M.Sc. MATHEMATICS MAL-523 METHODS OF APPLIED MATHEMATICS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "M.Sc. MATHEMATICS MAL-523 METHODS OF APPLIED MATHEMATICS"

Transcript

1 M.Sc. MATHEMATIS MAL-5 METHODS OF APPLIED MATHEMATIS DIRETORATE OF DISTANE EDUATION GURU JAMBHESHWAR UNIVERSITY OF SIENE AND TEHNOLOGY HISAR-5

2 MAL-5 METHODS OF APPLIED MATHEMATIS os Lsso No ad Nam Foi Tasfoms Applicaios of Foi Tasfoms vilia o-odias 4 Radom vaiabl ad Mamaical Epcaio 5 Moms ad Mom gaig fcios 6 Toical Disc Disibios 7 Toical oios Disibios 8 Mlipl ad paial olaio Wi by: Pof.Kldip Basal Dpam of Mamaics G.J.Uivsiy of Scic & Tcology Hisa.

3 LESSON- FOURIER TRANSFORMS Igal Tasfom: T igal asfom of a fcio f() is dfid by qaio b g(s) f () k(s, ) d, w k(s, ) is a kow fcio of s ad, calld kal of a asfom; s is calld paam of asfom ad f() is calld ivs asfom of g(s). Som of wll kow asfoms a giv as d: () Laplac asfom:- W k(s, ) s, w av Laplac asfom of f() as: g(s) f () s d w ca also wi () Foi asfom:- w k(s, ) L[f()] g(s) o F(s) o f (s) is, w av Foi asfom of f() as F[f()] g(s) () Mlli asfom:- f() is d W k(s, ) s,, w av Mlli asfom of f() as: M[f()] g(s) f () s d (4) Hakl asfom (Foi-Bssl):- W k(s, ) J (s),, w av Hakl asfom of f() as: g(s) f () J (s) d Foi Tasfom:- If f() b a fcio dfid o (, ) ad f b picwis coios i ac fii paial ival ad absolly igabl i (, ), i.., f() b a fcio s.. fcio f () d <

4 f (s) F[f ()] F(s) f () is d is calld Foi asfom (F.T.) of f(). T F Rmaks: [F(s)] F(s) is ds f() is calld ivs Foi Tasfom of F(s). (i) If F(s) f () is d, F [F(s)] F(s) is ds (ii) If F(s) f () is d, F [F(s)] F(s) is ds (iii) If F(s) f () is d, f() F(s) is ds Foi cosi ad si asfom F c (s) f () cos s d is calld Foi cosi asfom (FT) ad F s (s) f () si s d is calld Foi si asfom (FST) of f(). T fcios f c () F c (s) cos s ds f s () F s (s) si s ds a calld Ivs Foi cosi & ivs Foi si asfom of F c (s) ad F s (s), spcivly. 4

5 Popis of Foi Tasfom () Liaiy Popy If f () ad f () a fcios wi Foi Tasfom F (s) ad F (s), spcivly ad & a cosa, Foi Tasfom of f () f () is F[c f () c f ()] c F[f ()] c F[f ()] c F (s) c F (s) Poof: By dfiiio L.H.S. is [c f () c f ()] d c is f()d c is f() d F[f ()] F[f ()] F (s) F (s) () ag of scal popy o similaiy om If a is a al cosa ad F(s) F[f()] Poof : Fo a >, F[f(a)] P a d a d a F s a is F[f(a)] f (a) d F[f(a)] s i a f () d a f () a s F[f(a)] F a a s i a d Fo a < :- F[f(a)] is f (a) d 5

6 P a d d a s i a F[f(a)]. f () a d. a s F[f(a)] F a a Hc, F[f(a)] a F s a Paicla cas:- If a, F[f()] F(s) f () s i a d () Fis sifig Popy If F[f()] F(s), F[f( )] -is F[f()] is F(s) Poof :- F[f( )] f ( ) is d P v d dv Θ F[f( )] f (v) is(v ) dv is f (v) isv dv is f () is d is F[f()]. (4). Scod sifig popy If F(s) F[f()], F[f() ia ] F(s a) 6

7 Poof :- F[f() ia ] f () ia is d (5) Symmy popy f () i(sa) d F(s a) If F(s) F[f()], F[F()] f(s) Poof : W kow a cagig o, w av Icagig & s, w g f () F(s) is ds is f ( ) F(s) ds is f ( s) F() d f(s) F() f(s) F[F()] is d Eampl.. Fid Foi asfom of f() α,, α > (), < Solio :- By dfiiio, F(s) f () is d is F(s) f () d α is d (α is) d [sig ()] F(s) (α is) (α is) 7

8 α is α is (α s ) Eampl.. f(),, a > a Solio F(s) a f () is d a a f () is d a f () is d I I I a L I f () P d d is d I f ( ) is (d) a f ( ) a is d Similaly I f () is d a I f () a a is d a i. a is d [Θ f() ] a is ias ias is [ ] is a I ias is ias si as si as., s is s w s, 8

9 F(s) a cosas () as s [By L-Hospial l] a. Eampl. :- f(),, a > a () Solio :- F(s) is f () d a is is f () d f () d f () a a a a is d a a is d [sig ()] is is a a a a is () d is a ias a ias ias ias ( ) is is is( is) F(s) s ias ias ias ias a ( is a cosas si si as is s [i as cos as i si as] ) ( s ) F(s) i s [as cos as si as] Eampl. 4. If F(s) F[f()]. Fid F.T. of f() cos a Solio :- W kow a ia ia cos a ( ) T F[f() cos a] F[f() ia ] F[f() ia ] 9

10 o pov by dfiiio [By liaiy popy] F[f() cos a] F(s a) F(s a) [By sig sifig popy] Eampl. 5. If F s (s) ad F c (s) a FST ad FT of f() spcivly, F s [f() cos a] [Fs (s a) F s (s a)] F c [f() cos a] [Fc (s a) F c (s a)] F s [f() si a] [Fc (s a) F c (s a)] F c [f() si a] [Fs (s a) F s (s a)] Solio :- (i) By dfiiio of FST, F s [f() cos a] f () cos a si s d. f () cos a si s d Usig si A cos B si (A B) si (AB), F s [f() cos a] f () [si (s a) si (s a)] d f () si(s a) d f ()si(s a) d (ii) By dfiiio FT, [Fs (s a) F s (s a)] F c [f() cos a] f () cos a cos s d f () [cos(s a) cos (sa) ]d

11 f ()cos(s a) d f ()cos(s a) d (iii) By dfiiio of FST, [Fc (s a) F c (s a)] F s [f() si a] f () si a si s d f () [cos(s a) cos (s a)] d [Θ si A si B cos (A B) cos (A B)] f ()cos(s a)d f ()cos(s a)d (iv) By dfiiio of FT, [Fc (sa) F c (s a)] F c [f() si a] f () si a cos s d. f () [si (s a) si (sa)] d [sig cosa sib si (A B) si (AB)] f ()si(s a) f ()si(s a) d [Fs (s a) F s (s a) F s (s a)]. Eampl. 6. Fid Foi si & cosi asfom of a, a >. L a cos s d I ()

12 a Igaig () by pas si s d I () I a cos s a a si s d s a a a si s d s I () a a Igaig () by pas, w av s I I (4) a a s a Θ I si s cos s d a a solvig () ad (4) fo I & I, s s I. I a a a s I a I ad I s. a s s a a a a a s s a I. a s a a Hc F c [ a ] I a (5) s a ad F s [ a ] I s (6) s a Esios :- Diffiaig bo sids of (5) w... a, w fid F c [ a ] (s a ) a.a (s a )

13 F c [ a ] a s (s a ) F c [ a ] a s (s a ) Diffiaig bo sids of (6) w... a, w g F s [ a ] (s a ) s. a (s a ) F s [ a ] (s as a ) F s [ a ] (s as a ). P a i (5), (6), w g F s [ ] s s s s Rsls: F c [ ]. s α α cosβ d α β α α siβ d α β (α cos β β si β) (α si β β cos β) Eampl. 7 :- Fid F. T. of f() / Solio :- By dfiiio, F is d s ( is) / F[ ]. d s / ( is) d

14 P ( is) y d dy F[ / ] s / y. dy s / y s / dy. F[ / ] s /, F [ c / ] s / Eampl. 8. Fid Foi cosi asfom of f() Solio :- Fc [ ] cos s d I () Diffiaig w... s, w g di ds si s d Igaig by pas,. ( ) si s d di. si s s cos s. d ds s cos s d di ds s I [sig ()] di s ds I s Igaig, log I log A 4 I A s / 4 () 4

15 w s, fom (), I d I. () Also w s, fom () I A fom () & (4), w g A (4) () givs I s / 4 Esio :- F c [ a ]. a s 4 a If a F [ c a, w av s 4a s ] [sig cag of scal pobabiliy F[f(a)] F a a a F c [ / ] s / Slf-cipocal fcio: A fcio f() wi popy a F[f()] f(s) is said o b slf-cipocal d Foi asfom,.g. fcio / is slf-cipocal fcio d F.T. T fcio / is also slf cipocal d F..T. / To pov :- F c [ ] s / L F [ c / ] s / / cos s d s / Diffiaig w... s o bo sids, w g F [ s / Hc fcio ] s s / / is slf-cipocal fcio d Foi Si Tasfom. 5

16 Eampl. :- W kow a if f(),, a > a T F(s) si sa s, s () By dfiiio of F. T., F(s) f() is d f() s F(s) P F(s) fom (), w g ds f() si sa s is ds f() si sa is s, ds, < a > a L.H.S. si sa s si sa s [cos s i si s] ds cos s ds i si sa s si s ds Sic igad i scod igal is a odd fcio, so igal is zo L.H.S. sisa s cos s ds sisa s cos s ds /,,, < a > a a o / sisa cos s ds s / 4,,, < a > a a () si s Evala ds s Solio : P, a i (), w g 6

17 si s ds w < a. s Rlaio bw Laplac Tasfom ad Foi Tasfom osid fcio f() Takig F.T. of f(), φ,, > < F[f()] F(s) is f() d is φ() d F[f()] F.T. of Divaivs L[φ()] ( is) p φ() d φ() w p i If F[f()] F(s) & f() as ±, Poof :- By dfiiio, F[f ()] i s F[f()] i s F(s) F[f ()] f '() is d is is [ ()] ( is) f () d Now is is. f () F[f ()] is F[f()] is F(s) d [Θ f() as ± ] 7

18 F[f ()] is F[f ()] (is) F[f()] I gal, w av F[f () ()] is F[f () ()] (i s) F[f()] (is) F(s) Fid Foi si & cosi asfom of f (), f (). Divaio :- By dfiiio F c [f ()] f '() cos s d Assmig f() as, ) [cos s f ()] s f ( si s d F c [f ()] F s [f ()] f() s Fs [f()] () f '() si s d Assmig f() as, f () [ si sf ()] s F s [f ()] s f () cos s d cos s d F s [f ()] s F c [f()] () Now F c [f ()] f () s Fs [f ()] (sig () f () s[s Fc [f()]] [By sig ()] F c [f ()] f () s F c [f()] () ad F s [f ()] s F c [f ()] [sig ()] 8

19 F s [f ()] s f () s F s [f ()] [sig ()] Tom:- If F[f()] F(s), d ds Poof:- By dfiiio, s f() s F s [f()] (4) F[f()] (i) F[ f()],,, F[f()] F(s) f () is d Diffia w... s d igal sig, w g d F(s) ds f () s ( is ) d d F(s) ds f () (i ) is d is ( i) f () d d F(s) ( i) F[ f()] ds Now d ds F(s) ( i ) f() is d d ds (i) F(s) (i) F[ f()] Galisig sl, w av d ds f() is d F[f ()] ( i) F[ f()],,, Tom :- If F[f()] F(s) 9

20 ad f ()d F() F f ()d F(s) is Poof : osid φ() f ()d T φ () f() Hc if F[φ()] Φ(s), F[φ ()] F[f()] is Φ(s) Φ(s) F[f()] is Φ(s) F[φ()] F(s) is F(s) is F f ()d is F(s) ovolio :- L f () ad f () b wo giv fcios, covolio of f () & f () is dfid by fcio f() f () f ( )d f () f () Spcial cas :- f () fo < f () fo < T Poof :- f() f() f () f () f () f ( ) d f ()f( )d f()f( )d f()f( ) d

21 () Now I [Θf () fo < ] () ad I f()f ( ) d Now w < f () w < f ( ) f ( ) fo < o > So I [Θ f ( ) fo > ] () Usig () & () i (), w g f() ommaiv Popy: f () f () f () f () Poof :- By dfiiio, f () f ( )d f f f p y d dy w, y ad w, y () f ( )d f f f ( y) f (y) (dy) f f f (y) f ( y) dy f f Associaiviy popy (f f ) f f (f f ) () Tak g() f f () f f T () bcoms, g() f f ()

22 ovolio Tom (o Falig Tom) o Foi Tasfoms If w F[f ()] F (f) F[f ()] F (s) i.. f () f () F[f () f ()] F (s) F (s) f () f ( )d Poof :- W av by dfiiio of F.T., F[f () f ()] [f () f ()] is d f()f ( ) d is d [By sig dfiiio of covolio] cagig od of igaio, w g F[f () f ()] is f() f ( ) dd is() f() f ( ) d d is isy is f() f (y) dy d [By pig y d dy] F[f () f ()] f () is F (s)d F (s) f() is d F[f () f ()] F (s) F (s) T covolio ca b sd o obai Foi asfom of podc of wo fcios.

23 By dfiiio of F.T., w av F[f () f ()] is f ()f() By sig ivs F.T. of f (), w g F[f () f ()] f () d ds' is d is' F (s') i(ss') f() ds'f (s') F[f () f ()] F (s')f (s s')ds' d F (s) F (s) [By sig dfiiio of covolio] F[f () f ()] F F F[f () f ()] F F If F(z) f () iz d T ivs fcio f() F(z) iz dz Eampl :- Fid F.T. of f() ad vify ivs asfom. Sol. Now fo > So fo < f(),, < > F(z) f () iz d (iz) d ( iz) d

24 i z i z ( z W ca iv asfom sig coo igaio (Rsid om). Fis cosid >, iz f() dz z iz lim R z dz iz z ) dz w c is coo sow i fig. y z i R O R T is a simpl pol a z i ad Rs (z i) Tfo by Rsid om, iz (z i) Lim z i (z i)(z i) iz dz i z i osid <, w coos coo wi a smi-cicla ac lyig blow -ais w c is coo sow i fig. i R O R z i Tfo is a simpl pol a z i. Rs (z ) Lim z i iz (z i) (z i)(z i) i 4

25 B i is cas coo is i clockwis dicio, c dsid sl is iz dz i z i A, w ca vala dicly ( a z) dz z si w, < < Eampl : Fid F.T. of f(), owis o f() si w H() w, > H(), < is a i sp fcio o Havisid s i sp fcio. Sol. Now F(z) si w iz d iw. [ i i iw i(wz) iz d i(w z) ] d. i iw z) (w z) i( w z) i(w z). i i(z w) i(w z) i z w z w w z w z w z z w w 5

26 H F(z) (z w w ) is aalyic i z-pla cp a z ± w iz w If > :- f() Lim R z w dz w c is coo. T a wo simpl pol z w & z w isid c. y R z w z w R w f() F(z) iz dz (z w w ) iz dz f() iz w z w dz dz Lim iz w z w R iz w z w dz Rs (z w) iz w Lim(z w) z w (z w)(z w) iw w w iw Rs (z w) iz w Lim (z w) z w (z w)(z w) iw w w iw Tfo by Rsid om, 6

27 Lim R iz w z w dz (i) (Sm of sid iw iw i f() i(i si w) si w If <, w coos coo wi a smi-cicla ac blow -ais & sic a o pols isid coo, sl is zo. 7

28 LESSON- APPLIATIONS OF FOURIER TRANSFORMS Solio of Odiay Diffial Eqaio osid od diffial qaio d y d y dy A a... a ay f() d d d Takig F.T. of bo sids, L [a (i s) a (i s) a (i s) a] F[y()] F[f()] F[f()] G(s) F[y()] Y(s) P(i s) a (i s) a (i s). a (i s) a is a polyomial i (i s). T w av Y(s) G(s) P(is) Takig ivs F.T., w av solio is giv by y() Y(s) is ds Eampl:- Solv sig F.T. ciq d y d dy d y () Solio :- Takig F.T. o bo sids, [(i z) (i z) ] F[y()] F[ ] P(i z) F[y()] z Y(z) y() ( z ). P(iz) w Y(z) F[y()] iz dz ( z )[(iz) iz ] iz dz ) (z )( z iz 8

29 (z )(z iz dz iz ) iz dz (z )(z )(z i)(z i) iz dz (z i)(z i) (z i) Fo > T siglaiy wii coo a a simpl pol a z i ad a dobl pol a z i. Rs. (z i) iz (z i) Lim z i (z i)(z i) (z i) Rs. (z i) L iz z i ) (z i)(z i i.i i iz d (z i) Lim z i dz (z i)(z i) (z i) z i z i z i R Lim z i d dz iz (z i)(z i) iz iz (z i)(z i) (i ) (z i i) Rs. (z i) Lim z i )] [(z i)(z i (z i)(z i)(i ) L iz z i ) (z i) (z i i.( i)(i ) 4i.( i) i iz (z i) i i 4( )( ) i i 4 i i i y().i () 4 9

30 4i 6i i i i [6 i i 4 i ] 6 6 (6 4 ) () Vificaio :- P () i L.H.S. of DE. () w g Fo < L.H.S. L.H.S. d y d dy d y d d ( ) 4 4 ( ) Rs. (z i) iz (z i) Lim z i (z i)(z i) (z i) ( i) ( i) 4( )( i) i So y() ( i) i 6 Vificaio :- P () i L.H.S. of (), () L.H.S. d y d dy d y d d Hc vifid.

31 Eampl:- Solv sig F.T. ciqs d y dy y H() si w () d d Solio :- T w av o akig F.T. o bo sids, [(i z) w i z ] F[y()] w z T y() iz w dz w z ( z iz ) w y() (z iz d w )(z iz ) Fo > pla. w (z ιz d w )(z i)(z i) I is cas siglaiy a a z ± w, z i, z i ad all s lis isid pp alf iz (z i) Rs. (z i) Lim z i (z w)(z w)(z i)(z i) (i w)(i w)i (4 w )i i w 4 iz (z i) Rs. (z i) Lim z i (zi)(z i)(z w ) i( w ) i ( w ) i(w ) Rs. (z w) iz (z w) Lim z w (z w)(z w)(z i)(z i) iw w(w i)(w i) iw w(w iw ) Rs. (z w) iz (z w) Lim z w (z w)(z w)(z i)(z i)

32 iw ( w)( w i)( w i) iw w(w i)(w i) Rs. (z w) w(w iw iw ) iw w(w iw ) y() w i i.i w 4 (w iw iw ) w(w i)(w i) w(w i)(w i) w w 4 Fo vificaio :- w w i iw (w i)(w i) iw i (w i)(w i) y () w w 4 iw iw w w w w (w i)(w i) (w i)(w i) y () 4w w 4 iw iw w i w i w w (w i)(w i) (w i)(w i) T y y y 4w w 4 iw w iw w (w i)(w i) iw iw iw 6w w w (w i)(w i) w 4 w (w i)(w i) iw w w (w i)(w i) w 4 iw iw w i wi w (w i)(w i) (w i)(w i) y y y (w iw i)(w i) [ i w w i] (w iw [i w w i] i)(w i) iw i (w i)(w (w i) iw i (w iw ) iw ) (w i)(w i) iw iw i iw iw ( ) i i

33 y y y H() si w Hc y y y si w. H() is vifid fo >. fo <, is o pol isid low alf pla so sid. y() y y y H() si w is vifid. Fo <. fo <, H() So R.H.S. of () is zo. Ad qal o L.H.S. Hc vify sl. Eampl: Fid FST of a Solio :- T si asfom of fcio f() a I F s [f()] f () si s d Diffiaio w... s, w g a si s d () di ds d ds F (f ()) s a. cos s d a cos s d a a ( a cos s ssi s) s d ds F [f ()] Igaig w g,. a a s s di ds d a s F s[f ()] ds a ds I F s [f()] s a A () a

34 w A is cosa of igaio. Fo s, w g fom (), I () A I A () w s, fom (), I () d fom () & (4), w g A Hc qid FST of giv fcio is (4) F s a a s a. Solio of paial diffial qaios (boday val poblms) Eampl: - Dmi disibio of mpa i smi-ifii mdim, w d is maiaid a zo mpa & iiial disibio of mpa is f(). Solio :- Ha qaio is giv by (, ) c (, ), >, > () w (, ) is disibio of mpa a ay poi ad im. W wa o dmi solio of () sbjc o iiial codiio (, ) f() () ad boday codiio (, ) () Sic () is giv, w apply F.S.T. Do F s [(, )] s (s,) s ad F c [(, )] c Takig FST of bo sids of (), w g si s d c si s d 4

35 d si s d c d si s d d d si s d Fs [(, )] d d c si s s cos s d d d s c s cos s d if as s cos s d c s [ (, )coss] c s si s d d d s c s(,) c s s ; assmig as d d s c s (, ) s s By sig (), (, ), w g d d c s s s (4) Also akig FST of (), w g F s [(, )] F s [f()] s (s, ) fs (s) (5) fom (4), w av (D s ) s Ailiay qaio is m c s m c s Solio of (4) is s s c s (s,) A ( ) To fid A, w s (5), fom ( ), w av s (s,) A 5

36 A f s (s) [sig (5)] Hc solio is (s,) f (s) s s c s Takig ivs FST, w g F s [ (s,)] F s s [f s (s) c s ] (, ) s si s ds (, ) fs (s) c s si s ds Tis is qid solio of PDE. Eampl:- T mpa i smi-ifii od < (o ) is dmid by qaio K sbjc o codiios (i) w, i.. (, ) (ii) μ (a cosa) w, > i.. (, ) μ o (, ) μ Solio :- Sic is giv, So akig Foi cosi asfom of bo sids of (), () cos s d K cos s d d d (s,) K c cos s K s si s d 6

37 d d c K Ks si s d By ass mi g as d d [ ] c K μ Ks sis Ks K μ Ks if as c s cos s d d d Ks c Kμ () c c μ ( s Ks ) (, ) μ cos s Ks ( ) s Tis is lia DE of Is od. ds I.F. ks d s k Solio of () is c. s k K.μ s k d A s k s k μ c A Kμ A s k s s k μ s s k c A () μ P c (s,) A (4) s fom codiio (i), c (s, ) (,) cos s d (5) μ (4), (5) A s 7

38 μ k s () c ( ) s Fii Foi Tasfom :- Fii Foi Sic Tasfom :- L f() do a fcio a is scioally coios ov som fii ival (, λ) of vaiabl. T fii foi si asfom of f() o ival is dfid as λ s f s (s) f ()si d w s is a ig λ Ivsio fomla fo si asfom f() s fs (s)si fo ival (, λ). λ s λ If (, ) is ival fo f s (s), f() fs (s) si s s Fii FT :- L f() do a fcio a is scioally coios ov som fii ival (, λ) of vaiabl. T fii Foi cosi asfom of f() o ival is dfid as λ s f c (s) f ()cos d w s is a ig, λ If (, ) is ival, f c (s) f () cos s d Ivsio fomla fo FT f() s fc () fc (s)cos λ λ s λ λ w f c () f () d If f(), (, ), f s (s) si s d coss s 8

39 [ coss cos] [ ( ) ] s s si s ad f c (s) cos s d if s,,,. s If s, f c (s). d Fid Fii FST ad fii FT of,, (, ) fo < < λ, >. Solio :- By dfiiio, fii FST of is λ s f s (s) si λ d λ s s s si (, ) λ (, )cos d λ λ λ f s (s) F s s λ λ (, ) cos s f s (s) F s F c[(,)] λ s λ d () λ s λ s λ F c cos d cos (, ) s λ F s [(, )] [(, ) (λ, ) cos s] To calcla fii FST & fii FT of, Rplac by i () ad (), w g λ λ s s (, )si d λ λ () F s s Fc λ 9

40 s s λ λ s λ F () { (, ) ( λ,)coss} s s λ s F s[] [(, ) (λ, ) cos s] λ () Similaly F c s Fs [ (, ) (λ, ) cos s] λ s s F c [(, )] { (, ) (λ, ) cos s] λ λ s λ F c [] { (, ) (λ, ) cos s} Eampl:- Us fii Foi asfom o solv (, ), (4, ) (, ) w < < 4, >. Solio :- () is giv, w apply FST. H λ 4. Takig Fii FST of (), w g (4) () Wiig 4 s 4 d si d si s F s [(, )], w g 4 s 4 d s s s s (, ) d 6 4 [Usig qaio () i pvios aicl ad giv codiio] d d d s s s 6 s s (s,) E 6 ( ) To fid A, w will ak fii FST of (, ), w g 4

41 (s,) s 4 s si d 4 4 s 4 4 s cos.. cos 4 s s 4 () s 6 s 8 s () s 6 8. () s s 4 s si. 4 () s cos s s s fom ( ), s (s, ) A A cos s s s 6 Hc s (s,) coss s Takig Ivs Fii Foi si asfom, w g 4 s 4 d (, ) 4 s coss s s 6 s si 4 6 (, ) s coss s Eampl :- Solv qaio s si 4 s 6 sbjc o codiios (i) (, ) (ii) (, ) (iii) (, ) is bodd w >, > Solio :- Sic () is giv, so akig FST, w g () 4

42 sis d si s d d d si s d si s d d d si s d si s d d d s sis s coss d () scos s d ass mig as d d s s((, )coss) s si s(, ) d s (, )si sd [assmig (, ) as ] d d d d s s (, ) si s d s A.E. is D s Solio is s s s s () s s (s,) A () To fid A, akig FST of codiio (ii) (, ) Takig FST, w g 4

43 (s,) s sis d s s a (4) Θ sig a a sib d (a si b b cos b) akig a, b s a b ad akig lim, w g s s Pig i (), w g s (s,) A (5) fom (4) ad (5), w g s A s Pig val of A i (), w g s s (s,) s Takig ivs FST, w g s (, ) s s s si s ds s s Eampl: Solv qaio s si s ds wic is qid solio. sbjc o codiios (i) (, ) (ii) (, ), <, > () 4

44 (iii) (, ) is bodd Solio :- Sic ( ) is giv, so akig FT of (), w g d d cos s d cos s d d d c cos s d cos s d coss s sis d [Θ as as ad also (, ) ] d d c [( ) s[si s(, )] s (,) cos s d d d c ( s ) cos s (, ) d d d c (s ) (, )cos s d s c d c s c () d A.E. is D s solio is c s (s,) A () Now o fid A, akig FT of codiio (ii) c (s,) (,) cos s d cos s d [Θ (, ), > ] sis s sis d s 44

45 sis coss s s sis s Pig i (), w g coss s a (4) sis coss c (s, ) A A s s fom () ad (4), w g sis coss c (s,) s s Takig ivs FT, w g s (, ) c (s,) cos s ds si s coss (, ) s s wic is qid solio. Eampl:- Solv qaio s cos s ds, >, y > () Sbjc o codiio (i) (, ) (ii) (, ), < < w, (iii) (, ) is bodd. Solio :- Sic () is giv, so akig FST of (), w g si s d si s d d d si s d si s d 45

46 d d si s d si s s cos s d d d s () s cos s d ass mig as s [ coss.(, ) ] s ( s si s)(, ) d d d s s (, ) s s s si s d [Θ (, ) giv] d d A.E. is D s Solio is s s s () s s (s, ) A () To fid A, w ak FST of codiio (ii), s (s,) (,) si s d () si s d [Θ (, ) fo ] cos s s cos s cos s s (s,) (4) s s s Fom (), w av s (s,) A (5) A cos s s () (s, ) Takig ivs FST, w g s cos s s s 46

47 (, ) cos s s s si s ds cos s s (, ) si s ds s wic is qid solio. 47

48 LESSON URVILINEAR O-ORDINATES Tasfomaio of coodias L cagla coodias (, y, z) of ay poi b pssd as fcios of (,, ) so a (,, ) y y(,, ) () z z(,, Sppos () ca b solvd fo,, i ms of, y, z i.. (, y,z) (, y,z) (, y,z) () H cospodc bw (, y, z) ad (,, ) is iq i.. if o ac poi P(, y, z) of som gio R, cospods o & oly o iad (,, ),,, ) a said o b cvilia coodias of poi P. T s of qaios () & () dfi a asfomaio of co-odias. z cv P(,y,z) (,, ) cv cv y o-odia sfacs ad cvs:- T sfacs c, c, c w c, c, c a cosas i.. sfacs wos qaios a (, y, z) c (, y, z) c (, y, z) c 48

49 a calld co-odia sfacs ad ac pai of s sfacs isc i cvs calld coodia cvs o lis. So c ad c givs cv Similaly c ad c givs cv ad c ad c givs cv So if c ad c ad if is oly vaiabls poi P dscib a cv kow as cv wic is a fcio of. z cv c c c cv cv y Ogoal vilia o-odias If co-odia sfacs isc a ig agls (oogoal), cvilia coodia sysm is calld oogoal i.. co-odias (,, ) a said o b oogoal cvilia co-odias. T,, co-odia cvs of a cvilia sysm a aalogos o, y, z coodias as of cagla sysm. Ui vcos i cvilia sysm L î y ĵ z kˆ b posiio vco of P, () ca b wi as (,, ) A ag vco o -cv a P(fo wic & a cosa) is T, A i ag vco i is dicio is 49

50 5 / o w Similaly if ad a i ag vcos o & cvs a P spcivly,, w, T qaiis,, a calld scal facos. Also, codiio fo oogoaliy of co-odia sfacs a.,.,. Also vcos,, a P a dicd alog omal o co-odia sfacs c, c, c spcivly. So i-vcos i s dicios a giv by Ê, Ê, Ê z y Ê cv Ê cv Ê cv

51 5 Ts, a ac poi P of a cvilia sysm, a, i gal, wo ss of i vcos,, ag o coodia cvs ad Ê, Ê. Ê omal o co-odia sfacs. T ss bcom idical if & oly if cvilia coodia sysm is oogoal. Ac lg ad Volm lm Fom ),, ( d d d d () d d d T, diffial of ac lg ds is dmid fom (ds) d.d Fo oogoal sysm,... o... () sig ( ) ad (ds) ) (d.. (d ). ) (d. d d. d d. d d (ds). ) (d. (d ). (d ) ) (d ) (d ) (d [sig ()]

52 (ds) w Now if (, y, z) T î ĵ kˆ y z (d) (d ) (d) cv d d d P cv cv Lg alog -cv Fo is & a cosa. c, c d, d If ds diffial of lg alog -cv (ds ) (d ) ds d Similaly lg alog -cv is ds d ad lg alog -cv is ds d T volm lm Fo a oogoal cvilia coodia sysm is giv by 5

53 5 dv ( d ) d )( d ).( [Θ volm ĉ) â.(bˆ dv d d d Diffial opaos i ms of oogoal cvilia coodias (,, ) GRADIENT L φ scala poi fcio ad ĉ f bˆ f â f f f f f i.. φ φ(,, ) φ[ (, y, z), (, y, z), (, y, z)] φ φ φ φ () y φ y φ y φ y φ () z φ z φ z φ z φ () Opaig î () ĵ () kˆ (), w g φ gad φ φ φ φ B,, gad φ φ φ φ φ Eampl:- If (,, ) a oogoal coodia pov a (i) p p, p,, (ii) p p Ê Poof :- (i) l φ,

54 Similaly φ, Similaly if φ, (ii) By dfiiio, Ê p p p Ê p p p p Rsls :- I. div (φfˆ ).(φfˆ ) φ div f fˆ. Gad φ φ. fˆ fˆ. φ II. div (fˆ g ). (fˆ g ) cl fˆ. g cl g.fˆ III. l gad φ φ div cl fˆ. fˆ IV. l (φfˆ ) (φ fˆ ) gad φ fˆ φ l fˆ DIVERGENE osid a vco fcio f (,, ) f f f w (,, ) a oogoal cvilia coodias. f ( ) f ( ) f ( ) f sig f f ( ) f ( ) f ( ) 54

55 55 dif f. f.[f ( )]. [f ( )]. [f ( )] ( ) Takig fis a,. [f ( )] f. ( ) ( ). (f ) [By sig. (φ f ) φ. f f. φ].[f ( )] f.( ) ( ). (f ) ().[( )] cl. cl. (cl gad ). ( ) (cl gad ). fom (), w g. [f ( )] ( ). (f ) ( ). (f ) (f ) ) (f ) (f ) (f ) (f,, Θ ) (f ) (f ) (f. ) (f.[f ( )]. (f ) Similaly.[f ( Δ )] (f )

56 56 ad.[f ( Δ )] (f ) So fom ( ), w g. ) (f ) (f ) (f f URL osid f f f f f f f f [Θ ] l f f ( f Δ ) ( f ) ( f ) () Takig fis a, w av by sig popy l (φ F ) φ F φ F w g ( f ) ( f ) f ( ) ( f ) Δ [Θ Δ Δ cl gad ] ( f ) ) (f ) (f ) (f [Θ By dfiiio of gadi of a fcio] [ f ] ) (f ) (f ) (f ( f ) ) (f. ) (f Similaly ( f ) ) (f ) (f ad ( f ) ) (f ) (f fom (),

57 57 l ) (f ) (f f ) (f ) (f ) (f ) (f f f f LAPLAIAN OF SALAR POINT FUNTION ( φ) Now φ.( φ) φ. φ φ φ. φ φ φ W kow a. ) (f ) (f ) (f f H p f φ, f φ f, φ Tfo φ φ φ φ

58 YLINDRIAL POLAR OORDINATES (,, z) L P is a poi avig asia co-odias (, y, z) OM, MN y( OQ), PN z z P(,y,z) y N M M y N z Q y OM ON cos cos () & y MN N si y sio () ad z z () so w av, y ad a y Dmi asfomaio fom cylidical o cagla coodias :- Opaig qaio () (), w g y y y ()/() a y a ad z z. (ds) (d) (dy) (dz) Now d cos d si d dy si d cos d (4) 58

59 59 dz dz (4) (ds) (d cos si d) (si d cos d (dz) (d) (si cos ) ( d) (si cos ) (dz) (ds) (d) (d) (dz) ompaig i wi (ds) ) (d ) (d ) (d W g,,,,,, z Tak z,, Usig s, w av gad Φ z z Φ Φ Φ w Φ is a scala poi fcio div ) (f z ) (f ) (f f l z f f f z f Φ z Φ z Φ Φ z Φ Φ Φ Φ SPHERIAL POLAR OORDINATES (,, φ) M y N z y φ z P(,y,z) (,,φ) O N P

60 OM, MN y, PN z, OP z PN cos ON si I Δ OMN, OM ON cos φ O φ M y N si cosφ y MN ON siφ y si si φ Now (ds) (d) (dy) (dz) () d si cosφ d cos cos φ d si si φ dφ dy si siφ d cos siφ d si cosφ dφ dz cos d si d () P val of () i () ad collcig cofficis of (d), (d), (dφ), w g (ds) (d) () (d) ( ) (dφ) ( si ) ompaig i wi, w g (ds) (d) (d) (d),, si,, φ,, φ So gad Φ Φ Φ φ Φ si φ div f (f si ) (f si (f ) si φ l f si si Φ () 6

61 6 l si f si f f f φ si f φ Φ φ Φ si φ Φ si Φ si si φ Φ si Φ si cos Φ Φ Φ Eampl:- Pov a cylidical coodia sysm is oogoal. Solio :- T posiio vco of ay poi i cylidical coodia is z kˆ y ĵ î kˆ z si ĵ î cos s z, s y, s (s) a i vco T ag vco o, ad z cvs a giv by z,, spcivly. w ĵ si cos î cos ĵ si î kˆ z Tfo i-vco i s ag dicios a ĵ si î cos si cos si ĵ cosî cos si cos ĵ siî /

62 si î cos ĵ si î cos ĵ / z z kˆ / z Now. (cos î si ĵ).( siî cos ĵ). cos si si cos (cos î si ĵ).kˆ z. z ( siî cos ĵ).kˆ.. (cos î si & j).(cos î si & j) cos si ( siî cos ĵ).( siî. si cos kˆ.kˆ z z Tis sows a z cos ĵ),, a mally ad fo coodia sysm is oogoal. Eampl:- (a) Fid i vcos î, ĵ, kˆ.,, of a spical co-odia sysm i ms of φ Solio :- T posiio vco of ay poi i spical coodia is R î y ĵ z kˆ ( si cos φ) î ( si si φ) ĵ ( cos) kˆ R R R W wa o fid,, φ Now So Also R si cosφ î si si φ ĵ cos kˆ R / sicosφ î si si φ ĵ coskˆ R / si (cos φ si φ) cos si cos φ î si siφ ĵ cos kˆ R cos cosφ î cos siφ ĵ si kˆ 6

63 So R / R / coscosφî cossi φ ĵ sikˆ cos (cos φ si φ) si Also So coscosφ î cossi φ ĵ si kˆ coscos φ î cos si φ ĵ si kˆ R si siφ î si cos φ ĵ. kˆ φ R / φ sisi φ î si cosφ ĵ.kˆ φ R / φ si (si φ cos φ) si si φ î si cos φ ĵ si φ si φ î cos φ ĵ Eampl:- Pov a a spical coodia sysm is oogoal. Solio :-. (sicos φ î si si φ ĵ cos kˆ ). (cos cos φ î cos si φ ĵ si kˆ ) cos φ si cos si φ si cos si cos si cos (si φ cos φ) si cos.. φ (cos cos φ î cos si φ ĵ si kˆ ). (siφ î cos φ ĵ ) si φ cos φ cos cos cosφ siφ Also. φ φ. (siφ î cosφ ĵ )(si cosφ î si siφ ĵ cos kˆ ) si siφ cosφ si siφ cosφ ad φ.. (si cosφ î si siφ ĵ cos kˆ ) (si cosφ î si siφ ĵ cos kˆ ) cos φ si si φ cos 6

64 si (cos φ si φ) cos ad.. (cos cosφ î cos siφ ĵ si kˆ ) (cos cosφ î cos siφ ĵ si kˆ ) cos φ cos cos si φ si cos (si φ cos φ) si ad. φ. φ (siφ î cosφ ĵ ). (siφ î cosφ ĵ ) si φ cos φ φ. φ Tis sows a,, a mally ad fo coodia sysm is oogoal. φ Eampl:- Rps vco A y î z ĵ kˆ () i spical coodias Solio :- H si cosφ ad y si siφ z cos si cosφ î si siφ ĵ cos kˆ cos cos φ î cos siφ ĵ si kˆ φ siφ î cos φ ĵ () () Solvig (), w g î si cosφ cos cosφ φ siφ ĵ si siφ siφ cos φ cosφ kˆ cos si (4) P () & (4) i (), w g A si siφ( si cosφ cos cosφ φ siφ) cos ( si siφ siφ cos φ cos) 64

65 si cosφ ( cos si ) A ( si cos φ si cos siφ si cosφ cos) ( si cos siφ cosφ cos siφ si cosφ) φ ( si siφ cos cosφ) A si (si cos φ cos siφ) (si cos siφ cosφ cos siφ si cosφ) φ ( si si φ cos cosφ) A A A A φ φ Eampl :- Pov a fo cylidical coodia sysm (,, z), d d d d & & Solio :-W av cos î si ĵ () si î cos ĵ () Also d d d d d d ( si )& î (cos)& ĵ (si î cos ĵ ) & & [sig ()] ( cos)& î ( si )& ĵ (cos î si ĵ) & d d & [sig ()] Eampl:- Epss vlociy v ad acclaio a of a paicl i cylidical coodias. Solio :- Posiio vco of a paicl P i cagla coodias î y ĵ z kˆ vco i cylidical coodia sysm is cos(cos si ) 65

66 cos z z d T vlociy v d si (si cos cos si d d dz v z z d d d ) z z si si cos z d d v & & d z& z Θ z d () dv d Diffiaig () agai, w obai acclaio a d d d a (& & z z ) d d d d & & && & & & & d d d zz z z sig d d d &, &, z d d d, w g a & && && && & ( & & a ( & & ) ( & ) && z & z Eampl: - Pov a i spical coodias (,, φ) d d d d d d φ Poof: - Now & & & & φ& si φ& φ cosφ& φ z ) & z si φ & cosφ& (*) si cosφi si si φĵ cos kˆ () z z d d coscosφ& î si ( si φ)φ& î cos cosφ î si cosφφ& ĵ (si )& kˆ 66

67 sig & (coscosφ î cossi φ ĵ si kˆ ) si φ( & si φ î cosφ ĵ) () coscosφî cossi φ ĵ sikˆ () P φ si φ î cosφ ĵ (4) () & (4) i (), w g d d Also fom(), d d & si φ& si cosφ& î cossi φφî & φ si si φ& î cossi φφ& ĵ cos kˆ & &(si cosφ î isi φ ĵ cos kˆ) cos φ( & si φ î cosφ ĵ) d d Also fom (4), & cos d d Takig R.H.S of qaio (*) R.H.S si φ & cosgq φ& φ φ φ& cosφφî & si φφ& si φφ& ĵ (5) si φ(si & cosφ î si si φ ĵ cos kˆ ) cosφ(coscosφ & î cossi φ ĵ si kˆ ) [sig() & ()] si cosφ φ& î cos cosφ φsi & si φ ĵ φ& si cos kˆ φ& î cos si φ φ & ĵ si cos φ& kˆ φ& î cos φ(si cos ) φ& ĵsi φ (si cos ) φ& cos φ î si φ ĵ L.H.S. [fom (5)] So d d L.H.S. R.H.S. φ si φ& cos φ& Eampl:- Epss vlociy v ad acclaio a of a paicl i spical coodias. Solio : Posiio vco of a paicl P i cagla coodias 67

68 î y ĵ z kˆ vco i spical coodia sysm is cos φ si ( si cosφ coscosφ si φ) si si φ ( si si φ cossi φ cosφ) cos ( cos si ) (si cos φ si si φ cos ) (sicoscos φ si si φcos cossi ) φ φ φ ( cosφsi si φ si si φcosφ) [si (si φ cos φ) cos ] [si cos (si φ cos φ) cos si] (si cos ) (si cos si cos) () d d T vlociy v is v ( ) d d d d v ( ) d d & (& si φ& ) [fom pvios g.] φ φ & & si φ& () Diffiaig () agai, w obai acclaio dv d a d d d a (& & si φ& φ ) d d d & & ( ) && & & ( ) d d d & siφ & cos && φ si φ& si φ& (φ ) d φ φ φ & ( && siφ& ) && & φ & ( & cos φ& φ ) si & φ& φ 68

69 cos φ & φ & si φ& φ si φ& ( si φ& cos φ& ) a ( & & φ& si ) [& & & sicosφ& ] φ [& φsi & φ& cos si φ&] a ( & & si φ& ) d d ( ) & si cos φ& d φ ( s φ) & si d () d ( ) & ( & ) & d Θ && & ad ( si φ& ) d si d & [ si φ& si & φ& φ& si (cos)] si si φ & && φ si & φcos & So () is qid pssio fo acclaio of a paicl i spical coodia. Eampl : d d φ φ& si φ& cosφ& Solio :- Now φ si φ î cosφ ĵ d d φ cosφ φ& î si φ φ& ĵ (5) P vals of d d φ î ad ĵ i(5), w g cosφ φ( & si cosφ φ coscosφ φ si φ) si φ φ& ( si si φ.cossi φ cosφ) φ si φ& (cos φ si φ) cos φ& (cos φ si φ) cosφsi φ φ& cosφsi φφ& φ φ 69

70 si φ & cos φ&. Hc Povd. Eampl:- Rps vco A z î ĵ y kˆ i cylidical coodias. Solio :- I cylidical coodias, cos, y si, z z () ad cos î si ĵ siî cos () z kˆ () T posiio vco of a paicl P i cagla coodias is A z î ( )ĵ y kˆ A z î cos ĵ si kˆ (4) Solv () fo î ad ĵ, w g o opaig si cos cos si î si ĵ si cos î cos ĵ si cos (si cos )j ĵ (5) Similaly si cos î cos ( si î cossi ĵ) sicos ĵ cos si (si cos )î sicos ĵ si cos ĵ cos si î (6) P val of î, ĵ, kˆ fom (), (5), (6) i qaio (4), w g A z( cos si) cos( si cos) si z (z cos cossi) w (zsi cos ) z ( si ) A A A A A z cos cos si A z si cos si A z si z z () 7

71 Eqaio () is qid vco A i cylidical coodias. Eampl:- Rps vco A z î ĵ y kˆ i spical coodias (,, φ) Solio :- I spical coodias, ad si cosφ y si siφ z cos si cosφ î si siφ ĵ cos kˆ cos cos φ î cos si φ ĵ si kˆ φ siφ î cos φ ĵ () () Solvig sysm () fo î, ĵ, kˆ by am s l, fo is w av D si cosφ cos cosφ si φ sisi φ cossi φ cosφ cos si si cosφ(si cosφ) si siφ (si siφ) cos(cos cos φ cos si φ) si cos φ si si φ cos (cos φ si φ) si (cos φ si φ) cos () si cos D ad D φ si si φ cossi φ cosφ cos si (si cosφ) si siφ (si φ ) cos cosφ cossi φ) ( φ si cosφ cos cosφ φ si φ(si cos ) D si cosφ cos cosφ φ siφ 7

72 D si cosφ coscosφ si φ φ cos si si cos φ(si φ ) (si siφ ) cos ( φ cos cos si φ) si siφ cos siφ cosφ φ (si cos ) D si siφ cos si φ cosφ φ D si cosφ coscosφ si φ si si φ cossi φ cosφ φ si cosφ (cos siφ φ cosφ ) si siφ(siφ φ cos cosφ) (cos cos φ cos si φ) cos(si φ cos φ) ( sicos φ si si φ) φ (si cos siφ cosφ si cos siφ cosφ) D cos si T D si cosφ cos cosφ φ siφ D î D ĵ si siφ cos siφ cos φ φ D D kˆ cos si D fom (), () ad (4), w g A( cos) ( si cos φ cos cosφ φ siφ) si cosφ ( si siφ cos siφ φ cosφ) si siφ ( cos si) 7

73 A (cos si cosφ si cosφ siφ si cos siφ) (cos cosφ si cos siφ cosφ) φ (cos siφ si cos φ) [si cos (cosφ siφ) si cosφ siφ] A A A (cos cosφ si cos siφ cosφ) φ (cos siφ si cos φ) A φ φ wic is qid pssio. Eampl:- Fid sq of lm of ac lg i cylidical & spical coodias Solio: - I cylidical coodias, cos, y si, z z Now (ds) (d) (dy) (dz) () as d d cos si d dy d si cos d dz dz P () i (), w g (ds) (cos d si dz) (si d cos d) (dz) (d) (si cos ) (d) ( si cos ) si cos d d si cos d d (dz) () (ds) (d) (d) (dz) (d) (d) (dz) I spical coodias (,, φ) si cosφ, y si siφ, z cos as (ds) (d) (dy) (dz) sig (), w g (ds) (d) (d) si (dφ) ampaig i wi, () (ds) (d ) (d ) (d ), w g 7

74 ,, si,, φ w g (ds) (d) (d) (dφ) Eampl : - Fid pssio fo lms of aa i oogoal cvilia coodias. Solio: - d d P d Now aa lm is giv by da d d d d d d d d [ Θ ] da d d d d d d [ Θ ] da d d d d d d d d d d [ Θ Eampl:- Fid volm lm dv i cyldical & spical coodia sysm. Solio: - W kow a volm lm dv i oogoal cvilia coodias is dv d d d () I cylidical coodias (,, φ),,,, z 74

75 So () dv d d dz I spical coodias (,, φ),, si,, φ So () dv si d d dφ Eampl:- If,, a gal coodias, sow a cipocail sysm of vcos. Solio: - W kow a if φ φ (, y, z) φ φ φ dφ d dy dz d y z,, &,, a φ φ φ î ĵ kˆ.( d î dy ĵ dz kˆ ) y z dφ φ.d Rplacig φ wi p, w g d p p. d d. d d. d d. d Now (,, ) d d d d Takig do podc wi, w g.d. d. d. d d. d. d. ompaig lik cofficis o bo sids,.,.,. () () () [sig ()] 75

76 76 Similaly akig do podc of () wi ad, w g,..,., So w g qid sl i.. p. q p if q p if q W (p, q) (,, ) Eampl: - Pov a wi simila qaio fo ad w,, a oogoal coodias. Solio: - W kow a,, T Similaly k ad Hc povd. Eampl: - If,, a oogoal cvilia coodias, sow a jacobia of, y, z w...,, is

77 77 J z y z y z y ),, ( y,z) (, y,z, Poof: - w kow a A A î A ĵ A kˆ ),, ( ),,B,B (B B T B B B kˆ ĵ î A. ) A.(B (A î A ĵ A kˆ ).[ î (B B ) ĵ (B B kˆ (B B )] ) A.(B A (B B ) A (B B ) A (B B ) B B B A A A ).(B A Tfo kˆ z ĵ y î. kˆ z ŷ y î z y z y z y kˆ z ĵ y î ]. ).( ) (..

78 .. [ Θ. ] Hc povd. oavaia ompos of A ad covaia compos of A A i ms of i bas vcos,, o Ê,Ê, Ê ca b wi as A A A A aê a Ê a Ê W A, A, A & a, a, a a compos of A i ac a,, ad,, cosii cipocal sysm of vcos. W ca also ps A i ms of bas vcos,, o,, wic a calld iay bas vcos & a o i vcos. I gal, A A α α α w αp,p,, & A β β β w β p, p,, p w,, a calld coavaia compo of A ad,, a calld covaia compos of A. Eampl: - L A b a giv vco dfid w... wo gal cvilia coodias sysm (,, )& (,,). Fid laio bw coavaia compos of vco i wo coodia sysm. (Fid laio bw p ad p ) Solio: - Sppos asfomaio qaio fom cagla (, y, z) sysm o wo gal cvilia coodiaios sysms (,, ) ad (,,) a giv by (,, ), y y (,, ), z z (,, ) p 78

79 (,,), y y (,,), z z (,,) () T I a asfomaio dicly fom (,, ) sysm o (,,) sysm is dfid by (,,), (,,), (,,) (i) L (,, ), (,,), (,,) () î y ĵ z kˆ T s () (,, ), (,, ) d d d d αd αd αd () & d d d d α d α d α d (4) w αp, αp, p,, p p fom () & (4), w g αd α d αd αd αd αd (5) fom (i) sic p p,, ) ( d d d d d d d d d d d d d d d d d d sig s i L.H.S of (5) ad qaig coffici of d,d,d, w g α d αd αd d d d α d d 79

80 8 α d d d d d α d d d d d d α d α d α W g α α α α α α α α α α α α (6) Also α α α A α α α (7) w,, ad,, a coavaia compos of A i wo sysms (,, ) ad ),, (. Sbsiig (6) i (7), α α α α α α α α α α α α α α α Eqaig cofficis of,,α,α α w g

81 8 (8) o p p p p, p,, (9) o p q p q q, p,, () Similaly by icagig coodias, W ca g, q q p q p p,, () Eqaio (8), (9), (), () givs laio bw coavaia compos of vco i wo coodias sysms. Eampl: - L A b giv vco dfid w... wo cvilia coodias sysm (,, ) ad ),, (. Fid laio bw covaia compos of vcos i wo co od sysm. Solio: - L covaia compo of A i sysm (,, ) ad ),, ( a,, ad,, spcivly A () Sic ),, ( p p, p,, p p p p y y y y p p p p z z z z p p p p ()

82 8 Also kˆ z ĵ y î kˆ z ĵ y î kˆ z ĵ y î î ĵ y y y kˆ z z z () ad î ĵ y y y kˆ z z z (4) Eqaig cofficis of kˆ ĵ,, î i () & (4), W g y y y y y y z z z z z z (5) Sbsiig qaio () wi p,, o R.H.S i cospodig qaio of (5) ad qaig cofficis of,, o y, y, y o y, y, y o ac sid, W ca g,

83 8 Takig fis qaio of (5), H qaig cofficis of,, W g (6) o p p p p, p,, o q q p q q, p,, Similaly, w cam sow a q q q q p, p,, (7) Eqaio (6) ad (7) a qid laio. Eampl: - Sow a sqa of lm of ac lg i gal cvilia coodia ca by ds q q q p pq d d g Solio: - (ds) m d d d d.d

84 w α p. d d (ds) ( αd αd αd).(αd αd αd) p α.αd α.α dd α.α dd α.αdd α.α d α.α d d α.αdd α.α dd α.α d d (ds) q q g pq d p d q, g pq α. α p q Tos is calld fdamal qadaic fom o Mic fom. T qaiis g pq a calld mic cofficis ad s a symmic i.. g pq g qp If g pq p q, coodia sysm is oogoal. ad i is cas g H also α, g, α, g, α Eampl: - (a) Pov a i gal coodiay (,, ) g g g g g g g g g g.. w g pq a cofficis of d p d q i ds Solio: - w kow a g pq αp.α q. p q p q y p y q z p z, p,, q 84

85 85 z y z y z y z y z y z y.. z z z y y y z y z y z y g g g g g g g g g g Eampl (b) sow a volm lm i gal coodia is g d d d. Solio: - T volm lm is giv by dv d d. d d. d d g d d d

86 LESSON 4 RANDOM VARIABLE AND MATHEMATIAL EXPETATION Sampl spac T s pois psig possibl ocoms of a pim is calld sampl spac of pim. Eampl: - () I ossig o coi, sampl spac is S {H, T} () Two cois a ossd, S {HH, HT, TH, TT} () I ow a dic, S {(, ), (, ), (, ), (, 4), (, 5), (, 6) (, ), (, ), (, ), (, 4), (, 5), (, 6) Μ (6, ), (6, ), (6, ), (6, 4), (6, 5), (6, 6) Toal ocom 6 Rodom Vaiabl A adom vaiabl is a al vald fcio dfid o a sampl spac. W a pim is pfomd, sval ocoms a possibl cospodig o ac ocom, a mb ca b associad. Eampl: - If wo cois a ossd, possibl ocoms a TT, TH, HT, HH L X dos mb of ads T mb associad wi ocom a : TT, TH, HT, HH No. of ads, X :,,, T vaiabl X is said o b adom vaiabl. ad may b dfid as L S b sampl spac associad wi a giv pim. A al vald fcio dfid o S & akig vals i R(, ) ( al o.) is calld a adom vaiabl (o cac vaiabl o Socasic vaiabl o vaia). 86

87 Disc ad oios Sampl Spac A sampl spac a cosiss of a fii mb o a ifii sqc, of pois is calld a disc sampl spac ad a cosis of o o mo ivals of pois is calld a coios sampl spac. Disc ad oioss Radom Vaiabl A adom vaiabl dfid o a disc sampl spac is calld disc.v. o If a.v. aks a mos a coabl o. vals, i is calld Disc.v. A.v. is said o b oios if i ca aks al possibl val bw cai limis o cai ival. Eampl: - ) If X pss sm of pois o wo dic, X is a disc.v. ) If X pss ig o wig of sds i a class, i is a coios.v. ) If X pss amo of aifall, i is a coios.v. Dsiy fcio (d.f) o pobabiliy dsiy fcio(p.d.f) A fcio associad wi disc.v. X s.. f() pob[x ] is calld dsiy fcio of X. Eampl: - I ossig wocois, Ocoms {HH, TH, HT, TT} X [,, ] f() P[X ] 4 f() P[X ] /4 ½ f() P[X ] ¼ Eampl: - I owig wo dic, sampl spac of sm of pois o wo dic is S [,,,,] f() P[X ] (, ) f() (6,6) 6 f() 6 f() [Θ (, ), (, )] f(4) f() 6 87

88 f(5) f(9) 6 4 f(6) f(8) 6 5 f(7) P[X 7] 6 6 Also ( ) f i X i,, Disibio fcio Fo a.v. X, fcio F() P(X ) is calld disibio fcio of X o mlaiv disibio. Sic F() P(X ), f() p.d.f. W av If F() f () P(X ), f () f() f() f() Eampl: - A.v. X as followig disibio X : f() : k k 5k 8k 9k k k 4k 7k () Fid k, As f () k k. 7k 8k k 8 () Fid P(X < ) P(X ) P(X ) P() P() k k 4k 9 P(X < ) P() P() P()

89 7 () P(X ) P() P(4) P(8) 8 Also 9 7 P(X ) P(X < ) 8 8 (4) P( < X < 5) P() P() P() P(4) 5/8 Disibio fcio F() is obaid F() : Joi dsiy fcio L X, Y b wo.v., Joi d.f. givs pobabiliy a X will assm Y will ak a val y i.. f(, y) P(X, Y y) Eampl: - 5 cads ad cads a daw X o. of spad i s daw Y o. of spad i d daw Wio placig s cad daw. 9 8 f(, ) P[X, Y ] 5 5 X f(, ) P[X, Y ] Y Toal 9/4 /68 5/68 /68 /7 7/68 Toal 5/68 7/68 f(, ) P[X, Y ] f(, ) P[X, Y ] L A & B b wo vs, P(A B) P(B/A) P(A)

90 P(A B) P(A/B) P(B) odiioal dsiy fcio f(y/) is dfid as f(y/) P[Y y X ] givs disibio of Y w X is fid f(y/) ad f(/y) f (, y) f () f (, y) f () Magial dsiy fcio H f(, y) f(y/).f() () odidioal disac Y y w X is fid. f (y / ) y Smmig ov all possibl vals of y o bi sids of (), w g f (, y) y f (, y) f () y y f (y / ) f () Tis f() is kow as Magial dsiy fcio of X. Similaly g(y) f (, y) Tis givs Magial fcio of Y. Eampl: - wi & 4 black balls fid pobabiliy of avig wo wi ball. fo black ball X, Y fo wi black Solio: - f(, ) f() f(/) f(, ) f() f(/)

91 f(,) f() f(/) f(, ) f() f(/). 6 5 Magial dsiy fcio of X is f() f (,Y) y f() y 6 f) 5 & f() y f (, y) f(, ) f(, ) f 4 5 (, y) 5 f(, ) f(, ) f() 8 () T codiioal dsiy fcio of Y fo fid ca b obaid fom (), f(y/) f(/) f(/) f (, y) f () f (,) 4/5 4 [sig ()] f () / 5 f (,) f () /5 / oios.v. :- < X < 5 Dsiy fcio A d.f. fo a coios.v. X is a fcio f() a posssss followig popis (i) f() (ii) f () d b (iii) f () d P[a < X < b] w a < b a 9

92 Disibio fcio F() f () d P[X ] Povidd igal iss. Magial dsiy fcio f() f (, y) dy Magial dsiy fcio of X f(y) f (, y) d Magial dsiy fcio of Y. Idpd Radom Vaiabl Two.v. X ad Y a said o b idpd if f(, y) f() f(y) Eampl: - L joi d.f. f(, y) of.v. s X ad Y b k(y ), <, y < f(, y), owis ) Dmi k ) Eami w X&Y a idpd. Solio: - ) Fo d.f. (, y) (y k ) d dy k y dy y k dy f d dy y k y y 4 9

93 k 4 k 4 k 4 4 () f() f(y) f f (, y) (, y) dy d cck w f(, y) f() f(y) Now f() k (y ) dy y k y k f(y) k (y ) d k y y k So f(,y) f() f(y) so y a o idpd., < <, < y < Eampl: - f(, y), owis ) Fid magial d.f. of X ad Y ) Fid codiioal d.f. of Y giv X Fid codiioal d.f. of X giv Y y 9

94 ) ck w X&Y a idpd o o? Solio: -() f() f (, y) dy dy ( y), < < f(y) f (, y) d d ( y) y y y ( y), < y < So f(, y) f() f(y) X ad Y a o idpd. () f (, y) f(y/x ), f () < < f (, y) f(x/y y), < y < f (y) ( y) y Eampl: - A coios.v. X as p.d.f. f(),. Fid a abd b s.. () P(X a) P(X a) () P(X b).5 Solio: - Sic P(X a) P(X > a) So, ac ms b qal o ½ bcas oal pobabiliy is always o i.. P(X a) a f () d a a a d a a a a / Also a f () d a d 94

95 a a a a / () P(X > b).5 f () d.5 b b d.5.5 (b ) b 9 b b 9 / Eampl: - If X b a coios. v. wi a, a, f() a a,, lsw () Fid cosa a () Fid P(X.5) Solio: - () f ()d f ()d f ()d f ()d f ()d f ()d f ()d f ()d a d a d (a a) d a a() a 95

96 a 9 a a 9 6 a a a.5 () Now P(X.5) f ()d f d f ()d f ()d /.5 a d a d a / a ( ) a a Eampl: - Fom giv bivaia pobabiliy disibio () Obai magial disibio of X & Y. () T codiioal disibio of X giv Y Y X f (, y) f (y) f() y /5 /5 /5 4/5 /5 /5 /5 6/5 /5 /5 /5 5/5 f (, y) 6/5 5/5 4/5 Solio: () Magial disibio of X Fom abov abl f() y f (, y) Tfo f() P(X ) 6/5 96

97 f() P(X ) 5/5 f() P(X ) 4/5 Magial disibio of Y Fom abov abl f(y) f (, y) Tfo P(Y ) 4/5 P(Y ) 6/5 P(Y ) 5/5 () odiioal disibio of X giv Y, w g P(X /y ) P(X,Y ) P(Y ) Fo X, P(X /Y ) Similaly P(X /Y ) P(X /Y ) /5 5 /5 /5 5 /5 /5 5 /5 MATHEMATIAL EXPETATION: L X b a.v. wi p.d.f. f(), is mamaical pcaio (o is ma val) is dfid as E(X) f () I X assms vals Wi pobaliis,. f( ), f( ) f( ) E(X) i f ( i i ) Also E(X) Ma of disibio ad f (i ) T pcd val o Mamaical pcaio of fcio g() of disc.v. X, wos p.d.f. is f() is giv by E[g(X)] g (i )f (i ) i ad f( i ) P(X i ) Eampl: - W cois a ossd ad 97

98 X pss mb of ads is a. v., oal ocoms a {HHH, HTH, HHT, THH, THT, TTH, HTT, TTT} H X ca ak vals X,,, wi f(),,, T E(X) f () Rs. Rs..5 8 If g() T g(),,, E [g()] g( )f ( ) i Rs i 8 8 Mamaical Epcaio fo oios.v. L X b a coios.v. wi p.d.f. f(), is mamaical pcaio is E() f ()d Fo fcio g(), E[g()] g()f () d Tom: - If is a fii al mb & if E(X) iss, Poof: - fo coios.v. fo disc.v.; L E (X) f ()d f ()d E(X) E(X) f () f () E(X) 98

99 Rsl: - E[a X] E(a) E(X) a E(X) Poof: - Now E(a) af () a f () a. a () fo coios.v., E(a) af ()d E(a) a f ()d a. a Now By dfiiio, E[a X] ( a )f () E[a X] [ af () f() ] af() af () E(X) E(a) E(X) f () E(a X) a E(X) sig () Tom: - T pcaio of sm of wo.v. s is qal o sm of i pcaios, i.., E(X Y) E(X) E(Y) Poof: - Fo disc cas L X & Y b wo disc.v., f( i, y i ) is joi p.d.f. of X ad Y. (X Y) is also a.v. f( I, y i ) P(X i, Y y j ) Now by dfiiio, E(X Y) ( y i j i j)f (i, y j) f (i, y j) i j i y jf (i, y j) i j ( i, y j) y j f ( i i i, y j) j j i f ( i ) y jf (y E(X Y) E(X) E(Y) Fo coios.v. i E(X Y) i j) j ( y)f (, y)d dy 99

100 f (, y)d dy yf(, y)d dy f (, y)dy d y f (, y)d dy f ()d yf(y) dy E(X Y) E(X) E(Y) I gal, E(X X. X ) E(X ) E(X ). E(X ) Tom: - If Y a X a X..a X, w a s a cosas, E(Y) a E(X ) a E(X ).. a E(X ) Poof: - As E(Y) E(a X a X... a X ) E(a X ) E(a X ) E(a X ) a E(X ) a E(X ) a E(X ) [ ΘE(aX) ae(x)] Tom: - If X is a coios.v. ad a ad b a cosas, b) a E(X) b, povidd all pcaio iss. Poof: - By dfiiio, w av E(aX E(aX B) ( a b) f()d af ()d bf () d a f ()d b f () d E(aX b) ae(x) b as: - If b, E (ax) ae(x) Θ f ()d as: - If a, b X E(X), w g E(X X )

101 Eampl: - If f(, y) ( y) is joi p.d.f. of.v. X ad Y, fid P ( < X <, < Y < ) Solio: - Fis w cck fo:- f (, y)d dy L.H.S ( y) y [ ] y d dy d dy dy P ( < X <, < Y < ) ( y) y dyd dyd y d dy ( ) d ( ) ( ) ( )( ) ( ) 4 4 ( ), < (, ) < Eampl: - L f(, ), owis (i) Dmi (ii) Eami w X ad X a idpd o o.

102 Solio: - Fo dsiy fcio F(, ) w ms av f (, y)d dy d d 4 [ 4 4] 4 o 4 4 Tom: - Sow a pcaio of podc of idpd.v. is qal o podc of i pcaios. i.. E(XY) E(X).E(Y) Poof: - L X ad Y a wo idpd adom vaiabls, X:,,., Wi d.f: - f( ), f( ),..f( ) ad Y : y, y,, y m wi d.f: f(y ), f(y ), f(y m ) E(X) m i f (i ), E(Y) y jf (y j) i j L f( i,y j ) is joi p.d.f. of X & Y. ad Sic X & Y a idpd, so f( i, y j ) f( i ) f(y j ) Now E(XY) y m i j i j f (i, y j)

103 m i j i y jf (i )f (y j) f (i ) y jf (y i i j) j E(XY) E(X) E(Y) Similaly fo coios.v.: f(, y) f() f(y), sic X ad Y a idpd. Now E(XY) y f (, y)d dy E(XY) yf ()f (y)d dy f ()d yf(y)dy E(X) E(Y) I gal, w g E(X X X..X ) E(X ) E(X ) E(X ) Eampl: - L X pss mb o fac of dic X: f(): 6 6 Now E(X) f () (. 6) 6 6 Ad w X is sm of pois w wo dis a ow, i.. X: f(): E(X) f () [ ] E(X)

104 4 Eampl: - L X b pofi a a pso maks i a bsiss. H may a Rs. 8 wi a pobabiliy.5, may los Rs 55 wi pobabiliy. ad may i a o los wi a pobabiliy.. alcla E(X) Solio: - H P(X 8).5 P(X 55). P(X ). T E(X) ) ( f 8(.5) (55) (.) () (.) , may los Rs 5. Eampl: - A ad B i s ow a odiay dic fo a pic of Rs. 44. T fis o ow a si wis. If A as fis ow, wa is is pcaio?. Also calcla B s pcaio Solio: - T poblm of gig a si o dic is p() 6 A as s ow, so ca wi i s, d, 5 Hc A cac (pobabiliy) of wiig is Amo of A 6 44 Rs. 4 Similaly B ca wi i d, 4, 6,.. Hc B (cac) of wiig a

105 Amo of B 49 5 Rs. Eampl: - A bag coais a coi of val M ad a mb of o cois wos aggga val is m. a pso daws o a a im ill daws coi M, fid val of is pcaio. Solio: - L b K o cois ac of val m/k, so a i aggga val is m. may daw coi M a s daw o d o d o..o (K) daw wi pobabiliy, K, K, K,... K K K, K K, K Θ, K, K, K. T cospodig amo daw X is M, M k Km M, K )m (k M,..., K m M, K m E(X) M K Km... M K m M K m M K K)... ( K m ) (K M K M m M ) K(K K m. K

106 LESSON 5 MOMENTS AND MOMENT GENERATING FUNTIONS Moms: - L X is a. v., E [X ], if iss is calld mom of X abo oigi ad is dod by μ i. μ E [X ] () ad abo som poi a, i is dfid as μ (a) E[(X a) ] ad mom abo ma is μ E[(X E(X) ] E[(X μ) ] () Moms abo Ma a calld al Moms. I cas of disc.v.:- μ E[X ] f () & μ E[(X μ) ] ( i μ) f ( i ) i W μ E(X) ad f( i ) P(X i ) w fom (), w g μ E(X) f () Ma ad fom (), μ E (X μ) E (X) E(μ) μ μ μ [Θ E(μ) μ, E(X) μ] Moms abo Ma (μ ) i ms of moms abo ay poi a :- L X. v., E(X) X μ μ E [X μ] E [X a μ a] μ E(X a d) W d μ a o μ E [(X a) d(x a).. () d (X a) d () ] μ μ (a) dμ (a) () d E(X a) d () 6

107 Now μ [μ μ (a) d μ (a) μ (a) ] ad μ μ (a) d μ (a) d μ μ μ [Θ d E(X) a E(X a), d μ (a)] Tis μ is calld Vaiac. Similaly, μ ' ' ' μ μ μ μ ' ' ' 4 ad μ 4 μ 4 4μ 6μ μ μ If X is a coios.v. ' μ ( a) f () d μ ( μ) f () d ad E(X) μ Ma Also μ E(X μ). Tis E(X μ) is calld Vaiac ad is dod by. ovaiac bw X ad Y ov(x, Y) E [(X X) (Y Y)] E [(X E(X)) (Y E(y))] Eampl: - Fid E(X), E(X ), E(X E(X)) fom followig:- X: 8 6 f(): 8 6 Solio: - E(X) f () E(X) 6 Ma ad E(X ) f () E(X ) 76 ' μ μ E [X E(X)] E(X ) [E(X)] [Θμ μ ] 7

108 μ 76 (6) Tis μ is vaiac. Eampl: - Fid E(X), E(X ), E(X E(X)) X: f(): Solio: - E(X) f () [ ] 6 7 Ma E(X ) E f (X) [ ] 6 6 (974) 9 6 μ E [X E(X)] E(X ) [E(X)] L m pss mdia, P(X < m) P(X > m) I is g, m 7 mod 7 Also ma 7 So i is a vy good disibio. Eampl: - Fo disibio, (_ 6 (6 ) f() 6 ( ) 6,,,, < < < owis ck w i pss a pobabiliy disibio o o. Also fid is ma ad vaiac. 8

109 Solio: - Fis w pov a f ()d o f ()d Now f d f d f (d) ( 6 )d (6 6 )d ( )d 6 ( ) ( ) 6 [8 ] 6 6 [ 8] f ()d. 6 Also Ma E(X) f () d 6 E(X) f ()d ( ) d (6 )d 6 6 ( ) d 6 6 ( ) 6 ( ) () d ( ) ( ) () 6 d [Igad i scod igal is a odd fcio of, so is val is zo] 9

110 4 4 ( ) ( ) [()8 ] [,8] (6 ). ( 6) E(X) Also Vaiac V(X) E(X E(X)) E(X ) [E(X)] Now E(X ) f ()d ( ) d (6 )d 6 6 ( ) d 6 E(X 4 ) (9 6)d (6 )d 6 6 (9 6 6)

111 E(X 4 ) Hc Vaiac E(X ) [E(X)] Eampl: - Sow a val of cov(x, Y) fo pobabiliy disibio f(, y) y / 9,, y is 9. owis Solio: - W Kow a ov.(x,y) E(XY) E(X) E(Y) Ts w av o fid E(X), E(Y) ad E(XY) B E(X) f ()d E(Y) yf (y)dy Fis w av o fid f() ad f(y). Now magial dsiy fcio of X is giv by g() f (, y)dy f (, y)dy f (, y) dy 9 y / dy 9 y / ( ) g() y /, Similaly Magial dsiy fcio of Y will b (y) y y / y y / 9 d 9, y E(X) f ()d /. d / d

112 / [. ( ) ] / [ [ ( ) ] / d () E(Y) y (y)dy 9 y y / dy y / { y ( ) } 9 y / [ y ( ) ] y / [ ] E(XY) 6 y y / / dy dy ( ) 6 () y y yf (, y)d dy y. 9 y / d dy y / y dy d 9 y y / [ y ( ) ] 9 / / ( () ) 9 / / [ 9 ] 9 d y / d dy d / I II d / II I d [54 9]

113 Hc povd ov(x, Y) E(XY) E(X)E(Y) Eampl: - If f() a b, b a < a. Fid ma ad vaiac. b Solio: - f() a a Now b < a a < b < a f() Similaly b a < < a b f() a a ( a ( a b) b) fo b a < < b b ( b) fo (b a) < < b fo b < < b a as b b fo b < < b a Ma E(X) f ()d b ba b a ( b). d. a a b ( b) d a a b ba b a b d a a a a b b d a a a b a b ba a a b a b b a b a b a b a b a ab (b a) a a b a (b a) a b a ab (b a) a b(b a) a b b a a b a

114 b b a a b a b a a a ab a b a a a ab a ( b a ab a b) b a b ab a a ( b a ab a b) b a b ab a a b b a a Vaiac V(X) E[X E(X)] E(X b) ( b) f () d b a b b ( b). d ba a b b a a b a ( b) d ba ( b) a b ( b) a b a b ( b) (a b) d a a ( b) a d ( b) a ( b) 4a 4 b ba ( b) a ( b) 4a 4 b a b. a a 4 a 4a 4 a a a 4a a a 4 a a a a a 6 Eampl: - Fid ma ad Vaiac fo followig disibio f() ( ) 4,, owis Solio: - ck fo f ()d As ma E(X) f ()d ( ) 4. d 4

115 4 ( )d 4 5 Vaiac V(X) E[X E(X) ] EX f () d ( ) 4 d ( ) 4 4 ( ) 5 5 ( ) d ( ) Tom: - If X is a.v., V(aX b) a V(X), w a ad b a cosas. Poof: - L Y ax b, E(Y) ae(x) b T V(aX b) V(Y) E[Y E(Y)] E[aX b ae(x) b] a E(X ) a [E(X)] a [E(X)] a E(X ) a [E(X)] a [E(X ) [E(X)] ] a V(X) o(i) If b, V(a) a V(X) (ii) If a, V(b) (iii) If a, V(X b) V(X). 5

116 Tom: - Pov a V(X ± Y) V(X) ± V(Y) ± ov(x, Y) ad V(X ± Y) V(X) V(Y) povidd X ad Y a idpd.v. Poof: - V(X Y) E[(X Y) E(X Y)] E[(X Y) E(X) E(Y)] E[{X E(X)} {Y E(Y)}] E[X E(X)] [Y E(Y)] E[(X E(X)][Y E(Y)] E[X E(X)] E[Y E(Y)] E[{X E(X)}{Y E(Y)}] V(X) V(Y) cov(x, Y) Similaly V(X Y) V(X) V(Y) cov(x, Y) V(X ± Y) V(X) V(Y) ± cov(x, Y) If X ad Y a idpd, cov(x, Y) V(X ± Y) V(X) V(Y) ±. V(X) V(Y). ovaiac: - If X ad Y a wo.v., cov bw is dfid as ov(x, Y) E[[X E(X)[Y E(Y)]] E[XY XE(Y) YE(X) E(X) E(Y)] E(XY) E(X)E(Y) E(Y)E(X) E(X)E(Y) E(XY) E(X)E(Y) W ca also pss i as ov(x, Y) E[[X E(X)][Y E(Y)]] X)(y i j ( fo disc cas i j Y)f ( i, y j) ov(x, Y) E[XY X Y XY X Y ] E(XY) X E(Y) YE(X) X Y E(XY) X Y Y X X Y E(XY) X Y If X ad Y a idpd.v., E(XY) E(X) E(Y) ov(x, Y) E(X) E(Y) X Y X Y X Y 6

117 Rmak ov(x, Y) if X ad Y a idpd. i) ov(a, by) E[(aX E(a))(bY E(bY))] E[(aX ae(x)) (by BE(Y))] E[a[X E(X)]. b[y E(Y)]] ab[e(x E(X)) (Y E(Y))] ab ov(x, Y) ovaiac is o idpd of cag of scal. ii) ov(x a, Y b) E[{(X a) E(X a)} {Y b E(Y b)}] E[{(X a) E(X) a} { Y b E(Y) b} E[{X E(X)} { Y E(Y)}] ov(x, Y) Ts ov(x, Y) is idpd of cag of oigi b is o idpd of cag of scal. MEAN DERIVATION FOR ONTINUOUS ASE E[ X a ] a f()d Vaiac E[X E(X)] ( X) f()d Absol mom L X b. v. wi p.d.f f(), is absol mom abo ay poi a is giv by E[ X a ] a f() d Fo Vaiac i.. μ E[X E()] E[X XE(X) E (X)] E(X ) E(X) E(X) E (X) [Θ E(X) μ ] μ E(X ) [E(X)] E (X) E(X ) [E(X)] μ μ ' ' μ Effc of cag of oigi & scal o mom 7

webpage :

webpage : Amin Haliloic Mah Eciss E-mail : amin@shkhs wbpa : wwwshkhs/amin MATH EXERISES GRADIENT DIVERGENE URL DEL NABLA OERATOR LALAIAN OERATOR ONTINUITY AND NAVIER-STOKES EQUATIONS VETOR RODUTS I and hn scala

Διαβάστε περισσότερα

[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi

[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi NSW BOS Mhics Esio Soluios 8 F dowlod d pi fo wwwiuco Do o phoocopy opyigh 8 iuco Q L u 5 d ( ) c u u 5 Q Qc ( ) ( ) d 5 u d c d d l c d [ ] [ ] ( ) d l ( ) l l Qd L u fo > ( ) u d Wh u ; wh u d d ( u

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

ITU-R P (2012/02)

ITU-R P (2012/02) ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Chapter 5. hence all the terms which are not in the range 0,1, can be accumulated to ψ

Chapter 5. hence all the terms which are not in the range 0,1, can be accumulated to ψ Cpt 5 5 t T Sic is pidic i wit pid Tf 5 c is s pidic i wit pid Tf { } b { } 5 Sic ψ ψ c t ts wic t i t K c b cctd t ψ w c i tis cs t Fi sis pstti ivvs cp pti sqcs t t w f Eq 5 t i sti is q t if twis it

Διαβάστε περισσότερα

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

!  #! $ %&! '( #)!' * +#,  -! %&! !! !  #$ % #  &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**. ! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;

Διαβάστε περισσότερα

ECE 222b Applied Electromagnetics Notes Set 3a

ECE 222b Applied Electromagnetics Notes Set 3a C b lid lcomagnics Nos S 3a Insuco: Pof. Viali Lomakin Damn of lcical and Comu ngining Univsi of Califonia San Digo Unifom Plan Wavs Consid Mawll s quaions: In a losslss mdium ε and µ a al and σ : Sinc

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************

Διαβάστε περισσότερα

Pairs of Random Variables

Pairs of Random Variables Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,

Διαβάστε περισσότερα

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³

Διαβάστε περισσότερα

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS . ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS. Givn :.53 Å 3?? n n ε πm n n Radius of n t Bo obit, n n ε πm n n 3 n 3 n 3 (3) () (.53).77Å n n ( ) () (.53) 53 Å. Givn : 3 7.7 x m? n n ε πm Radius of

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

LAPLACE TRANSFORM TABLE

LAPLACE TRANSFORM TABLE LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

4 8 c +t +t - (t +t ) - <t +t < - < t t < + +c ( ) +t + ( ) +t + [ - (t +t )] (t + t ) + t + t t 0 + +c c x i R + (i ΔABC ABC ) x i x i c ABC 0 ABC AC

4 8 c +t +t - (t +t ) - <t +t < - < t t < + +c ( ) +t + ( ) +t + [ - (t +t )] (t + t ) + t + t t 0 + +c c x i R + (i ΔABC ABC ) x i x i c ABC 0 ABC AC 8 No8Vol JOURNALOF NEIJIANG NORMAL UNIVERSITY * * ( 6499) : ; ; ; ; ; : ; ; DOI:060/jcki-6/z0808006 :G647 :A :67-78(08)08-00-09 0 [4] [] [6] [7] ( ) ( [8] ) [9] [] : [] [] :08-06- : (ZG0464) (ZY600) 06

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

ITU-R SA (2010/01)! " # $% & '( ) * +,

ITU-R SA (2010/01)!  # $% & '( ) * +, (010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

Masters Bikini 45+ A up to 5'4"

Masters Bikini 45+ A up to 5'4 Mss Bk 45+ A p 5'4" Fs Ls 178 C Cvs 24 5 178 182 D M 1 2 182 186 S L 7 1 186 194 D Chs 21 4 194 273 C Bshp 12 3 273 Mss Bk 45+ B v 5'4" Fs Ls 179 Khy D 8 1 179 18 A Rd 12 3 18 183 F Ivy 26 5 183 27 Jdy

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y

Διαβάστε περισσότερα

Reflection & Transmission

Reflection & Transmission Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, ΙΩΑΝΝΗΣ ΚΟΝΤΟΓΙΑΝΝΗΣ, ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ, ΙΟΥΝΙΟΣ 207 ΟΝΟΜΑ ΦΟΙΤΗΤΗ:.............................. Οδηγίες. Συμπληρώστε το όνομά

Διαβάστε περισσότερα

webpage :

webpage : Amn Halloc Mah Ecss / 7 E-mal : amn@shhs bpag : shhs/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I and hn scala

Διαβάστε περισσότερα

ECE 222b Applied Electromagnetics Notes Set 3b

ECE 222b Applied Electromagnetics Notes Set 3b C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls: 3 Rflcon an Tansmsson T R T R T R T R R T

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1] 1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter

Διαβάστε περισσότερα

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

!#$ %&'$!&!(!)%*+, -$!!.!$(-#$&%- !"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

E.E. Παρ. Ι(ΙΙ) Αρ. 3253, Ν. 30(ΙΙ)/98

E.E. Παρ. Ι(ΙΙ) Αρ. 3253, Ν. 30(ΙΙ)/98 E.E. Παρ. Ι(ΙΙ) Αρ. 3253,10.7.98 1608 Ν. 30(ΙΙ)/98 περί Ειδικεύσεως Συμπληρωματικής Πιστώσεως (Ταμεί Αναπτύξεως) Νόμς (Αρ. 2) τυ 1998 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

!  #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $ [ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::

Διαβάστε περισσότερα

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( ((( ? / / / o/ / / / o/ / / / 1 1 1., D 1 1 1 D 1, E F 1 D 1. = a, D = b, 1 = c. a, b, c : #$ #$ #$ 1) 1 ; : 1)!" ) D 1 ; ) F ; = D, )!" D 1 = D + DD 1, % ) F = D + DD 1 + D 1 F, % 4) EF. 1 = 1, 1 = a + b

Διαβάστε περισσότερα

Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession, and Descent Revisited

Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession, and Descent Revisited College of Humanities and Social Science Graduate School of History, Classics and Archaeology Masters Programme Dissertation Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession,

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν

Διαβάστε περισσότερα

! " #! $ %! & & $ &%!

!  #! $ %! & & $ &%! !" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;

Διαβάστε περισσότερα

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3. . F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( +

'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + ! " # $ %&&' '( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + %( ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((('& %('(,,

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος

Διαβάστε περισσότερα

..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!

..., ISBN: :.!. # -. $, %, 1983 &$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') !$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $! !! " 007 : ISBN: # $! % :!" # - $ % 983 &"$ $ $ $ % 988 $ $ ## - $ ' 989 (( ) ' ') "!$! $ % 99 $ * $ $ + 00 $ $ $ 99!! " 007 -!" % $ 006 ---- $ 87 $ (( %( %(! $!$!" -!" $ $ %( * ( *!$ "!"!* "$!$ (!$! "

Διαβάστε περισσότερα

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1 Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

J! #$ %& ( ) ) )  *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) & J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές

ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές κ.λ.π. ΔΙΑΝΥΣΜΑΤΑ Παράσταση διανύσματος ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΕΣ

Διαβάστε περισσότερα