Πολλαπλές λύσεις Δημιουργικότητα σε Προβλήματα Μαθηματικών

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πολλαπλές λύσεις Δημιουργικότητα σε Προβλήματα Μαθηματικών"

Transcript

1 ΠΡΥ025: Διακτική Μαθηματικών Ι Ερασία Πλλαπλές λύσεις Δημιυρικότητα σε Πρβλήματα Μαθηματικών Διάσκων: Αθανάσις αάτσης Εκπαιευτικός: Άωνις Κυριάκυ, ΑΤ ΠΡΟΫΠΗΡΕΣΙΑΚΗ ΚΑΤΑΡΤΙΣΗ

2 Περιεχόμενα 1 Εισαωή Πρβλήματα Πρσωπικές απόψεις 10

3 ΠΡΥ025: Διακτική Μαθηματικών Ι 1 Εισαωή Αν θέλυμε να ρίσυμε απλά και σύντμα την έννια "ημιυρικότητα", μπρύμε να πύμε ότι "ημιυρικότητα είναι η ικανότητα να φέρνεις στ φως κάτι νέ, κάτι πυ εν έχει παρυσιαστεί ξανά" Αν η ημιυρικότητα εκφράζεται με κίνηση, τότε ρίζεται ως κινητική ημιυρικότητα και ως ημιυρικό πρϊόν τ απτέλεσμα της ελεύθερης και αυθόρμητης έκφρασης τυ παιιύ, πυ πρέπει να είναι νέ και πρωτότυπ όχι ως πρς μία μάα ανθρώπων ή ως πρς την κινωνία αλλά ως πρς τ ίι τ παιί Κάθε παιί ιαθέτει ημιυρικές ικανότητες ι πίες μπρύν να εκφραστύν κάτω από ειικές συνθήκες Η ημιυρικότητα μπρεί να κινητπιηθεί, να καλλιερηθεί, να αναπτυχθεί και να εκφραστεί μέσα σε συκεκριμέν περιβάλλν απχής, ελευθερίας και επικινωνίας με τα κατάλληλα πιτικά και πστικά ερεθίσματα Η ανακαιότητα ια ενίσχυση της ημιυρικότητας των παιιών στην τάξη, ε θα πρέπει να αντιμετωπίζεται με νώμνα την πρώθηση μιας μικρής μάας πρικισμένων παιιών με ιιαίτερες ικανότητες, αλλά με βάση την ανθρωπιστική πρόθεση να ενσταλάξυμε σε κάθε παιί τη μέιστη υνατότητα και τις απαραίτητες πρϋπθέσεις πρκειμένυ να ξειπλώσει ημιυρικά την πρσωπικότητά τυ Έτσι, σε αυτή την περίπτωση ενείκνυται μια πρσέιση βασιζόμενη στη ιαικασία της ημιυρικότητας και όχι στην αξιλόηση τυ τελικύ απτελέσματς Πως θα μπρύσαμε λιπόν να ιεείρυμε τη φαντασία, να πρκαλέσυμε τη ημιυρική σκέψη στα Μαθηματικά; Κάτι τέτι θα ινόταν εφικτό παρακινώντας και ενθαρρύνντας τα παιιά στην επίλυση Μαθηματικών πρβλημάτων με πλλαπλές λύσεις (Krutetskii, Ervynck, Silver) Η ιαφρετικότητα των λύσεων αυτών, καθρεφτίζεται στ εκάσττε περιεχόμεν της ιαικασίας επίλυσης, η πία μπρεί να βασιστεί: σε ιαφρετικές αναπαραστάσεις της έννιας πυ θα χρησιμπιηθεί, σε ιαφρετικές ιιότητες και θεωρήματα σε ένα μάθημα ή μια ενότητα των Μαθηματικών, ή σε ιαφρετικά εραλεία, όπως θεωρήματα και πρτάσεις, από ξεχωριστές νωστικές περιχές των Μαθηματικών (άλεβρα, εωμετρία, ανάλυση κλπ) - 1 -

4 ΠΡΥ025: Διακτική Μαθηματικών Ι Οι πλλαπλές λύσεις σε πρβλήματα των Μαθηματικών εν πρέπει να θεωρύνται ως φρτικές, περιττές και συχυστικές Αντίθετα, πράυν τη νώση, αναπτύσσυν την αιτιλόηση και τη μαθηματική απόειξη (πυ πρώτι ι Έλληνες εισήααν στην ιστρία των Μαθηματικών), ηύν στην έμπρακτη ιαχείριση των νώσεων πυ ιάσκεται μαθητής, ι πίες συχνά απτελύν μια πηή ανεπεξέραστων πληρφριών Επίσης, μια λύση κμψή και σύντμη είναι πλλές φρές αρκετή ια να πρσφέρει στ μαθητή τη χαρά της ανακάλυψης και της ευρηματικότητας, ενισχύντας έτσι τη συναισθηματική νημσύνη αυτύ, αλλάζντας τις στάσεις και τις πεπιθήσεις τυ πρς τα Μαθηματικά Μέσα από τις πλλαπλές λύσεις σε έρα των Μαθηματικών, ιαφαίνεται η ημιυρική σκέψη τυ υπκειμένυ (μαθητή), η πία μπρεί να χαρακτηριστεί από την ευελιξία στν αριθμό των λύσεων πυ παραθέτει, την καιντμία πυ πηάζει από την πρωττυπία των λύσεων και από τη σαφήνεια πυ ιέπει τη ιαικασία επίλυσης τυ πρβλήματς και μεταξύ των λύσεων Η Μαθηματική ημιυρικότητα μπρεί να εξεταστεί σε τρεις χώρυς λύσεων σύμφωνα με την Leikin: Εξειικευμένι χώρι λύσεων: 1 Τυπικί, συμβατικί χώρι λύσεων 2 Πρωτότυπι, μη συμβατικί χώρι λύσεων Ατμικί χώρι λύσεων: 1 Πρσωπικί χώρι λύσεων 2 Δυνατί, ενεχόμενι χώρι λύσεων Ομαικί, Συλλικί χώρι λύσεων Πι κάτω ιατυπώνυμε τρία νωστά απτελέσματα στν κόσμ των Μαθηματικών και ια τ κάθε ένα παραθέτυμε κάπιες απείξεις πυ μπρύν να θεωρηθύν ως πλλαπλές λύσεις έβαια, με κανένα τρόπ αυτές εν μπρύν να χαρακτηριστύν ως μναικές! Πλλές απείξεις μπρύν αν υπάρχυν, αρκεί να σκεφτεί κανείς πως ια τ Πυθαόρει Θεώρημα έχυν συκεντρωθεί (Ελευθέρις Αρυρόπυλς, πηή internet) περίπυ 525 ιαφρετικές απείξεις - 2 -

5 ΠΡΥ025: Διακτική Μαθηματικών Ι «Η φαντασία, είναι σημαντικότερη από τη νώση Η νώση είναι ριακή, η φαντασία περικυκλώνει λόκληρ τν κόσμ» Albert Einstein 2 Πρβλήματα 1 Αν ένα σύνλ έχει ν, ( ν ) ν των υπσυνόλων τυ είναι 2 0, στιχεία, να είξετε ότι τ πλήθς όλων i) Έστω Α σύνλ με ν στιχεία Αν ν = 0, τότε Α = και τ μόν υπσύνλ 0 τυ Α είναι τ Α, ηλαή έχει 2 = 1 υπσύνλ ii) ια τις απείξεις πι κάτω ας είναι ν 1 Απόειξη 1 η : Συνυαστική Διωνυμικό Ανάπτυμα Τ πλήθς των υπσυνόλων τυ Α με 0, 1, 2, 3,, ν στιχεία είναι αντιστίχως, ν ν ν ν ν = 1,,,,, ν Άρα τ πλήθς όλων των υπσυνόλων τυ συνόλυ Α είναι: ν ν ν ν ν Ως νωστόν όμως, από τ ιωνυμικό ανάπτυμα έχυμε, ν ν ν ν ν ν ( ) ν ν ν 1 ν 2 2 ν 3 3 ν α + β = α + α β + α β + α β + + β ν ν ν ν ν τ πί ια α = β = 1, ίνει 2 = ν, - 3 -

6 ΠΡΥ025: Διακτική Μαθηματικών Ι Απόειξη 2 η : Άλεβρα (Χρήση Συνάρτησης) Έστω Α Θεωρύμε τη συνάρτηση, φ : Α { 0, 1}, όπυ 1, αν χ χ Α, φ( χ) = 0, αν χ Είναι φανερό ότι, αφύ τ σύνλ Α έχει ν στιχεία, τότε μπρύμε να φτιάξυμε τόσα υπσύνλα ια τ Α, όσες είναι ι τιμές της συνάρτησης φ καθώς τ χ ιατρέχει τ Α Τ πλήθς αυτών των τιμών είναι 2 ν ν = 2 Απόειξη 3 η : Άλεβρα (Επαωή) Με επαωή στ ν Αν ν = 1, τότε Α = { α} τ πί έχει 1 2 = 2 υπσύνλα, τ Α και τ Έστω ότι ια ν κ = κ, κάθε σύνλ με κ στιχεία έχει 2 υπσύνλα Ας είναι τώρα = + Α { α, α,, α, α } ν κ 1 και = 1 2 κ κ+1 Τότε, Α = { α, α,, α } { α } και τ { } 1 2 κ κ+1 κ α, α,, α έχει 2 υπσύνλα, λόω 1 2 κ υπόθεσης της επαωής Οπότε, αν σε καθένα από τα υπσύνλα τυ κ α, α,, α συμπεριλάβυμε και τ α κ + 1, θα πάρυμε ακόμα 2 υπσύνλα { } 1 2 κ ια τ υπσύνλα { } { } Α = α, α,, α α Άρα τ Α θα έχει 1 2 κ κ+1 κ κ κ κ = 2 2 = 2 + Σχόλι: Η πρόταση απτελεί νωστό θεώρημα της Θεωρίας Συνόλων Από τις απείξεις πυ παρυσιάζνται, η τρίτη είναι η πι ικεία και συμβατική Ιιαίτερ ενιαφέρν παρυσιάζυν ι πρώτες υ Η πρώτη είναι περισσότερ συνθετική και κατά τη νώμη μυ η πι κμψή και πρωτότυπη είναι η εύτερη - 4 -

7 ΠΡΥ025: Διακτική Μαθηματικών Ι 2 Να απείξετε ότι κάθε εεραμμένη ωνία πυ βαίνει σε ημικύκλι είναι ρθή Απόειξη 1 η : Θεώρημα επίκεντρης και αντίστιχης εεραμμένης Είναι νωστό ότι κάθε εεραμμένη ωνία είναι ίση με τ μισό της αντίστιχης επίκεντρης Άρα, A Ο 180 Α = = = Ο Απόειξη 2 η : Θεώρημα ρθωνίυ τριώνυ Φέρυμε την ΑΟ η πία είναι ιάμεσς τυ τριώνυ Α, καθώς Ο = Ο Τότε, στ Α ισχύει: A ΑΟ = ιάμεσς = ΑΟ 2 Α 90 = Ο Απόειξη 3 η : ωνίες Φέρυμε την ΑΟ Τότε, τα τρίωνα ΑΟ, ΑΟ είναι ισσκελή ιότι ΑΟ = Ο = Ο A ψ χ Επμένως είναι ΟΑ = ΟΑ = ψ και ΟΑ = ΟΑ = χ Τ άθρισμα των ωνιών τυ Α είναι ίσ με 180, πότε ψ Ο χ 2χ + 2ψ = 180 χ + ψ = 90 Α=90 Απόειξη 4 η : Αναλυτική εωμετρία Θεωρύμε τη ιάμετρ ως τν άξνα ΧΧ σε ρθώνι σύστημα αξόνων και ως άξνα ΨΨ την ευθεία πυ περνά από τ Α και είναι κάθετη στην Θεωρύμε τ κέντρ τυ κύκλυ να είναι τ α, 0 Εκ κατασκευής είναι α > 0 με σημεί ( ) R > α Α ψ Ο (α, 0) χ - 5 -

8 ΠΡΥ025: Διακτική Μαθηματικών Ι Η εξίσωση τυ κύκλυ είναι ( ) χ α + ψ = R Στα σημεία και είναι ψ = 0, πότε από την εξίσωση παίρνυμε Α είναι χ = 0, πότε παίρνυμε ότι ( R + α, 0) και ( R α, 0) ψ Επιπλέν στ 2 = R α 2, ηλ Α ( 0, R ) 2 α 2 Τότε R α R α R α λα λα = = = 1 Α Α Α = R α α R α R Απόειξη 5 η : Θεώρημα τριώνων Από τ Ο φέρυμε κάθετη ΟΔ στη χρή Α Ως νωστό τ απόστημα ιχτμεί τη χρή Α, ηλ ΑΔ = Δ Επιπλέν, Ο = Ο Άρα στ Α ισχύει: A Ο Δ Δ μέσ της Α Ο μέσ της ΟΔ // Α Α = 90 Απόειξη 6 η : Τριωνμετρία Εφαρμόζυμε τ νόμ συνημιτόνων στ ΟΑ : R R συ ν = = συν = (1) 2R 2R α A Ο α = 2R β Ομίως στ Α : 2 2 α + β 2 συ ν = (2) 2α Οι (1) και (2) ίνυν: α = α + β 2 α = α + β α = + β Η τελευταία σχέση υπηλώνει ότι τ τρίων είναι ρθώνι με Α = 90 (Δε χρησιμπιήσαμε τ νόμ ημιτόνων ιότι η απόειξη τυ στηρίζεται στ απτέλεσμα της πρς απόειξη πρότασης) Σχόλι: Η πρόταση απτελεί ένα από τα βασικά θεωρήματα της εωμετρίας τυ κύκλυ Η πρώτη απόειξη κάνει χρήση τυ ενικότερυ θεωρήματς Η εύτερη είναι ιιαίτερα κμψή και σύντμη Η τρίτη είναι πι τυπική λύση, ενώ η τέταρτη είναι κατασκευαστική, όμως πρωτότυπη Η πέμπτη λύση είναι αρκετά έξυπνη και σύντμη όπως και η τελευταία ρίσκω την πέμπτη λύση να είναι αυτή πυ συνυάζει συντμία και φαντασία - 6 -

9 ΠΡΥ025: Διακτική Μαθηματικών Ι 3 Αν Α και είναι ενεχόμενα ενός ειματικύ χώρυ (πειράματς) Ω, να είξετε ότι ΡΑ ( ) = ΡΑ ( ) + Ρ ( ) ΡΑ ( ) Απόειξη 1 η : Άλεβρα Θεωρύμε τυς πληθάριθμυς των συνόλων Α, και Α ως εξής: ν Α = χ, ν = ψ, ν Α = ω ( ) ( ) ( ) Τότε πρφανώς, θα έχυμε ότι ν( Α ) = χ ω+ ω+ ψ ω = χ + ψ ω, επμένως από τν ρισμό τυ Laplace παίρνυμε, να ( ) ΡΑ ( ) = νω ( ) χ + ψ ω = νω ( ) χ ψ ω = + νω ( ) νω ( ) νω ( ) Ω Α χ - ω ω ψ - ω = ΡΑ ( ) + Ρ ( ) ΡΑ ( ) Απόειξη 2 η : εωμετρία 1 Έστω Ω ένα τετράων πλευράς 1 Θεωρύμε τα ενεχόμενα τυ Ω ως ρθώνια και ρίζυμε τ εμβαόν ως αντίστιχη πιθανότητα Α χ ω Ε ψ Ζ Τα εμβαά των ρθωνίων ΑΕΘΔ, ΕΘ και ΖΗ είναι 1 α Ε ( ΑΕΘΔ) = α ( χ + ω ), Ε ( ΕΘ) = αω και ΕΖΗ ( ) = αψ ( + ω) Τότε Ω Δ Θ Η Ε ( ΑΕΘΔ) + Ε ( ΖΗ ) Ε ( ΕΘ ) = α ( χ + ω) + α ( ψ + ω) αω = αχ + αω + αψ + αω αω = α( χ + ψ+ ω ) Από την άλλη, έχυμε Ε( ΑΖΗΔ) = ( ΑΔ) ( ΑΖ) α( χ ω ψ) = + + Από τα πι πάνω πρκύπτει Ε ( ΑΖΗΔ) = Ε ( ΑΕΘΔ) + Ε ( ΖΗ) Ε ( ΕΘ ), ηλ ΡΑ ( ) = ΡΑ ( ) + Ρ ( ) ΡΑ ( ) - 7 -

10 ΠΡΥ025: Διακτική Μαθηματικών Ι Απόειξη 3 η : Ανάλυση Θεωρύμε τη ραφική παράσταση μιας συνάρτησης f συνεχής και ρισμένης στ ιάστημα [ α, ], 0 α <, τέτια ώστε 0 f( χ ) 1, χ [ α, ] Θεωρύμε ια ειματικό χώρ, τ χωρί (ρθώνι) πυ περικλείεται μεταξύ των αξόνων και των ευθειών χ =, ψ = 1 1/ ψ f (χ) 0 α β χ Θεωρύμε τα ενεχόμενα τυ Ω ως χωρία πυ περικλείνται μεταξύ της καμπύλης f(χ), τυ άξνα ΧΧ και κατακόρυφων ευθειών της μρφής χ = χ 1 ια τ κάθε ενεχόμεν, ρίζυμε την αντίστιχη πιθανότητα να είναι τ εμβαόν τυ αντίστιχυ χωρίυ Αν 0 α < β < <, από τις ιιότητες τυ ρισμένυ λκληρώματς, ισχύει β α α β β α β α β β α β α β f( χ ) dχ = f( χ ) dχ + f( χ ) dχ + f( χ ) dχ f( χ ) dχ + f( χ ) dχ = f( χ ) dχ + f( χ ) dχ + f( χ ) dχ + f( χ ) dχ f( χ ) dχ + f( χ ) dχ = f( χ ) dχ + f( χ ) dχ f( χ ) dχ = f( χ ) dχ + f( χ ) dχ f( χ) dχ α α β β Επμένως έχυμε ΡΑ ( ) = ΡΑ ( ) + Ρ ( ) ΡΑ ( ) - 8 -

11 ΠΡΥ025: Διακτική Μαθηματικών Ι Απόειξη 4 η : Διανύσματα Θεωρύμε τα ιανύσματα χ 0, 1 ( ) Παριστάνυμε τ κάθε υπσύνλ τυ Ω { } νω ως ένα ιάνυσμα, όπυ ι μνάες καθρίζυν ιατακτικά τα στιχεία τυ Ω πυ ανήκυν στ υπσύνλ αυτό Πρφανώς ειματικός χώρς Ω θα παριστάνεται από τ ιάνυσμα Τ σύνλ Α ω = 1,, 1,, 1 ( ) Ω θα παριστάνεται με τ ιάνυσμα α = 1, 1,, 1, 0,, 0 κ θέση Ομίως ια τ σύνλ Ω έχυμε β = 0,, 0, 1,, 1, 0,, 0 ( κ-ν ) θέση ( κ+ μ ) θέση Πρφανώς τ σύνλ Α ενώ τ σύνλ Α, θα παριστάνεται από τ ιάνυσμα α β = 0,, 0, 1,, 1, 0,, 0, ( κ-ν ) θέση κ θέση, θα παριστάνεται από τ ιάνυσμα α β = 1,, 1, 0,, 0 ( κ+μ ) θέση Ορίζυμε ως πιθανότητα κάθε συνόλυ Α τ 2 α, α α ΡΑ ( ) = = Τότε είναι, νω ( ) νω ( ) Από την άλλη είναι ( ) κ + μ κ κ ν 1 κ + μ+ ν + 1 ΡΑ ( ) + ΡΑ ( ) = + = νω ( ) νω ( ) νω ( ) ( κ + μ) ( κ ν 1) κ κ + μ+ ν + 1 ΡΑ ( ) + Ρ ( ) = + = νω ( ) νω ( ) νω ( ) Επμένως ισχύει Ρ( Α ) = ΡΑ ( ) + Ρ ( ) ΡΑ ( ) Σχόλι: Η πρόταση απτελεί μια από τις βασικές ιιότητες των πιθαντήτων Η πρώτη απόειξη είναι η περισσότερ νωστή και πρσειωμένη Η εύτερη είναι πλύ κμψή και πρωτότυπη όπως και η τρίτη Η τέταρτη είναι πι πρχωρημένης φαντασίας και ακόμα ρωτώ τν εαυτό μυ πως την σκέφτηκε Θεωρώ και τις τρεις τελευταίες πλύ έξυπνες και αυθεντικές - 9 -

12 ΠΡΥ025: Διακτική Μαθηματικών Ι 3 Πρσωπικές απόψεις Αν ρωτήσεις κάπιν να συ πει τη νώμη τυ ια τα Μαθηματικά, ασφαλώς θα πρέπει να είσαι ιιαίτερα αισιόξς να πιστέψεις ότι θα πάρεις μια απάντηση πυ θα αππνέει ικανπίηση Οι περισσότερες απαντήσεις θα περιστρέφνται ύρω από τις υσάρεστες ή ακόμα και τις τραυματικές εμπειρίες ρισμένων, πυ τυς πρξένησε τ πλήθς των ακατανόητων συμβόλων Έτσι, ενιές μαθητών πέρασαν και συνεχίζυν να περνύν, έχντας στ μυαλό τυς ια τα Μαθηματικά τη ζφερή εικόνα μιας φρμαλιστικής επιβλής Δυστυχώς τ κλίμα μέσα στ πί ιάσκνται τα Μαθηματικά είναι ένα κλίμα άκρατυ φρμαλισμύ, στ πί αναπτύσσνται τεχνικές πυ πλλές φρές θυμίζυν συνταές μαειρικής Συνταές ι πίες σε καθηύν ια τ πώς να λύσεις μια μάα ασκήσεων, ανάντας έτσι τα Μαθηματικά σε ένα ηό μαειρικής με υλικά ιάφρα σύμβλα και στόχ τα «καλά απτελέσματα» στις εξετάσεις Είναι πράματι τα Μαθηματικά ένα πλήθς συμβόλων και πρτάσεων πυ φαίνεται να απτελεί τη λώσσα ενός ανύπαρκτυ κόσμυ; Θα λεα πως όχι νώση εν είναι πληρφρία, είναι η ικανότητα να μπρείς να επεξεράζεσαι την πληρφρία και αξιλώντας την να μπρείς να την κρίνεις και να ημιυρείς Κάτι τέτι απαιτεί τη υνατότητα να σκέφτεσαι και η σκέψη εν πρκύπτει αφ εαυτής Απκτάται με την άσκηση τυ Νυ Να ένας λιπόν από τυς ρόλυς των Μαθηματικών Ξεκινώντας από τ Δημτικό, είναι στη φύση των παιιών να μη φβύνται να κάνυν λάθς Δεν εννώ ότι τ να κάνεις λάθς είναι τ ίι με τ να είσαι ημιυρικός Αυτό πυ νωρίζω όμως είναι πως αν εν είσαι έτιμς να κάνεις λάθς, ε μπρείς να κάνεις κάτι τ αυθεντικό Καθώς τα παιιά μεαλώνυν, αυτή τυς η ικανότητα να ψάχνυν και να κρίνυν ξεθωριάζει Διευθύνυμε και κατευθύνυμε ένα εκπαιευτικό σύστημα με τρόπ, όπυ τα λάθη είναι τ χειρότερ πυ μπρείς να κάνεις Τ απτέλεσμα είναι να εκπαιεύυμε ανθρώπυς κάνντάς τυς να ξεχνύν τις ημιυρικές τυς ικανότητες Τελειώνντας τ Πανεπιστήμι, αναρωτήθηκα πλλές φρές: «Δε θα ξεχάσω κάπτε αυτά πυ έχω μάθει; Και όταν με τ πέρασμα τυ χρόνυ τα ξεχάσω, θα νιώθω χρήσιμς και παραωικός;» Πέρασαν ρισμένα χρόνια ια να απαντήσω στν εαυτό μυ και να πω πως: «τώρα, μπρώ να επιλύω ένα πρόβλημα με ένα, υ και τρεις τρόπυς, ιατί απλά, κέρισα αυτό πυ πτέ εν κατάφερα σαν μαθητής έμαθα να σκέφτμαι, να ημιυρώ» Ελπίζω λιπόν πως τ αναλυτικό πρόραμμα, θα μπρέσει κάπια στιμή να ενθαρρύνει μια νέα πρσπάθεια στ περιεχόμεν των Μαθηματικών, κάνντάς τ περισσότερ ιασκεαστικό και ευχάριστ, ικανό να φλερτάρει με τη ημιυρική σκέψη τυ μαθητή

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ 1 1.1 Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΘΕΩΡΙ 1. ιάνυσµα Λέγεται κάθε πρσανατλισµέν ευθύγραµµ τµήµα. (έχει αρχή και πέρας) A B 2. Μηδενικό διάνυσµα 0 Λέγεται τ διάνυσµα τυ πίυ η αρχή και τ πέρας συµπίπτυν. AA= 0 3.

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:

Διαβάστε περισσότερα

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt Μία ιστρία στην ΕΞΝΓΚΣΜΕΝΗ ΤΛΝΤΩΣΗ Κατά την περσινή σχλική χρνιά, στα πλαίσια της Π.Δ.Σ. πρσπάησα, αντί να λύσ ασκήσεις πυ μπρεί να υπάρχυν σε πλλά ιαφρετικά εξσχλικά βιβλία, να εάν ι μαητές μυ έχυν πραγματικά

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και

Διαβάστε περισσότερα

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1 ΕΠΙΛΥΣΗ ΤΥΠΩΝ Στην ενότητα αυτή, πιστεύω να καταλάβετε ότι τα Μαθηµατικά έγιναν και αναπτύχθηκαν για να αντιµετωπίζυν καθηµερινά πρβλήµατα. εν χρειάζνται όµως πλλά λόγια, ας πρχωρήσυµε σε παραδείγµατα.

Διαβάστε περισσότερα

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2 1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΜΑΤΙΑΣ ΚΑΙ Η ΜΑΓΙΚΗ ΠΕΤΡΑ

ΕΠΙΧΕΙΡΗΜΑΤΙΑΣ ΚΑΙ Η ΜΑΓΙΚΗ ΠΕΤΡΑ Ο ΕΠΙΧΕΙΡΗΜΑΤΙΑΣ ΚΑΙ Η ΜΑΓΙΚΗ ΠΕΤΡΑ τυ Prem Rawat ΗΤΑΝ ΚΑΠΟΤΕ ΕΝΑΣ ΕΠΙΧΕΙΡΗΜΑΤΙΑΣ πυ είχε μια μικρή επιχείρηση. Όπως ήταν φυσικό, ως, επιθυμύσε να απκτήσει όσ τ δυνατόν περισσότερα χρήματα. Μια μέρα, κάπις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό

Διαβάστε περισσότερα

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο 0 ΜΑΘΗΜΑ.4. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ.4.. Συνέχει συνάρτησης στ o Ορισμός: Μι συνάρτηση f/α νμάζετι συνεχής στ σημεί Α, ότν υπάρχει τ lim f () ι είνι: lim f() = f( ) ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ Ότν υπάρχει δ > 0 ώστε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 00 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ : Θεωρύμε τυς μιγαδικύς αριθμύς α) z(t) + z(t) = z(t)

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΜΑΘΗΜΑ 6.4.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ R Η έννια τυ ρίυ Όρι ταυττικής σταθερής συνάρτησης Ι ΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ Όρι και διάταξη Όρια και πράξεις Κριτήρι παρεµβλής Τριγωνµετρικά όρια Όρι σύνθετης συνάρτησης Θεωρία

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από

Διαβάστε περισσότερα

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2.1. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5 Ο ΜΑΘΗΜΑ 2.1.1. Τ σύνλ των πραγματικών αριθμών Τ σύνλ των πραγματικών αριθμών, είναι γνωστό και με τα στιχεία τυ δυλέψαμε όλες τις πρηγύμενες τάζεις.

Διαβάστε περισσότερα

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα.

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα. 2.2. ΕΝΟΤΗΤΑ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ 8 ΜΑΘΗΜΑ ΔΕΔΟΜΕΝΩΝ Σπός Σπός της ενότητας αυτής είναι να παρυσιάσει σύντμα αλλά περιετιά τυς τρόπυς με τυς πίυς παρυσιάζνται τα στατιστιά δεδμένα. Πρσδώμενα απτελέσματα

Διαβάστε περισσότερα

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών:

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών: τμικάενεργειακάδιαγράμματα: Χωρικές διαστάσεις ενεργειακές απστάσεις χρνική κλίμακα Καταστάσεις ydg Θεώρημα μεταβλών: Εφαρμγή σε πρόβλημα της ατμικής Πρσέγγιση on- Opnhm: Εφαρμγή στ Η Θεωρία μριακών τρχιακών:

Διαβάστε περισσότερα

EC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας

EC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας ΣΥΣΤΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΙΟΤΗΤΑΣ EC-ASE: Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας 2 «Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας» Επικεφαλής Εταίρς:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ..4: Ρυθμός Μεταβλής τυ σχλικύ βιβλίυ]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα 1. Δίνεται η συνάρτηση f() = 3 3. α) Να βρεθεί ρυθμός μεταβλής της

Διαβάστε περισσότερα

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ

Διαβάστε περισσότερα

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο).

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο). 1 ΑΣΚΗΣΕΙΣ ΑΠΟ ΕΙΞΗΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ (η τεχνική τυ αρκεί να απδείξυµε ότι... ) Παναγιώτης Λ. Θεδωρόπυλς Σχλικός Σύµβυλς κλάδυ ΠΕ03 ΠΡΟΛΟΓΟΣ Οι σηµειώσεις αυτές γράφτηκαν µε σκπό να βηθήσυν τυς µαθητές της

Διαβάστε περισσότερα

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου 6. 6.4 σκήσεις σχλικύ βιβλίυ σελίδας 9 30 Ερωτήσεις Κατανόησης. Πότε µία γωνία λέγεται εγγεγραµµένη; πάντηση Όταν η κρυφή της είναι σηµεί τυ κύκλυ και ι πλευρές της είναι τέµνυσες τυ κύκλυ. ν φ και ω είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισµός της συνέχειας Πράξεις µε συνεχείς συναρτήσεις Συνέχεια συνάρτησης σε διάστηµα Θεωρία Ασκήσεις. Ορισµός Συνάρτηση f λέγεται συνεχής σε σηµεί όταν f () = f ( ).

Διαβάστε περισσότερα

3.2 ΑΘΡΟΙΣΜΑ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ

3.2 ΑΘΡΟΙΣΜΑ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ 3. ΘΡΟΙΣΜ ΩΝΙΩΝ ΤΡΙΩΝΟΥ ΙΙΟΤΗΤΕΣ ΙΣΟΣΚΕΛΟΥΣ ΤΡΙΩΝΟΥ ΘΕΩΡΙ. Άθρισµα γωνιών τριγώνυ Σε πιδήπτε τρίγων τ άθρισµα των γωνιών τυ είναι ίσ µε 80. Ιδιότητες ισσκελύς τριγώνυ Η ευθεία της διαµέσυ πυ αντιστιχεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων

Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων Τιµή και απόδση µετχής Ανάλυση χαρτφυλακίυ Τιµές Απδόσεις και Κίνδυνς µετχών ιαφρπίηση κινδύνυ Χαρτφυλάκια µετχών Η απόδση µιας µετχής είναι ίση πρς τη πσστιαία διαφρά µεταξύ της αρχικής και της τελικής

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693

Διαβάστε περισσότερα

ροή ιόντων και µορίων

ροή ιόντων και µορίων ρή ιόντων και µρίων Θεωρύµε ένα διάλυµα µίας υσίας Α. Αν εξαιτίας της ύπαρξης διαφρών συγκέντρωσης ή ηλεκτρικύ πεδίυ όλες ι ντότητες (µόρια ή ιόντα) της υσίας Α κινύνται µέσα σ αυτό µε την ίδια ριακή ταχύτητα

Διαβάστε περισσότερα

Π.Μ.Σ Ηλεκτρονική Μάθηση

Π.Μ.Σ Ηλεκτρονική Μάθηση Πανεπιστήμι Πειραιώς Διδακτική της Τεχνλγίας και Ψηφιακών Συστημάτων Π.Μ.Σ Ηλεκτρνική Μάθηση Μεταπτυχιακή Διπλωματική Εργασία Αξιλόγηση Πργραμμάτων Δια Βίυ Εκπαίδευσης και Επιμόρφωσης Ενηλίκων από Απόσταση

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Καθηγητές: Δ. ΚΑΛΛΙΓΕΡΟΠΟΥΛΟΣ & Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επιστημνικός Συνεργάτης: Σ. ΒΑΣΙΛΕΙΑΔΟΥ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Στις ερωτήσεις -4 να γράψετε στ τετράδιό σας τν αριθµό της ερώτησης και δίπα τ γράµµα, πυ αντιστιχεί στη σωστή απάντηση.. Ακτίνα πράσινυ φωτός πρερχόµενη

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ

ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ ΓΕΝ. Δ/ΝΣΗ ΔΙΟΙΚΗΣΗΣ ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ Αθήνα, 7 Μαΐυ 2015 Α.Π:ΔΙΠΑΑΔ/ΕΠ/Φ.3/62/11867

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Τομέας Ενεργειακός. Πτυχιακή Εργασία

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Τομέας Ενεργειακός. Πτυχιακή Εργασία Τεχνλγικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχλή Τεχνλγικών Εφαρμγών Τμήμα Μηχανλγίας Τμέας Ενεργειακός Πτυχιακή Εργασία ΧΡΗΣΗ ΜΕΣΩΝ ΜΑΖΙΚΗΣ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ (Εφαρμγές, συγκριτικά στιχεία

Διαβάστε περισσότερα

ΠΑΡΑ ΟΣΙΑΚΑ ΜΟΥΣΙΚΑ ΟΡΓΑΝΑ ΑΠΟ ΟΛΟ ΤΟ ΚΟΣΜΟ. ΕΝΑ ΜΟΥΣΙΚΟ ΤΑΞΙ Ι ΣΤΙΣ 5 ΗΠΕΙΡΟΥΣ ΜΕ ΜΕΡΙΚΑ ΚΛΙΚ. ΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ

ΠΑΡΑ ΟΣΙΑΚΑ ΜΟΥΣΙΚΑ ΟΡΓΑΝΑ ΑΠΟ ΟΛΟ ΤΟ ΚΟΣΜΟ. ΕΝΑ ΜΟΥΣΙΚΟ ΤΑΞΙ Ι ΣΤΙΣ 5 ΗΠΕΙΡΟΥΣ ΜΕ ΜΕΡΙΚΑ ΚΛΙΚ. ΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ P αιώνα 3 Ο ΣΥΝΕ ΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙ ΕΥΣΗ 695 ΠΑΡΑ ΟΣΙΑΚΑ ΜΟΥΣΙΚΑ ΟΡΓΑΝΑ ΑΠΟ ΟΛΟ ΤΟ ΚΟΣΜΟ. ΕΝΑ ΜΟΥΣΙΚΟ ΤΑΞΙ Ι ΣΤΙΣ 5 ΗΠΕΙΡΟΥΣ ΜΕ ΜΕΡΙΚΑ ΚΛΙΚ. ΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ Ανδρεάκυ Κωνσταντίνα

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80

Διαβάστε περισσότερα

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t).

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t). Kεφ. ΣYΣTHMATA ME ΠOΛΛOYΣ BAΘMOYΣ EΛEYΘEPIAΣ (part, pages - Θεωρύμε ένα σύστημα με N βαθμύς ελευθερίας, τ πί θα περιγράφεται από N συντεταγμένες (t, (t,..., N (t. Oι εξισώσεις κίνησης τυ συστήματς θα έχυν

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Αγαπητί μαθητές και μαθήτριες, Τα σας πρτείνυν για άλλη μια χρνιά, ένα λκληρωμέν επαναληπτικό υλικό στη Φυσική Θετικής-Τεχνλγικής

Διαβάστε περισσότερα

Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίου Θαλής

Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίου Θαλής Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίυ Θαλής 1995-1996 Κ, 3cm. Με κέντρ τ σημεί Λ τυ κύκλυ να χαράξετε δεύτερ κύκλ Λ, 3cm. Η διάκεντρς ΚΛ τέμνει τν Κ στ Α και τν Λ στ Β, αν πρεκταθεί. Να κατασκευάσετε

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09 ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση

Διαβάστε περισσότερα

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση:

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση: Ι12. Αν σε ένα τρίγων ΑΒΓ ισχύει η σχέση ημ 3 Β ημ 2 ΑημΒ ημ 2 ΑημΓ ημ 3 Γ, να απδείξετε ότι Βˆ Γˆ 120. Ι13. Αν σε ένα τρίγων ΑΒΓ ισχύει η σχέση: 1 1 2 1, να α β α β γ α β γ β γ 2 απδείξετε ότι 4συν Β

Διαβάστε περισσότερα

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ. «Δημιουργία ολοκληρωμένων αρχείων. μετεωρολογικών δεδομένων από μετρήσεις

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ. «Δημιουργία ολοκληρωμένων αρχείων. μετεωρολογικών δεδομένων από μετρήσεις ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ «Δημιυργία λκληρωμένων αρχείων μετεωρλγικών δεδμένων από μετρήσεις Συνπτικών Μετεωρλγικών Σταθμών στν ελληνικό χώρ με τη χρήση Τεχνητών

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Γ Λυκείυ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Α κ Θέµα Στις ερωτήσεις πυ ακλυθύν επιλέξτε τη σωστή απάντηση:. Σώµα Σ µάζας κινείται µε ταχύτητα υ σε λεί δάπεδ. Κάπια στιγµή συγκρύεται

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ θ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΕΞΑΝΑΓΚΑΣΜΕΝΗΣ ΤΑΛΑΝΤΩΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ

Διαβάστε περισσότερα

ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.)

ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.) ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.) Ένα κύκλωµα βρίσκεται στην Ηµιτνική Μόνιµη Κατάσταση (Η.Μ.Κ.) όταν : α) Όλες ι πηγές τυ κυκλώµατς είναι ηµιτνειδείς συναρτήσεις τυ χρόνυ Α sin (ωt+φ) ή Α cs (ωt+φ) β)

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = 3 1 4 1 + 8 = 3+ 4 + 8 = 9

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = 3 1 4 1 + 8 = 3+ 4 + 8 = 9 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ υ ΜΑΘΗΜΑΤΟΣ. Να βρείτε τα αρακάτω όρια: α. ( 4 8) + 6 + 8 0 Αλές εριτώσεις Εφαρμόζυμε τις ιδιότητες των ρίων. Ουσιαστικά κάνυμε αντικατάσταση. α. 4 + 8 4 + 8 + 4 + 8 9 8 0 8 4 0 0 + 6

Διαβάστε περισσότερα

ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ

ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ 1 ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ Στην «Μεγάλη Πραγματεία» τυ Κμφύκιυ αναφέρεται: «Στ Yi 1 υπάρχει τ tài jí 太 極. Τ tài jí 太 極 γεννά τις 2 πρωταρχικές ενέργειες ή πλικότητες τ liang yi 兩 儀 ή αλλιώς yīn yáng» και

Διαβάστε περισσότερα

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος.

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος. ΚΕΦΑΛΑΙΟ 4 Ο ΜΕΘΟ ΟΙ ΕΚΤΙΜΗΣΗΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΟΥ ΚΛΑΣΣΙΚΟΥ ΓΡΑΜΜΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ. Η ΜΕΘΟ ΟΣ ΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ. Εκτίµηση των Παραµέτρων τυ Υπδείγµατς. Στατιστικί Έλεγχι Αναλύσεις. Πρλέψεις. Ελαχιστπίηση

Διαβάστε περισσότερα

1.8 ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΕΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ

1.8 ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΕΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ 1 8 ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΕΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΚΑΤΑΚΟΡΥΦΗΝ ΓΩΝΙΕΣ ΘΕΩΡΙΑ Παραπληρµατικές γνίες : Είναι γνίες πυ έχυν άθρισµα 180 Κάθε µία λέγεται παραπλήρµα της άλλης Συµπληρµατικές γνίες : Είναι γνίες πυ έχυν άθρισµα

Διαβάστε περισσότερα

ΣΤΕΦΑΝΟΣ ΣΤΕΦΑΝΟΥ Α.Ε.Μ. 4049

ΣΤΕΦΑΝΟΣ ΣΤΕΦΑΝΟΥ Α.Ε.Μ. 4049 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΕΝΕΡΓΩΝ ΦΙΛΤΡΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗΣ» «STUDY OF ACTIVE CIRCUIT FILTERS BY USING SIMULATION» ΣΤΕΦΑΝΟΣ

Διαβάστε περισσότερα

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε

Διαβάστε περισσότερα

: ΕΥΔ ΕΠ ΠΙΝ : Θ. Σπίγγος Ημερ. : 8/2/2017 Αριθμ. Πρωτ ΘΕΜΑ: Παροχή διευκρινήσεων σχετικά με την Πρόσκληση ΙΟΝ40 του ΠΕΠ Ι.Ν

: ΕΥΔ ΕΠ ΠΙΝ : Θ. Σπίγγος Ημερ. : 8/2/2017 Αριθμ. Πρωτ ΘΕΜΑ: Παροχή διευκρινήσεων σχετικά με την Πρόσκληση ΙΟΝ40 του ΠΕΠ Ι.Ν ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Ε.Π. ΠΕΡΙΦΕΡΕΙΑΣ ΙΟΝΙΩΝ ΝΗΣΩΝ Εθνική Οδό Παλ/τσα Αλυκέ Πταμύ (κτίρια Μαρκεζίνη), 491 00 Κέρκυρα Τηλ.: 26613 60000 Fax : 26613 60060 e-mail: ionia@mou.gr Πρ : ΑΕΙ, ΤΕΙ, Ερευνητικά

Διαβάστε περισσότερα

για το Τμήμα Πληροφορικής με Εφαρμογές στη Βιοιατρική, του Πανεπιστημίου Στερεάς Ελλάδας ίϊρμίϊμιη

για το Τμήμα Πληροφορικής με Εφαρμογές στη Βιοιατρική, του Πανεπιστημίου Στερεάς Ελλάδας ίϊρμίϊμιη Μελέτη Σκπιμότητας «Δημιυργίας βάσης δεδμένων για την παρακλύθηση της σταδιδρμίας των απφίτων τυ τμήματς και τη συνεχή χαρτγράφηση της αγράς εργασίας» για τ Τμήμα Πληρφρικής με Εφαρμγές στη Βιιατρική,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8. 1.1 Πρόλογος...8. 1.2 Η έννοια και η σημασία της χρηματοοικονομικής ανάλυσης... 9

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8. 1.1 Πρόλογος...8. 1.2 Η έννοια και η σημασία της χρηματοοικονομικής ανάλυσης... 9 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8 1.1 Πρόλγς...8 1.2 Η έννια και η σημασία της χρηματικνμικής ανάλυσης... 9 1.2.1 Ο ρόλς τυ Χρηματικνμικύ Υπεύθυνυ... 11 ΚΕΦΑΛΑΙΟ 2: ΤΟ ΕΛΛΗΝΙΚΟ ΣΥΣΤΗΜΑ ΥΓΕΙΑΣ ΚΑΙ Ο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ -----

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ----- Ταχ. Δ/νση: Α. Παπανδρέυ 37 Τ.Κ. Πόλη: 15180 - Μαρύσι Ιστσελίδα: www.minedu.gov.gr E-mail: press@minedu.gov.gr, 6 2015-2016

Διαβάστε περισσότερα

Ταχ. Δ/νση: Ερμού 15, 101 85 ΑΘΗΝΑ Τηλέφωνο: 210 3233051 FAX: 210 3231763 an. 31 Πληροφορίες: Ν. Σταθόπουλος ΑΠΟΦΑΣΗ

Ταχ. Δ/νση: Ερμού 15, 101 85 ΑΘΗΝΑ Τηλέφωνο: 210 3233051 FAX: 210 3231763 an. 31 Πληροφορίες: Ν. Σταθόπουλος ΑΠΟΦΑΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα, 10-07 - 2006 ΥΠΟΥΡΓΕΙΟ ΕΘΝ. ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ Αρ. πρωτ. 69598/Γ2 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΘΕΜΑΤΩΝ ΣΠΟΥΔΩΝ, ΕΠΙΜΟΡΦΩΣΗΣ ΚΑΙ ΚΑΙΝΟΤΟΜΙΩΝ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

Κυβερνοχώρος, Ανοιχτή Εκπαίδευση και Κοινότητες Μάθησης: Βασικές Παιδαγωγικές Αρχές Σχεδιασµού

Κυβερνοχώρος, Ανοιχτή Εκπαίδευση και Κοινότητες Μάθησης: Βασικές Παιδαγωγικές Αρχές Σχεδιασµού Κυβερνχώρς, Ανιχτή Εκπαίδευση και Κινότητες Μάθησης: Βασικές Παιδαγωγικές Αρχές Σχεδιασµύ Άννα ΧΡΟΝΑΚΗ Επίκυρς Καθηγήτρια, ΠΤΠΕ, Σχλή Επιστηµών τυ Ανθρώπυ Πανεπιστήµι Θεσσαλίας, Βόλς, Ελλάδα chronaki@uth.gr

Διαβάστε περισσότερα

Μελέτη Σκοπιμότητας «Τεχνική υποστήριξη και δικτυακές υπηρεσίες»

Μελέτη Σκοπιμότητας «Τεχνική υποστήριξη και δικτυακές υπηρεσίες» ΕΛΛΑΔΑ 1 2 0 0 8 /fvutnvih παντύ Ανάπτυξη yta άλυς. ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ GPHIKEYMATQH ΕίΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΕΑΕΚ EYPDRAÏKHBi& H ΣΥΙΚΡΗΗΑΤ8Α0ΤΗΣΗ ΕΥΡΩΠΑΪΚΟ ΚΟΙΗΠΝΙΚΟ TAMÊIÛ ΕΥΡΟΠΑΪΚΟ ΤΑΜΕΙΟ

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Εταιρεία Δημόσιας Υγείας και Περιβαλλοντικής Υγιεινής (ΕΔΥΠΥ)

Εταιρεία Δημόσιας Υγείας και Περιβαλλοντικής Υγιεινής (ΕΔΥΠΥ) Εταιρεία Δμόσιας Υγείας και Περιβαλλντικής Υγιεινής (ΕΔΥΠΥ) Σ Σε αυτό τ τεύχς Εκπαιδευτικό Σεμινάρι SHIPSAN......1 Πιόττα & ασφάλεια νερύ κλυμβτικών δεξαμενών....... 2-3 Απικισμός Δικτύυ Ύδρευσς Νσλευτικών

Διαβάστε περισσότερα

P6_TA-PROV(2007)0010 Ολοκληρωμένη προσέγγιση της ισότητας γυναικών και ανδρών στο πλαίσιο των εργασιών των επιτροπών

P6_TA-PROV(2007)0010 Ολοκληρωμένη προσέγγιση της ισότητας γυναικών και ανδρών στο πλαίσιο των εργασιών των επιτροπών P6_TA-PROV(2007)0010 Ολκληρωμένη πρσέγγιση της ισότητας γυναικών και ανδρών στ πλαίσι των εργασιών των επιτρπών Ψήφισμα τυ Ευρωπαϊκύ Κινβυλίυ σχετικά με την λκληρωμένη πρσέγγιση της ισότητας γυναικών και

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ. Έννοιες που πρέπει να γνωρίζετε: Α θερμοδυναμικός νόμος, ενθαλπία, θερμοχωρητικότητα

ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ. Έννοιες που πρέπει να γνωρίζετε: Α θερμοδυναμικός νόμος, ενθαλπία, θερμοχωρητικότητα ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ Έννιες πυ πρέπει να γνωρίζετε: Α θερμδυναμικός νόμς ενθαλπία θερμχωρητικότητα Θέμα ασκήσεως. Πρσδιρισμός θερμχωρητικότητας θερμιδμέτρυ. Πρσδιρισμός θερμότητς

Διαβάστε περισσότερα

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους :

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ. Σύνολα ΠΑΡΑΣΤΑΣΗ ΣΥΝΟΛΟΥ ΓΡΑΦΗ ΣΥΝΟΛΟΥ Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ) Παράσταση με αναγραφή των στοιχείων Όταν δίνονται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

Νέο Λύκειο: Μετά το «Νέο Σχολείο» και πριν το «Νέο ΑΕΙ»

Νέο Λύκειο: Μετά το «Νέο Σχολείο» και πριν το «Νέο ΑΕΙ» Νέ Λύκε: Μετά τ «Νέ Σχλεί» κα πρν τ «Νέ ΑΕΙ» Παρυσάζυμε σήμερα τς πρτάσες τυ Υπυργείυ Παδείας γα τ «Νέ Λύκε». Στη δαμόρφωση τυς έχυν ληφθεί υπόψη : Ο μελέτες τυ Παδαγωγκύ Ινσττύτυ. Τ πόρσμα τυ Εθνκύ Συμβυλίυ

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ. Προγράμματος Μεταπτυχιακών Σπουδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχολογία της Υγείας» και στη «Σχολική Ψυχολογία»

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ. Προγράμματος Μεταπτυχιακών Σπουδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχολογία της Υγείας» και στη «Σχολική Ψυχολογία» ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ Πργράμματς Μεταπτυχιακών Σπυδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχλγία της Υγείας» και στη «Σχλική Ψυχλγία» Α. ΓΕΝΙΚΑ ΑΡΘΡΑ Άρθρ 1 Αντικείμεν-Σκπί 1. Αντικείμεν τυ Πργράμματς

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι

ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ 1 Σ. ΘΩΜΑΔΑΚΗΣ Α. ΒΑΣΙΛΑ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ 2010 19 ΙΑΝΟΥΑΡΙΟΥ 2010 ΘΕΜΑ 1 Σε μία κεφαλαιαγρά τ επιτόκι ακίνδυνυ δανεισμύ είναι 3% σε ετήσια

Διαβάστε περισσότερα

Dimitris Balios 18/12/2012

Dimitris Balios 18/12/2012 18/12/2012 Κστλόγηση εξατμικευμένης και συνεχύς Δρ. Δημήτρης Μπάλις Συστήματα κστλόγησης ανάλγα με τη μρφή της παραγωγικής διαδικασίας Κστλόγηση συνεχύς Κστλόγηση εξατμικευμένης ή κστλόγηση κατά φάση ή

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΟ 431 Η Σ ΣΥΝΕΔΡΙΑΣΗΣ ΤΗΣ ΕΠΙΤΡΟΠΗΣ ΕΡΕΥΝΩΝ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ

ΠΡΑΚΤΙΚΟ 431 Η Σ ΣΥΝΕΔΡΙΑΣΗΣ ΤΗΣ ΕΠΙΤΡΟΠΗΣ ΕΡΕΥΝΩΝ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ Π. Δ. 432/81 ΤΗΛ: 2610/996660 FAX: 2610/996677 E-mail: rescom@upatras.gr http://research.upatras.gr Πάτρα, 01/09/2015 Αριθμ. Πρωτκόλλυ:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΜΒΟΛΟΦΟΡΩΝ ΜΗΧΑΝΩΝ Ι ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13 Διάγνωση Δυσλειτυργιών και βλαβών σύγχρνυ

Διαβάστε περισσότερα

Αποτελέσματα για τη Συμμετοχή της Κύπρου σε Προγράμματα και Δραστηριότητες του 7P

Αποτελέσματα για τη Συμμετοχή της Κύπρου σε Προγράμματα και Δραστηριότητες του 7P P Πργράμματς Απτελέσματα για τη Συμμετχή της Κύπρυ σε Πργράμματα και Δραστηριότητες τυ 7P υ Πλαίσι για Έρευνα και Τεχνλγική Ανάπτυξη της Ευρωπαϊκής Ένωσης Εισαγωγή H παρύσα Έκθεση αφρά στην αξιλόγηση της

Διαβάστε περισσότερα

Τεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT

Τεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT THERM LEV Τεχνικό εγχειρίδι Χαλύβδινς λέβητας βιμάζας σειρά BMT ΨΣας ευχαριστύμε για την επιστσύνη πυ δείχνετε στα πριόντα μας. ΨΓια την απτελεσματική χρήση τυ λέβητα βιμάζας σειράς ΒΜΤ σας συνιστύμε να

Διαβάστε περισσότερα

- ΒΡΑΔΥΝΗ ΔΙΙΣΗΜΕΡΙΝΗ ΔΙΑΔΟΣΗ ΠΟΛΥ ΥΨΗΛΩΝ ΡΑΔΙΟΣΥΧΝΟΤΗΤΩΝ ΜΕΤΑΞΥ ΕΑΑΑΑΘΣ ΚΑΙ ΑΦΡΙΚΗΣ ΓΥΡΩ AHO ΤΟ ΜΕΓΙΣΤΟ ΤΟΥ 21ου ΗΛΙΑΚΟΥ ΚΥΚΛΟΥ (1978-1982)

- ΒΡΑΔΥΝΗ ΔΙΙΣΗΜΕΡΙΝΗ ΔΙΑΔΟΣΗ ΠΟΛΥ ΥΨΗΛΩΝ ΡΑΔΙΟΣΥΧΝΟΤΗΤΩΝ ΜΕΤΑΞΥ ΕΑΑΑΑΘΣ ΚΑΙ ΑΦΡΙΚΗΣ ΓΥΡΩ AHO ΤΟ ΜΕΓΙΣΤΟ ΤΟΥ 21ου ΗΛΙΑΚΟΥ ΚΥΚΛΟΥ (1978-1982) ΚΩΝΣΤΑΝΤΙΝΥ ΦΙΜΕΡΕΛΗ Δ!ΠΛ. ΜΗΧ/ΓΥ - ΗΛ/ΓΥ ΜΗΧ/ΚΥ Ε.Μ.Π. - ΒΡΑΔΥΝΗ ΔΙΙΣΗΜΕΡΙΝΗ ΔΙΑΔΣΗ ΠΛΥ ΥΨΗΛΩΝ ΡΑΔΙΣΥΧΝΤΗΤΩΝ ΜΕΤΑΞΥ ΕΑΑΑΑΘΣ ΚΑΙ ΑΦΡΙΚΗΣ ΓΥΡΩ AHO Τ ΜΕΓΙΣΤ ΤΥ 21υ ΗΛΙΑΚΥ ΚΥΚΛΥ (1978-1982) ΔΙΔΑΚΤΡΙΚΗ ΔΙΑΤΡΙΒΗ

Διαβάστε περισσότερα

Επιθεώρηση Κοινωνικών Ερευνών

Επιθεώρηση Κοινωνικών Ερευνών Επιθεώρηση Κινωνικών Ερευνών Τμ. 78, 1990 θεωρία της πρακτικής τυ Pierre Bourdieu Παναγιωτόπυλς Ν. 10.12681/grsr.886 EKKE Copyright 1990 To cite this article: Παναγιωτόπυλς (1990). θεωρία της πρακτικής

Διαβάστε περισσότερα

ÊåöÜëáéï 4 ï ÐáñÜëëçëåò åõèåßåò

ÊåöÜëáéï 4 ï ÐáñÜëëçëåò åõèåßåò ÊåöÜëáéï 4 ï ÐáñÜëëçëåò åõèåßåò Ο µαθητής πυ έχει µελετήσει τ κεφάλαι 4 θα πρέπει να είναι σε θέση: Να γνωρίζει τη σχετική θέση δύ ευθειών. Να γνωρίζει τη σχέση µεταξύ γωνιών πυ σχηµατίζνται από δύ παράλληλες

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AST COMPACT 110 & 150

ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AST COMPACT 110 & 150 http://www.a-s-t.gr I OLAR NDUTRY ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AT COMPACT 110 & 150 1. Περιγραφή Τ σύστημα Compact με τα μντέλα πυδιαθέτυν δεξαμενή των 100 και 150 λίτρων, παράγεται από την A..T. solar industry

Διαβάστε περισσότερα

Τα δικαιώματα (RoyaΙties) στην πρότυπη σύμβαση του ΟΟΣΑ για τ/ αποφυγή της διπλής φορολογίας του εισοδήματος και κεφαλαίου

Τα δικαιώματα (RoyaΙties) στην πρότυπη σύμβαση του ΟΟΣΑ για τ/ αποφυγή της διπλής φορολογίας του εισοδήματος και κεφαλαίου 470 ~IΔ Α/2001 Τα δικαιώματα (RoyaΙties) στην πρότυπη σύμβαση τυ ΟΟΣΑ για τ/ απφυγή της διπλής φρλγίας τυ εισδήματς και κεφαλαίυ ΚΑΤΕΡΙΝΑΣ ΠΕΡΡΟΥ Δικηγόρυ Αθηνών, Υπτρόφυ ΙΚΥ Ε1ΣΑΓΩΓΗ Α Η ΕΝΝΟ/Α ΤΩΝ ΔιΚAJΩMATΩfII

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ-ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)

Διαβάστε περισσότερα

EΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ

EΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ Kεφ. 3 EΞΑΝΑΓΚΑΣΕΝΕΣ TAΛANTΩΣEIΣ Θα εξετάσυμε τη περίπτση εφαρμγής σ ένα σύστημα μιάς δεδμένης εξτερικής δύναμης η πία να εξαρτάται από τ χρόν (δηλ. τ σύστημα υπβάλλεται σε εξτερική διέγερση. η περίπτση:

Διαβάστε περισσότερα

` ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΠΑΛΛΗΝΗΣ Ιθάκης 12, 15344, Γέρακας Τηλ.: 210 6604600,Fax: 210 6612965 Οικονομική Επιτροπή Αριθ.

` ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΠΑΛΛΗΝΗΣ Ιθάκης 12, 15344, Γέρακας Τηλ.: 210 6604600,Fax: 210 6612965 Οικονομική Επιτροπή Αριθ. ` ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΠΑΛΛΗΝΗΣ Ιθάκης 12, 15344, Γέρακας Τηλ.: 210 6604600,Fax: 210 6612965 Οικνμική Επιτρπή Αριθ.Απφ 380/2015 ΑΠΟΣΠΑΣΜΑ Από τ Πρακτικό της έκτακτης συνεδρίασης της

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ημερομηνία:

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

βαθμοημέρες ψύξης και θέρμανσης για 27 πόλεις (τρείς

βαθμοημέρες ψύξης και θέρμανσης για 27 πόλεις (τρείς Πρόλγς Σκπός της συγκεκριμένης εργασίας είναι υπλγισμός των βαθμημερών ψύξης και θέρμανσης με στόχ τη δημιυργία κατάλληλης βάσης δεδμένων, έτσι ώστε να απτιμηθύν ι ενεργειακές ανάγκες των κτιρίων στν ελληνικό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης.

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης. Kεφ. 4 OΔEYONTA KYMATA (pges -7 (Trveling Wves Eξετάσυμε ανικτά συστήματα, δηλ. συστήματα χωρίς σύνρα. Oδεύντα κύματα είναι διαταραχές (πυ μεταφέρυν ενέργεια και ρμή πυ διαδίδνται στν ανικτό χώρ με ρισμένη

Διαβάστε περισσότερα

«Νανοκρυσταλλικό πυρίτιο για εφαρμογές σε νανοηλεκτρονικές διατάξεις μνήμης»

«Νανοκρυσταλλικό πυρίτιο για εφαρμογές σε νανοηλεκτρονικές διατάξεις μνήμης» ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Διδακτρική διατριβή της Αθηνάς Σαλωνίδυ «Νανκρυσταλλικό πυρίτι για εφαρμγές σε νανηλεκτρνικές

Διαβάστε περισσότερα

2 ο υ ΣΥΝΕΔΡΙΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΥΤΟΜ ΑΤΙΣΜ ΟΥ. Δυνατότητες της Τεχνολογίας και του Αυτοματισμού στην ανατολή του 21ου α ιώ να

2 ο υ ΣΥΝΕΔΡΙΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΥΤΟΜ ΑΤΙΣΜ ΟΥ. Δυνατότητες της Τεχνολογίας και του Αυτοματισμού στην ανατολή του 21ου α ιώ να Π Ρ Α Κ Τ Ι Κ Α 2 υ ΣΥΝΕΔΡΙΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΥΤΟΜ ΑΤΙΣΜ ΟΥ Δυνατότητες της Τεχνλγίας και τυ Αυτματισμύ στην ανατλή τυ 21υ α ιώ να 2 & 3 Ο Κ Τ Ω Β Ρ Ι Ο Υ 1 9 9 8 ΘΕΣΣΑΛΟΝΙΚΗ ΣΥΝΕΔΡΙΑΚΟ ΚΕΝΤΡΟ Η Ε I.

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΤΟ ΕΡΓΟ ΜΑΣ 2011-2014

ΤΟ ΕΡΓΟ ΜΑΣ 2011-2014 ΑΔΕΣΜΕΥΤΗ ΔΗΜΟΤΙΚΗ ΚΙΝΗΣΗ ΠΟΛΙΤΩΝ ΔΗΜΟΥ ΑΜΠΕΛΟΚΗΠΩΝ - ΜΕΝΕΜΕΝΗΣ Λάζαρς Κυρίζγλυ Υπψήφις Δήμαρχς Μιλάμε με τ έργ μας! Μαζί συνεχίζυμε! 2011-2014 Τ χαρτί πυ χρησιμπιήθηκε είναι από ανακύκλωση Πραγματπιήθηκε

Διαβάστε περισσότερα

Γεώργιος Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΟΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΤΗ ΝΕΑ ΚΟΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΕΚΠΑΙΔΕΥΣΗΣ

Γεώργιος Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΟΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΤΗ ΝΕΑ ΚΟΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΕΚΠΑΙΔΕΥΣΗΣ Επιθεώρηση Κινωνικών Ερευνών, 131 Α', 2010, 33-70 Γεώργις Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΣΤΙΚΕΣ ΜΕΘΔΥΣ ΤΗ ΝΕΑ ΚΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΥ ΕΠΙΠΕΔΥ ΕΚΠΑΙΔΕΥΣΗΣ ΠΕΡΙΛΗΨΗ Τ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΚΑΡΚΙΝΟΕΙΔΗ ΜΟΡΦΟΛΟΓΙΑ & ΑΝΑΤΟΜΙΑ ΔΕΚΑΠΟΔΟΥ ΚΑΡΚΙΝΟΕΙΔΟΥΣ

ΚΑΡΚΙΝΟΕΙΔΗ ΜΟΡΦΟΛΟΓΙΑ & ΑΝΑΤΟΜΙΑ ΔΕΚΑΠΟΔΟΥ ΚΑΡΚΙΝΟΕΙΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ Εργαστηριακές ασκήσεις τυ μαθήματς «Εισαγωγή στη Ζωλγία» ΚΑΡΚΙΝΟΕΙΔΗ ΜΟΡΦΟΛΟΓΙΑ & ΑΝΑΤΟΜΙΑ ΔΕΚΑΠΟΔΟΥ ΚΑΡΚΙΝΟΕΙΔΟΥΣ Κυμυνδύρς Γεώργις Αναπληρωτής Καθηγητής ΟΚΤΩΒΡΙΟΣ

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ - ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΛΕΡΑ. Να λύσετε τα πιο κάτω συστήματα: α) χ+ψ=7 β)3κ+λ=4 γ) +y= δ)χ+ψ= χ-ψ=- 5κ=+3λ -y-y =7 4χψ=3.Να γίνουν οι πράξεις: α)

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΣΥΛΛΟΓΟΣ ΑΠΟΦΟΙΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΩΤΟΒΑΘΜΙΑΣ ΦΡΟΝΤΙΔΑΣ ΥΓΕΙΑΣ (Π.Φ.Υ.)

ΟΡΓΑΝΩΣΗ ΣΥΛΛΟΓΟΣ ΑΠΟΦΟΙΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΩΤΟΒΑΘΜΙΑΣ ΦΡΟΝΤΙΔΑΣ ΥΓΕΙΑΣ (Π.Φ.Υ.) ΟΡΓΑΝΩΣΗ ΣΥΛΛΟΓΟΣ ΑΠΟΦΟΙΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΩΤΟΒΑΘΜΙΑΣ ΦΡΟΝΤΙΔΑΣ ΥΓΕΙΑΣ (Π.Φ.Υ.) σε συνεργασία με τ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ τυ Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ και τ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ 6 ΠΑΝΕΛΛΗΝΙΟ Καιντμία και

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαιο 7 ιασκοντες: Ν. Μαρµαρίης - Α. Μπεληγιάννης Βοηθοι Ασκησεων: Χ. Ψαρουάκης Ιστοσελια Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii.html - - Ασκηση.

Διαβάστε περισσότερα

Α ΜΕΡΟΣ: ΤΟ ΔΙΚΤΥΟ ΠΡΑΞΗ

Α ΜΕΡΟΣ: ΤΟ ΔΙΚΤΥΟ ΠΡΑΞΗ 7 ΠΡΟΓΡΑΜΜΑ Πρόγραμμα Ο ΠΛAΙΣΙΟ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΝΑΠΤΥΞΗΣ (2007-2013) ΣΩΤΗΡΗΣ ΞΥΔΗΣ: Σύμβυλς μεταφράς τεχνλγίας, ΔIKTYOY ΠΡΑΞΗ Α ΜΕΡΟΣ: ΤΟ ΔΙΚΤΥΟ ΠΡΑΞΗ Τ Δίκτυ ΠΡΑΞΗ απτελεί μια στρατηγική συμμαχία τυ Συνδέσμυ

Διαβάστε περισσότερα

3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ

3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΘΕΩΡΙΑ. Οµασία: Έα πλύγω µε κρυφές θα τ λέµε -γω µε εξαίρεση τ πλύγω µε τέσσερις κρυφές πυ θα τ λέµε τετράπλευρ. 2. Καικό πλύγω: Έα πλύγω λέγεται καικό ότα όλες ι πλευρές τυ είαι

Διαβάστε περισσότερα