleksai matematikoje vadinami aibėmis. Šie atskiri objektai vadinami aibės elementais. Kai elementas

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras,

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras, MIF kurss, Bioinformtik, semestrs, 29 6 Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A , ti egzistuoj toks c [, ], kd f(c) = 2 Konverguojnčios ir diverguojnčios eikutės

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

1 TIES ES IR PLOK TUMOS

1 TIES ES IR PLOK TUMOS G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu

Διαβάστε περισσότερα

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Remigijus Leipus. Ekonometrija II. remis

Remigijus Leipus. Ekonometrija II.   remis Remigijus Leipus Ekonometrija II http://uosis.mif.vu.lt/ remis Vilnius, 2013 Turinys 1 Trendo ir sezoniškumo vertinimas bei eliminavimas 4 1.1 Trendo komponentės vertinimas ir eliminavimas........ 4 1.2

Διαβάστε περισσότερα

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018 ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-

Διαβάστε περισσότερα

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS .5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

t 1 f[n] t 2 t 3 t 4 f [n] f [-n] -k n

t 1 f[n] t 2 t 3 t 4 f [n] f [-n] -k n Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 221: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 2: Σήματα διακριτού χρόνου!"#!"#! "#$% Σημειώσεις διαλέξεων

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚH ΕΡΓΑΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚH ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚH ΕΡΓΑΣΙΑ ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΜΙΧΑΛΗΣ ΤΣΑΡΔΑΚΑΣ ΕΠΙΒΛΕΠΩΝ: Δ. ΤΖΑΝΕΤΗΣ

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ Διαμόρφωση Γωνίας Τα είδη διαμόρφωσης γωνίας τα

Διαβάστε περισσότερα

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

Matematinis modeliavimas

Matematinis modeliavimas ALGIRDAS AMBRAZEVIƒIUS Matematinis modeliavimas Vilniaus universitetas 2006 2 TURINYS 1 SKYRIUS PAPRASƒIAUSI MATEMATINIAI MODELIAI 4 11 Pagrindines s vokos 4 12 Fundamentaliu gamtos desniu taikymas 10

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε ε ά ει Ν επ ε β ί 5 (3-9-5) Επώ : Ό α: ΑΝ Ν: ΘΕ ΑΝ Τα π α Chebyshev T ( ) α π ω μ ( ) y y y (,,, ) π [,] Η ω α α α π α μ / d d T ( ) Tm ( ) [ T ( )] Α απ f ( ) 3, [,], α

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Περίληψη Ευστάθεια Συστημάτων Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Εµβαδά Θέµα 1 ίνεται η συνάρτηση x e e, x< 1 (x) = l nx, x 1 x Να δείξετε ότι η είναι συνεχής και να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από την C, τον άξονα

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] ) ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t

Διαβάστε περισσότερα

FDMGEO4: Antros eilės kreivės I

FDMGEO4: Antros eilės kreivės I FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių

Διαβάστε περισσότερα

( () () ()) () () ()

( () () ()) () () () ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace

Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace Κεφάλαιο 7 Μετασχηματισμός Laplace Σε αυτο το κεφάλαιο θα μελετήσουμε τη μέθοδο του μετασχηματισμού Laplace, η οποία αποτελεί μία από τις βασικές τεχνικές μαθηματικών προβλημάτων: μετασχηματίζει δύσκολα

Διαβάστε περισσότερα

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων ΕΙΣΑΓΩΓΗ - Το μάθημα αυτό πραγματεύεται θεμελιώδεις έννοιες των γραμμών μεταφοράς στην επιστημονική περιοχή των ηλεκτρονικών συστημάτων

Διαβάστε περισσότερα

iii) x + ye 2xy 2xy dy

iii) x + ye 2xy 2xy dy ΕΚΠΑ - Τμήμα Μαθηματικών Διαφορικές Εξισώσεις Ι Χειμερινό Εξάμηνο 2016-2017 Παραδόσεις Ε. Κόττα-Αθανασιάδου Ασκήσεις (Είναι οι ασκήσεις που αφήνονται για «λύση στο σπίτι» στις παραδόσεις της διδάσκουσας.

Διαβάστε περισσότερα

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6 ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Διάλεξη 6 5 Σεπτεμβρίου, 0 Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα θέματά μας σήμερα Χρονικά

Διαβάστε περισσότερα

W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max

Διαβάστε περισσότερα

TRANSPORTO PRIEMONIŲ DINAMIKA

TRANSPORTO PRIEMONIŲ DINAMIKA Marijonas Bogdevičius RANSPORO PRIEMONIŲ DINAMIKA Projekto kodas VP-.-ŠMM 7-K--3 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius studijų metodus Vilnius

Διαβάστε περισσότερα

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav. LIETUVOS JUNŲ J Ų MTEMTIKŲ MOKYKL tema. TRIGONOMETRIJOS TIKYMI GEOMETRIJOJE (008-00) Terinę medžiagą parengė bei šeštąją uždutį sudarė Vilniaus pedaggini universitet dentas Edmundas Mazėtis Šiame darbe

Διαβάστε περισσότερα

Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις

Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις ΠΑΡΑΡΤΗΜΑ Β: ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ µ ÂÓÈÎ ÓÓÔÈÂ Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση Έτσι οι εξισώσεις d = + t d = 5 (Β) (Β3) d e t = cos (Β) d d = 5 + (Β4) είναι όλες διαφορικές

Διαβάστε περισσότερα

ΣΥΝΟΨΗ 1 ου Μαθήματος

ΣΥΝΟΨΗ 1 ου Μαθήματος Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Διαφορικές εξισώσεις 302.

Διαφορικές εξισώσεις 302. Διαφορικές εξισώσεις 32. Μαθηματικό Αθήνας Συλλογή ασκήσεων 1 Λύτες: Βουλγαρίδου Εύα Ορμάνογλου Στράβων Παπαμικρούλη Ελένη Παπανίκου Μυρτώ Καθηγητές: Αθανασιάδου - Μπαρμπάτης Επιμέλεια L A TEX: Βώβος Μάριος

Διαβάστε περισσότερα

Μεταπτυχιακή Μιγαδική Ανάλυση. Έβδομο φυλλάδιο ασκήσεων, Παραδώστε λυμένες τις 4, 9, 15, 19, 24 και 28 μέχρι

Μεταπτυχιακή Μιγαδική Ανάλυση. Έβδομο φυλλάδιο ασκήσεων, Παραδώστε λυμένες τις 4, 9, 15, 19, 24 και 28 μέχρι Μεταπτυχιακή Μιαδική Ανάλυση Έβδομο φυλλάδιο ασκήσεων, 5--20. Παραδώστε λυμένες τις 4, 9, 5, 9, 24 και 28 μέχρι 22--20.. Θεωρούμε τις καμπύλες (t) = t + it sin t και 2 (t) = t + it 2 sin t ια t (0, ] και

Διαβάστε περισσότερα

Matematiniai modeliai ir jų korektiškumas

Matematiniai modeliai ir jų korektiškumas 1 skyrius Mtemtinii modelii ir jų korektiškums 1.1. Mtemtinių uždvinių klsifikcij Mtemtinis modelivims yr svrbus nujs žinių gvimo būds, kuris vis džniu nudojms sprendžint technologinius uždvinius, tirint

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Διαταραχών Λογισμού Μεταβολών Άσκηση 3.10, σελίδα 35 από το βιβλίο

Διαβάστε περισσότερα

Apì ton diakritì kôbo ston q ro tou Gauss

Apì ton diakritì kôbo ston q ro tou Gauss Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

FM & PM στενής ζώνης. Narrowband FM & PM

FM & PM στενής ζώνης. Narrowband FM & PM FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM

Διαβάστε περισσότερα

Ketvirtos eilės Rungės ir Kutos metodo būsenos parametro vektoriaus {X} reikšmės užrašomos taip:

Ketvirtos eilės Rungės ir Kutos metodo būsenos parametro vektoriaus {X} reikšmės užrašomos taip: PRIEDAI 113 A priedas. Rungės ir Kuto metodas Rungės-Kutos metodu sprendiamos diferencialinės lygtys. Norint skaitiniu būdu išspręsti diferencialinę lygtį, reikia žinoti ieškomos funkcijos ir jos išvestinės

Διαβάστε περισσότερα