Azbuka, niska: formalizam
|
|
- Βαρβάρα Παπανδρέου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Azbuka, reč, jezik Jezik: sredstvo za komunikaciju Prihvatljiv za sve učesnike Prirodni jezik: ekspresivan, nejednoznačan, neprecizan Veštački jezik: u matematici, hemiji, saobraćaju Programski jezici: nivoi apstrakcije računara i čoveka
2 Programski jezik Prirodan i jednostavan / precizan: jezički procesori ANSI: Programski jezik je jezik koji se koristi za pripremanje računarskih programa Klasifikacija Backus, 1957: FORTRAN
3 Azbuka, niska Sintaksa Semantika Azbuka: konačni skup znakova (simbola, slova) Simbol: nedeljiva jedinica jezika Niska: nizanjem simbola Niska ω dužina ω : broj simbola Prazna niska: ε α slovo,α i = αα...α α 0 = ε, α 1 = α, α 2 = αα, itd.
4 Azbuka, niska: formalizam Azbuka A 1. ε je niska nad A 2. ω niska nad A i α slovo iz A -> ωα niska nad A 3. niska: pravilima 1, 2. Operacije Konkatenacija (dopisivanje) Inverzija (obrtanje)... A= {α 1 α 2,..., α n } A* = {ε, α 1, α 2,..., α n, α 1 α 1, α 1 α 2,..., α 1 α n, α 2 α 1, α 2 α 2,..., α 1 α 1 α 1,... } A + = A*\ε
5 Karakterski skup Tekstuelna komunikacija sa računarom Spoljašnja azbuka, npr. {A,B,...,Z,1,2,..., 9,?, } Kodiranje: kombinacije 0,1 fiksne dužine kôd fiksne dužine nad {0,1} Svaki računar: svoj skup karaktera Karakter: spoljašnji oblik i unutrašnja reprezentacija: standardna kodna shema
6 Kodne sheme Kodna reč: varijacija sa ponavljanjem nad {0,1} dužine 7 (8) bita (128 (256) kodnih reči) Dužine 16 bita (65536 kodnih reči) Kodna reč fiksne dužine u jednoj kodnoj shemi: karakter 1 znak bajt Y 1 bajt 1 znak (sa ili bez grafičkog lika) g. ISO (International Standard Organization): 7-bitni kôd Nacionalna američka verzija: ANSI (American Standards Institute): 1968.g. American Standard Code for Information Interchange: ASCII kôd.
7 ASCII kôd Npr. A (=65) B (=66) (=48) (=57) Struktura ASCII kôda: Kodovi 0-31, kôd 127 kontrolni karakteri bez grafičkog lika, npr. CR (13), LF (10), itd. Uređenje prema unutrašnjiom kodovima A-Z (65-90) abecedni poredak a-z (97-122) 0-9 (48-57) rastući brojčani poredak Kôd(velSlovo) = kôd(maloslovo)-32 (2 5 ) ISO 7-bitni kôd: prostor za druge nacionalne verzije Slobodno korišćenje karaktera 64, 91-94, 96,
8 YU-ASCII Jugoslovenski zavod za standarde 1986.g. Narušen abecedni poredak
9 Proširenja 7-bitnog kôda 7-bitni kôd: svega 95 pozicija - nedovoljno 8-bitno proširenje Donja i gornja kodna stranica Donja ponovljen ASCII: nepostavljen najviši bit Gornja: postavljen najviši bit; karakteri (32) nemaju grafički lik 95+96=191 kôd ISO Latin-1 većina zapadnoevropskih jezika Latin2 većna srednjeevropskih i slovenskih jezika sa latiničnim pismom - i srpska latinica Latin-3 esperanto, turski,
10 Proširenja 7-bitnog kôda Naša slova u Latin-2 (razlika za 16 bit na poziciji 5 ili 32 bit na poziciji 6):
11 Industrijski standardi EBCDIC (Extended Binary Coded Decimal Interchange Code), IBM Windows kodne strane: 8-bitna proširenja ASCII koda: svih 128 pozicija gornje kodne strane, ukupno 223 (i, œ) CP1252 (WinLatin1) CP1250 (WinLatin2) CP1251 (WinCyrillic)...
12 Unicode Xerox Parc, Apple, 1989.g. novi sistem kodiranja - Unicode, cilj: Univerzalan (UNIversal) sve savremene jezike sa pismom Jedinstven (UNIque), bez dupliranja karaktera kodiraju se pisma a ne jezici Uniforman (UNIform) - svaki karakter istim brojem bitova: : Unicode 1.1 ISO: standard višebajtovskog kodiranja Universal Multiple-Octet Coded Character Set 4 (ISO 10646) 4-bajtovsko kodiranje (CJK pisma) 1990.g. radna verzija
13 Unicode 1993.g. koordinacija: ISO kompatibilan sa Unicode-om Repertoar Unicode-a: pozicija Prvih 8192 pozicije: za standardne alfabete Prvih 256: identične ISO Sledećih 4096 pozicija specijalni karakteri (0x2000 0x3000) Sledećih 4096 pozicija za CJK simbole (0x3000 0x4000) CJK ideografsko pismo
14 Unicode naša latinična slova 262, 263 Ć, ć 268, 269 Č, č 272, 273 Đ, đ 352, 353 Š, š 381, 382 Ž, ž
15 Unicode Zadatak: pronaći na Internetu tekstove o Unicode-u i kodne sheme
16 Jezik Jezik L nad azbukom A: L f A* Beskonačno mnogo jezika nad A ω0 L reč jezika L Pravila koja razlikuju reči od ne-reči; sintaksa jezika Semantika : pravila značenja Programski jezik: precizna sintaksa konstante, identifikatora, izraza, iskaza, funkcije, programa, itd. Programi jezički procesori Zadavanje sintakse: Nabrajanje Formalna gramatika
17 Formalna gramatika: primer Azbuka: {0,1,2,3,4,5,6,7,8,9,+,-} Jezik celih brojeva +1205, 1205, niske 12+05, nisu iz jezika Oznake: B broj; b - neoznačen ceo broj; c cifra Pravila: 1. B je b, +b ili b; 2. b je c ili b na koji je dopisana c 3. c je simbol iz skupa {0,1,2,3,4,5,6,7,8,9} Pomoćni simboli: B, b, c
18 Formalna gramatika: primer (nast.) Zapis pravila: B b +b -b b c bc c Početni simbol: B Primer izvođenja: BYb Y bc Y bcc Y bccc Y cccc Y 1ccc Y 12cc Y 123c Y 1234 Moguća i druga izvođenja Izvođenje n-tocifrenog broja
19 Formalna gramatika (N,T,P,S) N: nezavršni (neterminalni) simboli T (A) završni (terminalni) simboli P pravila S0N početni (startni) simbol Primer N = {B,b,c} T = {0,1,2,3,4,5,6,7,8,9,+,-} P = { B b, B +b, B -b, b c, b bc, c 0, c 1, c 2, c 3, c 4, c 5, c 6, c 7, c 8, c 9 } S = B Gramatička forma: niska koja se izvodi iz S (npr. B, bc, bcc, bccc, cccc, 1ccc, 12cc, 123c, 1234) završna niska: niska koja se izvodi iz S i pripada T*, npr Jezik generisan gramatikom: skup završnih niski
20 Meta jezici; jezički procesori Objekt jezik Meta jezik Primer objekt jezika: prirodni jezik Programski jezik Primer meta jezika Prirodni jezik Bekusova notacija Sintsksni dijagrami
21 Bekusova notacija BNF Bekus-Naurova forma
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων 1 Τύποι Δεδομένων Τα δεδομένα σήμερα συναντώνται σε διάφορες μορφές, στις οποίες περιλαμβάνονται αριθμοί,
FORMALNI SISTEMI KAO OSNOVA ZA PROJEKTOVANJE KOMPAJLERA
FORMALNI SISTEMI KAO OSNOVA ZA PROJEKTOVANJE KOMPAJLERA Definicije Sintaksa, Semantika Projektovanje kompajlera kompajlera. 1 Kompajler, Procedura, Algoritam: KOMPAJLER: prevodioc sa višeg programskog
Programiranje I. Smer Informatika Matematički fakultet, Beograd. Jelena Tomašević, Sana Stojanović November 16, 2005
Programiranje I Beleške sa vežbi Smer Informatika Matematički fakultet, Beograd Jelena Tomašević, Sana Stojanović November 16, 2005 1 1 Specifikacija sintakse programskih jezika, meta jezici Za opis programskih
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων 1 2.1 Τύποι Δεδομένων Τα δεδομένα σήμερα συναντώνται σε διάφορες μορφές, στις οποίες περιλαμβάνονται αριθμοί,
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici
Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)
Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1
Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ Καραμαούνας Πολύκαρπος 1 2.1Η έννοια της πληροφορίας Δεδομένα Πληροφορία Καραμαούνας Πολύκαρπος 2 2.2 ΗΥ Το βασικό εργαλείο επεξεργασίας και
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
Programiranje 1. Smer Informatika Matematički fakultet, Beograd
Programiranje 1 Beleške sa vežbi Smer Informatika Matematički fakultet, Beograd Jelena Tomašević 2 Sadržaj 1 5 1.1 L A TEX........................................... 5 2 11 2.1 Formalni jezici i formalne
Ψηφιακά Συστήματα. 2. Κώδικες
Ψηφιακά Συστήματα 2. Κώδικες Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά ηλεκτρονικά,
Κείμενο ASCII Unicode - HTML. Κωδικοποίηση ASCII / Unicode HTML
Κείμενο ASCII Unicode - HTML Κωδικοποίηση ASCII / Unicode HTML Κείμενο και Τυπογραφία Αναπαράσταση κειμένου Αρχικά οι ανάγκες των προγραμμάτων απαιτούσαν ένα περιορισμένο σύνολο κωδικοποιημένων χαρακτήρων
Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati:
Staša Vujičić Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: pseudo jezikom prirodnim jezikom dijagramom toka. 2
Προγραμματισμός Υπολογιστών
Προγραμματισμός Υπολογιστών Αναπαράσταση Πληροφορίας Κ. Βασιλάκης, ΣΤΕΦ, ΤΕΙ Κρήτης Δεδομένα και πληροφορία Δεδομένα είναι ένα σύνολο διακριτών στοιχείων σχετικά με ένα συμβάν ή μια διαδικασία χωρίς κάποια
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Sintaksa i semantika u logici
Sintaksa i semantika u logici PMF Matematički odsjek Sveučilište u Zagrebu 13. listopad 2012., Zadar Sintaksa i semantika u logici 1 / 51 1. Logika sudova 1.1. Sintaksa jezik 1.2. Semantika logike sudova
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό
Η/Υ και Δυαδικό Σύστημα ΕΠΛ031 Εισαγωγή στον Προγραμματισμό Ερώτηση: Τι είναι Υπολογιστής; Ο Η/Υ είναι μια συσκευή χρήσιμη για: εκτέλεση αριθμητικών και λογικών πράξεων με πολύ μεγάλη ταχύτητα, αποθήκευση
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
ΚΩΔΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΣΤΟΙΧΕΙΑ ΜΕΤΑΔΟΣΗΣ ΚΩΔΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ Ο ηλεκτρονικός υπολογιστής λειτουργεί με βάση το δυαδικό σύστημα αρίθμησης. Δηλαδή το αλφάβητο του αποτελείται από το δυαδικό ψηφίο (bit) 0 και το δυαδικό ψηφίο
Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.
Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 5 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Στα προηγούμενα μaθήματα Συστήματα
Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment
18 2 JOURNAL OF CHINESE INFORMATION PROCESSING Vol118 No12 :1003-0077 (2004) 02-0073 - 07 Ξ 1,2, 1, 1 (11, 215006 ;21, 210000) : ISO/ IEC 10646,,,,,, 9919 % : ; ; ; ; : TP39111 :A Research of Han Character
Μάθημα 2: Παράσταση της Πληροφορίας
Μάθημα 2: Παράσταση της Πληροφορίας 2.1 Παράσταση δεδομένων Κάθε υπολογιστική μηχανή αποτελείται από ηλεκτρονικά κυκλώματα που η λειτουργία τους βασίζεται στην αρχή ανοιχτό-κλειστό. Η συμπεριφορά τους
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
SKUPOVI I SKUPOVNE OPERACIJE
SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo
Binarno kodirani dekadni brojevi
Binarno kodirani dekadni brojevi Koriste se radi tačnog zapisa mešovitih brojeva u računarskom sistemu. Princip zapisa je da se svaka dekadna cifra kodira odredjenim binarnim zapisom. Za uspešno kodiranje
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 9 ο : Σύνολα χαρακτήρων και UNICODE. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 9 ο : Σύνολα χαρακτήρων και UNICODE Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Σύνολα χαρακτήρων; (1) Τι είναι
Diskretna matematika. Prof. dr Olivera Nikolić
Diskretna matematika Prof. dr Olivera Nikolić onikolic@singidunum.ac.rs 1 OSNOVNI POJMOVI MATEMATIČKE LOGIKE 2 1. Diskretna matematika 2. Kontinualna matematika 3 Pojam diskretne matematike Diskretna matematika
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων 1 Εισαγωγή Ο Υπολογιστής είναι μια μηχανή επεξεργασίας δεδομένων Πριν ασχοληθούμε με την επεξεργασία τους
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά
694 Α /. 1474 356 1293 260 181 694 Α /. 1569 356 1299 252 270
599 Α & Α Ω Α Α. 806 172 897 198-91 599 Α & Α Ω Α Α. 508 76 535 128-27 599 Α & Α Ω Α Α. 749 163 848 154-99 599 Α & Α Ω Α Α... 542 79 599 Α & Α Ω Α Α. 419 320 99 601 Α & Α Ω /. 614 127 648 129-34 601 Α
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda
Teorija kodiranja. Hamingov kod i njegova definicija
Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
2. KONAČNI AUTOMATI. Brojčani sistemi. Kodiranje 1
1 2.1. Konačni automati Konačni automat se u teoriji tretira kao uređaj za azbučna preslikavanja gde svakom slovu, dovedenom na njegov ulaz, odgovara određeno slovo na izlazu, ili kako se još kaže svako
Relacije poretka ure denja
Relacije poretka ure denja Relacija na skupu A je relacija poretka na A ako je ➀ refleksivna ➁ antisimetrična ➂ tranzitivna Umesto relacija poretka često kažemo i parcijalno ured enje ili samo ured enje.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
2. Κώδικες 2. ΚΩΔΙΚΕΣ
. ΚΩΔΙΚΕΣ.1 Εισαγωγή Κώδικας είναι ένας συστηματικός τρόπος παράστασης πληροφοριών με μεγάλη εφαρμογή στα συστήματα των υπολογιστών και την μεταβίβαση πληροφοριών. Ο υπολογιστής χρησιμοποιεί το δυαδικό
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ακαδημαϊκό Έτος 2010-2011 Επιμέλεια Ξενοφών Βασιλάκος Περιεχόμενα Φροντιστηρίου 1. Κωδικοποίηση και Δυαδική Αναπαράσταση 2. Κωδικοποίηση ASCII Κωδικοποίηση Unicode Εισαγωγή
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:
2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
22Y103 Εισαγωγή Υπολογιστές Ι
22Y103 Εισαγωγή Υπολογιστές Ι 1ο Εξάµηνο Ν. Αβούρης - Ο. Κουφοπαύλου. Σερπάνος ΕΒ ΟΜΑ ΙΑΙΑ Ι ΑΣΚΑΛΙΑ: 2002-2003 2 ώρες Θ + 1 ώρα Φρ + 2 ώρα Ε (Θ:Πέµπτη 14-16 ΒΑ, Φρ: ευτέρα 13-14 ΒΑ) Ν. Αβούρης Εισαγωγή
ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων
ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Αναπαράσταση δεδομένων Υπολογιστικά συστήματα: Στρώματα 1 επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Τύποι δεδομένων 2 Τα δεδομένα
Βασική δοµή και Λειτουργία Υπολογιστή
Βασική δοµή και Λειτουργία Υπολογιστή Η τεχνολογία των Η/Υ έχει βασιστεί στη λειτουργία του ανθρώπινου οργανισµού. Οπως ο άνθρωπος πέρνει εξωτερικά ερεθίσµατα από το περιβάλλον τα επεξεργάζεται και αντιδρά
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
x n +m = 0. Ovo proširenje ima svoju manu u tome da se odričemo relacije poretka - no ne možemo imati sve...
1 Kompleksni brojevi Kompleksni brojevi Već veoma rano se pokazalo da je skup realnih brojeva preuzak čak i za neke od najosnovnijih jednačina. Primjer toga je x n +m = 0. Pokazat ćemo da postoji logično
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ
Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τα επιμέρους τμήματα ΥΠΟΛΟΓΙΣΤΗ Η ΔΟΜΗ TOY ΥΠΟΛΟΓΙΣΤΗ. Αναπαράσταση μεγεθών. Αναλογική αναπαράσταση ΚΕΝΤΡΙΚΗ ΜΝΗΜΗ ΜΟΝΑΔΑ ΕΛΕΓΧΟΥ
ΥΠΟΛΟΓΙΣΤΕΣ Ι Η ΔΟΜΗ TOY ΥΠΟΛΟΓΙΣΤΗ Τα επιμέρους τμήματα ΕΙΣΟΔΟΣ ΚΕΝΤΡΙΚΗ ΜΝΗΜΗ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΗ ΛΟΓΙΚΗ ΕΞΟΔΟΣ ΚΕΝΤΡΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑΣ 1 2 Αναπαράσταση μεγεθών ΜΕΤΡΟΥΜΕΝΟ ΜΕΓΕΘΟΣ ΑΝΑΛΟΓΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ
Automatsko rezonovanje beleške sa predavanja. Uvod. Filip Marić. Matematički fakultet, Univerzitet u Beogradu. Proletnji semestar 2018.
Automatsko rezonovanje beleške sa predavanja Uvod Filip Marić Matematički fakultet, Univerzitet u Beogradu Proletnji semestar 2018. O kursu automatskog rezonovanja Pregled 1 O kursu automatskog rezonovanja
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,