1. Predavanje. October 4, 2016

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Predavanje. October 4, 2016"

Transcript

1 1. Predavanje October 4, Uvod izika danas poznaje četiri interakcije: gravitacionu, elektroagnetnu, slabu nuklearnu i jaku nuklearnu. Usled gravitacione interakcije planete kruže oko sunca, zvezde kruže oko centra galaksije, itd. Takod e usled gravitacionog dejstva esec-zelja javlja se pojava plie i oseke, ali je i stabilisana sopstvena osa rotacije zelje što ia za posledicu relativno stabilnu kliu u toku dugog vreenskog perioda. Celokupni život na zelji je onakav kakav izgleda veliki delo zbog dejstva gravitacionog polja zelje. Da bi se živo biće kretalo u gravitaciono polju ora savladavati ovu silu. Elektroagnetna interakcija odgovorna je za foriranje heijskih veza, pojavu unja i groova. Zbog elektroagnetne interakcije foriraju se čvrsta, tečna i gasovita faza. Usled elektroagnetne interakcije neoguće je da prod eo kroz zid. Spoznajo zakona elektroagnetne interakcije u ogućnosti so da konstruišeo razne aparate od praktičnog značaja od kojih najveće dostignuće u sislu kopleksnosti konstrukcije zauziaju ured aji sa ikroprocesoria (računari, obilni telefoni itd.). Slaba nuklearna sila odgovorna je za transforacije konstituenata jezgra atoa: neutroni se transforišu u protone i obrnuto. Slaba nuklearna interakcija izvor je sunčeve energije. Zahvaljujući izučavanju nuklearnih sila u ogućnosti so da transforišeo nuklearnu energiju u toplotu, odnosno u ehaničku i električnu. Jaka nuklearna sila drži na okupu takozvane čestice kvarkove od kojih su sačinjeni protoni i neutroni, a njen rezidualni deo drži na okupu neutrone i protone u jezgru. izika je egzaktna nauka koja foruliše svoje zakone uz odgovarajuće ateataatičke relacije. U procesu nalaženja zakonitosti podrazueva eksperientalna i teorijska istraživanja. orulisanje opštih zakonitosti fizike oguće je objasniti pojedinačne fenoene. Najtačniju teoriju gravitacije dao je Albert Ajnštajn koja se naziva opšta teorija relativnosti. Sa druge strane, elektroagnetna interakcija, slaba nuklearna i jaka nuklearna objašnjavaju se jedno teorijo zasnovano na zakonia kvantne fizike koja se naziva standardni odel. Proble pronalaženja jedinstvene teorije koja će obuhvatiti sve četiri interakcije zadatak je koji fizičari još nisu rešili. Dosta jasna slika o savreeni istraživanjia u fizici i ogući iplikacijaa na budući razvoj tehnologije ože se naći u odgovarajućoj popularnoj literaturi. Savreeni inženjeri upućeni su problee koji se bavi oderna fizika bar na popularno nivou ako ne u toku studiranja onda kada za to bude vreena. Pre svega, u cilju da stekneo osećaj o značaju ali i težini spoznaje zakona fizike ovde ćeo krenuti od Njutnovog zakona gravitacije. 1

2 Njutnov zakon gravitacije Proble gravitacije nas uči već od našeg detinjstva kada so prvi put saznali da je zelja okrugla. Kako to da na suprotnoj strani zelje žive ljudi naopačke??? Med uti odgovor na ovo pitanje nije uopšte jednostavno dati. Satra se da je prva ozbiljna istraživanja o gravitaciono dejstvu radio Galileo Galilej ( ). Puštajući kugle identičnih dienzija ali različitih asa da slobodno padaju ustanovio je da u blizini zeljine površine sva tela padaju jednaki ubrzanje. Ovaj ogled nije bio izvršen pred javnošću na krivo tornju u Pizi, već su kugle puštane na stroj ravni, pri čeu je kretanje razlagao na horizontalnu i vertikalnu koponentu (Slika ). Bez obzira, ovi eksperienti su nagovestili da u odsustvu sile otpora vazduha ukoliko se dva tela različitih asa puste sa iste visine, vree padanja će biti jednako. Ubrzanje koje Zelja saopštava svi telia u blizini površine iznosi približno g = 9, 81/s.? Slika 1. Gravitacija zelje privlači sva tela ka njeno centru.? gsin 7 gsin y g gcos x Slika.Galilejev žleb. Puštajući kuglice različitih asa pri različiti uglovia oguće je zaključiti da ubrzanje kuglica zavisi sao od ugla stre ravni. Za pune kugle pooću Njutnovih zakona sledi da je ubrzanje: a = 5 7g sin α, gde je g ubrzanje zeljine teže, a α ugao stre ravni. Pooću ovih ogleda Galileo je našao da je pred eni put s pri konstantno ubrzanju srazeran kvadratu vreena s t. Iz kineatike je danas vrlo dobro poznata relacija za pred eni put s = at. Na alo odelu zeljine kugle u obliku jedne etalne lopte, ukoliko se postave tela sva će skliznuti i pasti na zelju. Gravitacija ispoljava vidljivo dejstvo sao kad su u pitanju vrlo asivni objekti. Na osnovu ovih jednostavnih eksperienata gotovo ništa se više nije oglo reći o osobini gravitacione interakcije. Da je kretanje planeta oko sunca posledica gravitacionog dejstva odnosno iste one sile koja ože uzrokovati pad jabuke na tlo utvrdio je Isak Njutn ( ). Med uti bez otkrića durbina i njegove upotrebe za posatranje astronoskih pojava Njutn nebi ogao da foruliše zakon gravitacije. Danski astrono Tiho Brahe izvršio je veliki broj erenja o putanjaa planeta oko sunca. Ove rezultate obradio je njegov asistent Johan Kepler i uspeo da foruliše tri zakona koja se odnose na kretanje planeta oko sunca. Ovi zakoni nazivaju se Keplerovi zakoni. I Planete se kreću po eliptični putanjaa u čijoj se jednoj žiži nalazi sunce. ŽIŽA 1 ŽIŽA planeta sunce Slika 3. Uz prvi Keplerov zakon.

3 II Linija koja spaja sunce i planete prebriše u jednaki vreenski intervalia t jednake površine S. S 1 = S ; t 1 = t s t sunce planeta s 1 t 1 Slika 4. Uz drugi Keplerov zakon. III Kvadrat perioda obilaska T bilo koje planete oko sunca proporcionalan je treće stepenu velike poluose a. T = const. a 3 a velika poluosa planeta ala poluosa b sunce Slika 5. Uz treći Keplerov zakon. U vree Keplera bili su poznati podaci o srednje rastojanju planeta oko sunca i periodi njihovih obilaska koji su dati u Tabeli 1. Kao što se vidi u četvrtoj koloni tabele rezultati su saglasni sa treći keplerovi zakono. Tabela 1 Srednja rastojanja planeta-sunce r data su u odnosu na rastojanje Zelja-Sunce. Period obilaska T je dat u godinaa. Srednje rastojanje Zelje od Sunca iznosi r = 1, k. Podaci o putanjaa planeta Planeta r T T /r 3 Merkur 0,387 0,41 1,000 Venera 0,73 0,615 1,000 Zelja 1,000 1,000 1,000 Mars 1,54 1,881 1,001 Jupiter 5,03 11,86 1,001 Saturn 9,539 9,46 1,001 Ovi podacia raspolagao je i Isak Njutn. Da bi napravio konciznu teoriju nebeske ehanike Isak Njutn je u ožda najveće delu svih vreena Mateatički principi prirodne filozofije razvio ateatički aparat koji danas nazivao ateatičko analizo. U ovo delu definisao je tri Njutnova zakona. Prvi se odnosi na princip inercije i vrlo je apstraktan. I Svako telo ostaje u stanju irovanja ili ravnoernog pravolinijskog kretanja sve dok ga druga tela ne nateraju da to stanje proeni Na Zelji zakon je uočljiv pri iniizaciji sila trenja. Na prier klizač na ledu gotovo neprietno enja brzinu priliko pravolinijskog kretanja. Sveirska sonda koja se kreće u ed uplanetarno prostoru nea uključene otore jer je stekla odgovarajuću brzinu, a nea trenja koje se suprotstavlja kretanju. 3

4 II Ovaj zakon uspostavlja vezu ized u ase tela (era inertnosti), ubrzanja tela a i rezultantne sile R = i : a = i Ubrzanje i sila su vektorske veličine, što znači da su odred ene ne sao brojno vrednosšću nego i pravce i intenziteto. Ukoliko se kretanje posatra duž jednog pravca vektorske oznake se ogu izostaviti. Na slici 6 ilustrovan je uticaj ase na kretanje. Pri dejstvu iste sile na tela različitih asa, ubrzanja će biti različita. Masivnija tela pri dejstvu iste sile dobijaju anje ubrzanje. 1 a 1 a a 3 3 Slika 6. Uz drugi Njutnov zakon. S obziro na ase 1 < < 3 slede odnosi ized u ubrzanja: a 1 > a > a 3. III Ako neko telo deluje na drugo telo neko silo onda će i drugo telo delovati na prvo telo silo jedakog intenziteta ali suprotnog sera. Obično se uzročna sila naziva silo akcije A, a posledična sila silo reakcije R. A = R Ovaj zakon ožeo ilustrovati na prieru knjige koja stoji na horizontalnoj ravni stola (Slika 7). Na knjigu deluje gravitaciona sila usled čega ona pritiska podlogu silo koja se naziva težina tela Q i jednaka je gravitacionoj sili. Težina tela ovde je sila akcije A = Q. Saglasno zakonu akcije i reakcije, onda i sto deluje na knjigu silo rekacije R koja je jednaka po intenzitetu sili akcije ali suprotnog sera. Jasno je da na knjigu deluju dve sile. Sila gravitacije i sila reakcije podloge R koje se poništavaju i u vertikalno pravcu nea kretanja, tj. knjiga iruje na stolu. Da nea reakcije podloge knjiga bi propala kroz sto. R A Slika 7. Uz treći Njutnov zakon. Uvodeći silu akcije i reakcije, jasan je uslov ravnoteže tela. Kobinujući tri Njutnova zakona i tri Keplerova zakona Njutn je forulisao opšti zakon gravitacije u fori: 1 = γ 1 r r 0 Gravitaciona sila 1 kojo asa 1 deluje na srazerna je proizvodu njihovih asa, a obrnuto je proporcionalna kvadratu njihovih ed usobnih rastojanja r. Znak inus ovde ukazuje da je sila uvek privlačna. Vektor r 0 se naziva ort, nea dienzije, služi sao da definiše referentni pravac i ser. Konstanta proporcionalnosti je obeležena sa γ i naziva se univerzalna gravitaciona konstanta. 4

5 1 1 1 r 0 r Slika 8. Uz Njutnov zakon gravitacije. orulacija Njutnovog zakona u vektorskoj fori oogućava na da odredio pravac i ser sile. Kao što se vidi na Slici 8 sila kojo asa 1 deluje na asu, 1 ia pravac koji spaja centre ovih asa i userena je od prea 1. Sila kojo asa deluje na 1 istog je intenziteta ali suprotnog userenja saglasno III Njutnovo zakonu za akciju i reakciju. 1 = γ 1 r r 0 Ukoliko želio da izračunao sao intenzitet gravitacione sile, onda se vektorske oznake ogu izostaviti: = γ 1 r Njutnov zakon oogućava da izračunao gravitacionu silu ne sao ized u tačkastih objekata nego i ized u sferno sietričnih raspodela asa. Gravitaciona sila ia svojstvo aditivnosti, što znači da ukoliko iao više tačkastih asa ukupnu gravitacionu silu na jednu asu nalazio vektorski zbiro svih gravitaionih sila koje deluju na tu asu. Ovo se ože napisati u vidu forule: R = i i, a princip je prienljiv na izračunavanje ukupne sile za tela nepravilnih oblika. Princip je ilustrovan na Slici 9. 1 R r 1 1 M r 3 r 3 3 a) b) Slika 9. Princip aditivnosti gravitacione sile. a) Ukupna sila koja deluje na asu računa se kao vektorski zbir svih gravitacionih sila koje potiču od asa 1, i 3. b) Ukupna gravitaciona sila na asu od tela nepravilnog oblika ase M računa se tako što se nepravilno telo izdeli na nogo alih tela koje se ogu satrati tačkasti. Veća tačnost postiže se ukoliko se nepravilno telo izdeli na što više anjih tela. Takod e znao da se naš sunčev siste sastoji iz više planeta, tako da za tačan opis putanje zelje oko sunca ne ožeo razatrati sao ed usobno gravitaciono privlačenje ized u zelje i sunca, već se u cilju postizanja boljih tačnosti treba uzeti u obzir i prisustvo ostalih planeta. Njutnov zakon je opšti zakon gravitacije. Dakle govori da ized u svih tela konačnih asa postoji privlačna sila. Ovo nagoveštava da univerzalna gravitaciona konstanta γ ia veoa alu vrednost, jer se gravitaciono dejstvo ized u lakih objekata ne uočava. Njutn nije znao koliko tačno iznosi ova konstanta. Tek kasnije genijalni Henri Kevendiš ( ) uspeo je da sisli način da izeri gravitacionu konstantu. Jasno je iz Njutnovog zakona gravitacije da je za njeno odred ivanje potrebno izeriri silu ized u dve sferno sietrično raspodeljene ase, njihovo ed usobno rastojenje, a zati i njihove pojedinačne ase. γ = r 1 5

6 Sila je erena pooću takozvane torzione vage (Slika 10). Na tanku nit obešena je polugica na čiji krajevia se nalaze dva anja tela ase. U prisustvu fiksiranih asa M usled gravitacionih sila dolazi do uvrtanja niti. Na osnovu ugla skretanja niti oguće je izeriti gravitacionu silu. Tačnije erene su ale oscilacije uzrokovane prisustvo velikih asa M. Danas je poznato da vrednost gravitacione konstante iznosi γ = 6, N. Interesantno je da od kg Kevendišovog erenja, univerzalna gravitaciona konstanta nije nogo bolje izerena. Naie Kevendiš je dobio rezultat γ = 6, N što je za oko 1% veće od vrednosti koja se danas uzia. Razlog što gravitaciona kon- kg stanta nije bolje izerena je usled neogućnosti izolovanja gravitacionoh uticaja zelje. Takod e kao što je rečeno u uvodu, gravitacija još uvek nije dovedena u vezu sa ostali interakcijaa u prirodi. M M Slika 10. Torziona vaga za odred ivanje gravitacione konstante. PRIMER 1 Njutnov zakon gravitacije u potpunosti je u saglasnosti sa Galilejevi principo da zelja svi telia saopštava isto ubrzanje. Posatrajo neko telo ase koje se nalazi na visini h u odnosu na površinu zelje (Slika 11). Ako poluprečnik zelje obeležio sa R, asu zelje sa M Z, prea Njutnovo zakonu gravitacije sledi izraz za silu: = γ M Z (R+h) g h Slika 11. Slobodan pad tela sa visine h u gravitaciono polju zelje. Sa druge strane, prea II Njutnovo zakonu ukoliko znao asu tela i silu koja deluje na to telo (u ovo slučaju to je gravitaciona sila), ožeo odrediti ubrzanje tog tela: a = Uobičajno je da se ubrzanje usled gravitacionog polja obeležava sa g, tj. a = g. Ako izjednačio prethodna dva izraza nakon skraćivanja ase nalazio: g = γ M Z (R+h) Kao što se vidi ubrzanje koje telia saopštava zelja uopšte ne zavisi od njihovih asa. Sa druge strane, gravitaciono ubrzanje opada sa visino. Med uti prosečan poluprečnik zelje je R = 6371k, tako da i na Mont Everestu(visina oko h = 9k) planinari ne osećaju slabljenje gravitacionog ubrzanja. 6

7 PRIMER Njutnov zakon gravitacije ora biti u saglasnosti i sa Keplerovi zakonia. Najjednostavnije je dokazaati saglasnost sa III keplerovi zakono. U tu svrhu razatrao neku planetu koja kruži oko sunca. U cilju jednostavnosti satrao da je putanja kružnica poluprečnika r, a ne elipsa (u stvarnosti putanje planeta vrlo alo odstupaju od kružne putanje). Prea Njutnovo zakonu gravitacije sila koja deluje na planetu je: = γ M S M P r, gde je M S asa sunca, a M P asa planete. Usled ove sile planeta se kreće po kružnici. U to slučaju planeta nea linijsko ubrzanje već takozvano centripetalno. Ovo ubrzanje uvek je usereno ka centru kružnice i sao enja pravac vektora brzine ali ne i intenzitet. Dakle opet kobinujući II Njutnov zakon sa zakono gravitacije nalazio: M P v a cp r M Slika 1. Planeta koja se kreće po kružnoj putanji oko sunca. S M P a cp = γ M S M P r, pri čeu so sa a cp obeležili centripetalno ubrzanje. kinetaike: a cp = v r, Izraz za centripetalno ubrzanje poznat je iz gde je v brzina kojo se telo kreće po kružnici, a r rastojanje tela od centra kružnice. Kobinujući navedene izraze nalazio: v = γ M S r. Saznajeo da brzina rotacije planete oko sunca zavisi sao od ase sunca i rastojanja planete od sunca. Period rotacije T planete oko sunca je vree potrebno da planeta obid e pun krug oko sunca. Rastojanje koje pri toe planeta pred e jednako je obiu kružnice s = πr. Sledi da se brzina ože napisati preko rastojanja planete od sunca r i perioda rotacijet : Ako sada zaenio izraz za brzinu nalazio: v = s T = πr T 4 π r T odnosno nakon sred ivanja, sledi treći Keplerov zakon: = γ M S r, T = 4π γm S r 3. Pored enje sa originalni III Keplerovi zakono vidio da konstanta koja u njeu figuriše zavisi od univerzalne gravitacione konstante i ase sunca const. = 4π γm S. Očigledno u drugi sunčevi sisteia Keplerova konstanta ia druge vrednosti. Njutnov zakon gravitacije nije poslednja reč fizike o gravitacionoj interakciji. Neko bi ogao postaviti pitanje: a koliko se brzino prostire dejstvo gravitacje ized u dva asivna objekta? Na to pitanje Njutnova teorija nea odgovor. Početko dvadesetog veka (1915), Albert Ajnštajn je objavio Opštu Teoriju Relativnosti koja bolje opisuje gravitacione efekte. Ajnštajn je dao svoju teoriju ne izvodeći niti jedan eksperient. Interesantno je i da u vree kada je objavio svoju teoriju uopšte nije bilo interesa niti sunje da treba naći bolju teoriju od Njutnove. Shodno toe, kako zbog ateatičke složenosti i nogih kontraverznih rezultata koja je ona davala, dugo vreena je prošlo dok teorija nije bila dokazana i opšte prihvaćena. Ova teorija ia značaj kada se tela nalaze u 7

8 blizini vrlo jakih gravitacionih polja. Na prier Merkur je planeta najbliža suncu i za tačan opis njene putanje ora se uzeti u obzir Teorija Opšte Relativnosti. Astronoi su raspolagali vrlo precizni podacia o Merkurovoj orbiti. Njutnova teorija nije ogla da objasni rezultate sa zadovoljavajućo tačnosšću, ali Ajnštajnova da. Vrlo skoro prvi put su detektovani gravitacioni talasi koje predvid a teorija opšte relativnosti. Ova teorija takod e pokazuje da časovnici ne kucaju isto brzino ukoliko se nalaze na različiti visinaa u odnosu na površinu zelje. Gotovo nakon sto godina od Ajnštajnovog otkrića ovaj rezultat je našao svoju prienu u sinhronizaciji časovnika potrebnih u sisteu satelita za globalno pozicioniranje (GPS). U fizici važi princip korespondencije. Naie, ne ože se reći da Njutnova teorija nije tačna. Iz Ajnštajnove teorije ože se dobiti Njutnova ukoliko se razatraju slabiji gravitacioni efekti. Opšta teorija relativnosti je sao tačnija teorija od Njutnove. Med uti danas je jasno čak da ni Ajnštajnova teorija nije konačna. Teorija Opšte Relativnosti ne ože da da odgovor o gravitacioni efektia na vrlo ali dienzijaa. Ovaj proble je uočen pri istraživanju efekata u astro-objektia tzv. crni rupaa. Pronalaženje teorije gravitacije koja je prienljiva i na vrlo ale objekte predet je istraživanja savreene fizike. Zadaci za saostalni rad: 1.1; 1.; 1.3; 1.4. Literatura: Tehnička izika, Ana Kozidis Petrović. Zbirka zadataka iz fizike - ašinski odsek, Ljuba Budinski-Petković, Ana Kozidis- Petrović, Milica Vučinić Vasić, Ivana Lončarević, Aleksandra Mihailović, Dušan Ilić, Robert Lakatoš. TN Izdavaštvo, Novi Sad. 8

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će se bez obzira na masu kretati istim ubrzanjem Zanimljivo

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

2. Predavanje. October 4, 2016

2. Predavanje. October 4, 2016 . Predaanje October 4, 6 Zakoni održanja U fizici postoje nekoliko zakona održanja. Zakoni održanja su posledica neke osnone sietrije kososa. Postoje zakoni održanja koji se odnose na energiju, ipuls,

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?

Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5? Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti

Διαβάστε περισσότερα

2. Kolokvijum iz MEHANIKE (E1)

2. Kolokvijum iz MEHANIKE (E1) Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 2. Kolokvijum iz MEHANIKE (E1) A grupa A3 Dva robota se kreću po glatkoj horizontalnoj podlozi. Robot A, mase 20, 0 kg, kreće se brzinom 2, 00 m/s

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Sila i Njutnovi zakoni (podsetnik)

Sila i Njutnovi zakoni (podsetnik) Sila i Njutnovi zakoni (podsetnik) -Sila je mera interakcije (međusobnog delovanja) tela. I Njutnov zakon (zakon inercije) II Njutnov zakon (zakon sile) III Njutnov zakon (zakon akcije i reakcije) [] =

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

5.1 Njutnov zakon univerzalne gravitacije

5.1 Njutnov zakon univerzalne gravitacije Glava 5 Gravitacija Orbitiranje prirodnih i veštačkih satelita oko Zemlje, planeta oko Sunca, fenomen plime i oseke, prenos toplote strujanjem fluida, visoka temperatura unutrašnjosti planeta, padanje

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

DINAMIKA. (Njutnovi zakoni, Ravnomerno kružno kretanje, inercijalne sile, dinamika rotacije)

DINAMIKA. (Njutnovi zakoni, Ravnomerno kružno kretanje, inercijalne sile, dinamika rotacije) DINAMIKA (Njutnovi zakoni, Ravnomerno kružno kretanje, inercijalne sile, dinamika rotacije) 1. a) Koliku masu ima olovna kugla prečnika 2 cm? Gustina olova je 11300 kg/m 3. Koliki je impuls te kugle ako

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

1 Kinematika krutog tela

1 Kinematika krutog tela M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, IV predavanje, 2017. 1 Kinematika krutog tela Kruto telo je sistem materijalnih tačaka čija se međusobna udaljenost ne menja tokom vremena. Kruta tela

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

F I Z I K A. Predmetni nastavnik Docent dr Zoran Mijić

F I Z I K A. Predmetni nastavnik Docent dr Zoran Mijić F I Z I K A Predmetni nastavnik Docent dr Zoran Mijić E-mail zmijic@singidunum.ac.rs DINAMIKA Dinamika (grč. dynamis = sila) je deo mehanike koja proučava kretanja tela uzimajući u obzir uzroke koji dovode

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Mehanika. dinamika. Сила Њутнови закони кретања Тежина, трење и друге силе Основне силе у природи Статика

Mehanika. dinamika. Сила Њутнови закони кретања Тежина, трење и друге силе Основне силе у природи Статика Сила Њутнови закони кретања Тежина, трење и друге силе Основне силе у природи Статика Galileo Galilei, (1564-1642) Isaac Newton (1643 1727) Mehanika dinamika 1 14., 15. i 16. 10. 2015. Njutnova kolevka,

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

( ) ρ = ρ. Zadatak 141 (Ron, gimnazija) Gustoća leda je 900 kg/m 3, a gustoća morske vode 1000 kg/m 3. Koliki dio ledene sante

( ) ρ = ρ. Zadatak 141 (Ron, gimnazija) Gustoća leda je 900 kg/m 3, a gustoća morske vode 1000 kg/m 3. Koliki dio ledene sante Zadatak 4 (Ron, ginazija) Gustoća leda je 900 /, a gustoća orske vode 00 /. Koliki dio ledene sante voluena viri iznad orske površine? (g = 9.8 /s ) Rješenje 4 ρ l = 900 /, ρ v = 000 /,, =? Akceleracija

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Rad, snaga i energija. Dinamika. 12. dio

Rad, snaga i energija. Dinamika. 12. dio Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka

Διαβάστε περισσότερα

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017.

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. Konzervativne sile i potencijalna energija 1 Konzervativne sile Definicija konzervativne sile. Sila je konzervativna ako rad te sile

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα