Binarno kodirani dekadni brojevi
|
|
- Θέμις Σκλαβούνος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Binarno kodirani dekadni brojevi Koriste se radi tačnog zapisa mešovitih brojeva u računarskom sistemu. Princip zapisa je da se svaka dekadna cifra kodira odredjenim binarnim zapisom. Za uspešno kodiranje neophodno je da dužina kodne reči bude bar četiri. Pri kodiranju treba da bude ispunjen uslov jednoznačnosti, odnosno da sve binarne reči koje ulaze u kod moraju da budu medjusobno različite. Osobine koje omogućuju jednostavije izvodjenje operacija su: Najvećoj dekadnoj cifri (9) treba pridružiti reč koja ima najveću vrednost (posmatrana kao binarni broj). Parnim i neparnim dekadnim ciframa treba da odgovaraju parni odnosno neparni binarni brojevi. Kod je komplementaran ako su kodovi dekadnih cifara a i b za koje važi uslov a+b = 9 komplementarni (u smislu da su cifre na odgovarajućim pozicijama komplementarne). Kod je težinski ako je i-toj poziciji kodne reči pridružen broj p i, tako da za dekadnu cifru q i njenu kodnu reč y 3 y 2 y 1 y 0 važi jednakost q = p 3 y 3 + p 2 y 2 + p 1 y 1 + p 0 y 0 Dekadna Binarni kod cifra višak 3 ciklički Tabela 1: Binarni kodovi dekadnih cifara
2 2 Grejov kod Grejov kod dužine n 0 je funkcija G(n, i) koja vrši 1-1 preslikavanje celog broja i [0,2 n 1] pri čemu važi da se binarne reprezentacije G(n,i) i G(n,i+1) razlikuju tačno na jednom mestu. Karakteristike Grejovog koda su: Funkcija koja vrši preslikavanje nije jedinstvena tako da postoji više Grejovih kodova dužine n. Jedna od najčešće korišćenih funkcija se može definisati na sledeći način: G(n,i) = n i n [i/2] gde n > 0,i [0,2 n 1], n i označava i zapisano u binarnom sistemu kao neoznačen ceo broj u polju dužine n, a ekskluzivnu disjunkciju. Heksadekadna Binarna Grejov Heksadekadna Binarna Grejov cifra vrednost kod cifra vrednost kod A B C D E F Tabela 2: Grejov kod dužine 4
3 3 Ista funkcija G(n, i) se može definisati i rekurentno: G(n + 1,i) = 0G(n,i) n > 0,i [0,...,2 n 1] G(n + 1,i) = 1G(n,2 n+1 1 i) n > 0,i [2 n,...,2 n+1 1] G(1, 0) = 0 G(1, 1) = 1 Heksadekadna Binarna Grejov kod cifra vrednost dužine 1 dužine 2 dužine 3 dužine A B C D E F Tabela 3: Grejovi kodovi dužina 1, 2, 3 i 4
4 4 Zapis binarno kodiranih dekadnih brojeva Binarno kodirani zapis dekadnog broja u nekom kodu se dobija tako što se binarno kodira svaka od njegovih cifara. Označeni binarno kodirani dekadni brojevi poseduju dodatnu (dekadnu) cifru u koju se upisuje znak broja. Za zapis označenih brojeva se koriste zapisi: Znak i apsolutna vrednost. Vrednosti cifre za znak broja mogu da budu proizvoljne i zavise od konkretne implementacije na računaru. 10-ti komplement (tj. komplement osnove, N-ti komplement gde je N = 10). U ovom slučaju kod najmanje cifre (nule) označava pozitivne, a kod najveće cifre (devetke) negativne brojeve.
5 5 BCD zapis dekadnih brojeva Vodi poreklo od Holeritove kartice kao i termini zonsko i cifarsko ubušenje. / / 12 / O red Y (12) Zonsko / 11 O red X (11) ubušenje \/ 0 O red 0 (10) / 1 O red 1 / 2 O red 2 / 3 O red 3 cifarsko / 4 O red 4 ubušenje \ 5 O red 5 \ 6 O red 6 \ 7 O red 7 \ 8 O red 8 \ 9 O red 9 Slika 1: Zonsko i cifarsko ubušenje na kartici
6 6 F 2 F 5 F 7 F 3 F 1 C 4 bajt bajt bajt bajt bajt bajt EBCDIC A 4 bajt bajt bajt bajt bajt bajt ASCII Slika 2: Nepakovani (zonski) zapis dekadnog broja C bajt bajt bajt bajt EBCDIC A bajt bajt bajt bajt ASCII Slika 3: Pakovani (BCD) zapis dekadnog broja
7 7 Binarni Heksadekadni Značenje na mestu kod kod cifre znaka greška greška greška greška greška greška greška greška greška greška 1010 A greška plus 1011 B greška minus 1100 C greška plus (preporučeno) 1101 D greška minus (preporučeno) 1110 E greška plus 1111 F greška plus (zonsko) Primedba: ove kodove za znak generišu mašinske instrukcije za rad sa BCD podacima. Tabela 4: Cifarski i zonski kodovi u EBCDIC kodu
8 8 Decimalna aritmetika Promena znaka C D Slika 4: Promena znaka dekadnog broja u pakovanom zapisu Sabiranje i oduzimanje Neka su A i B dekadni brojevi sa n cifara A = a n 1 a n 2...a 1 a 0 i B = b n 1 b n 2...b 1 b 0, i neka je α funkcija kodiranja koja svakoj cifri u broju pridružuje binarnu kodnu reč Aα = α(a n 1 )α(a n 2 )...α(a 1 )α(a 0 ) Bα = α(b n 1 )α(b n 2 )...α(b 1 )α(b 0 ) Sabiranje se realizuje u dve faze: 1. Odredi se medjurezultat C α = A α + Bα: Aα = α(a n 1 ) α(a n 2 )... α(a 1 ) α(a 0 ) Bα = α(b n 1 ) α(b n 2 )... α(b 1 ) α(b 0 ) C α = α(c n 1 ) α(c n 2 )... α(c 1 ) α(c 0 ) 2. Dobijeni medjurezultat C α se koriguje zbog specifičnosti zapisa binarno kodiranih dekadnih brojeva. Konačan rezultat je jednak zbiru medjurezultata i korekcije: Cα = C α + K α: C α = α(c n 1 ) α(c n 2 )... α(c 1 ) α(c 0 ) Kα = α(k n 1 ) α(k n 2 )... α(k 1 ) α(k 0 ) Cα = α(c n 1 ) α(c n 2 )... α(c 1 ) α(c 0 ) Oduzimanje binarno kodiranih dekadnih brojeva može da se realizuje na dva načina: 1. Po sličnom principu kao i sabiranje, pri čemu se u obe faze umesto sabiranja vrši oduzimanje brojeva. 2. Kao sabiranje brojeva u potpunom komplementu.
9 9 Sabiranje i oduzimanje u kodu 8421 Funkcija kodiranja je definisana kao prevodjenje cifre u binarni sistem, tj. α(c) c 3 c 2 c 1 c 0 gde c {0,1,2,3,4,5,6,7,8,9} važi c = c c c c 0 2 0,c i {0,1},i [0,3] Prva faza je nezavisna od funkcije kodiranja tako da se primenjuje prethodni algoritam. U prikazu druge faze se uvode sledeće oznake: α(c i ) označava zbir dobijen sabiranjem kodova za dekadno cifarsko mesto i p i označava binarni prenos izmedju zbirova α(c i ) i α(c i+1 ) u medjurezultatu prve faze sabiranja α(k i ) označava korekciju na dekadnom cifarskom mestu i. p i označava binarni prenos u drugoj fazi sabiranja sa dekadnog cifarskog mesta i 1 na dekadno cifarsko mesto i. Važi p 0 = 0. Druga faza se izvodi u n koraka (n maksimum broja cifara dekadnih brojeva koji se sabiraju. Sabiranje se vrši zdesna u levo; postupak u i-tom koraku je sledeći: 1. Odredjuje se privremeni zbir t i = α(c i ) + p i. 2. Na osnovu vrednosti t i i p i odredjuje se korekcija α(k i). 3. Krajnja vrednost α(c i ) se dobija kao zbir t i + α(k i ). Pri tome se odredjuje i p i+1. Korekcija medjurezultata je: 1. p i+1 = 1 α(k i) = (0110) 2 2. t i (1010) 2 α(k i ) = (0110) α(k i ) = (0000) 2. Prekoračenje se javlja kada je p n = 1 ili p n = 1. Oduzimanje se realizuje po sličnom algoritmu kao sabiranje, ili kao sabiranje brojeva u potpunom komplementu.
10 10 Primeri 1. Odrediti zbir A = i B = 9567 u kodu Prva faza Aα = Bα = p 0 = 0 p 1 = 0 p 2 = 0 p 3 = 0 p 4 = 1 p 5 = 0 C α = Korak 4 Korak 3 Korak 2 Korak 1 Korak 0 Druga faza C α = p 0 = 0 t 0 = 1100 α(k 0 ) = 0110 α(c 0 ) = 0010 Korak 4 Korak 3 Korak 2 Korak 1 p 1 = 1 t 1 = 1011 α(k 1 ) = 0110 α(c 1 ) = 0001 p 2 = 1 t 2 = 1001 α(k 2 ) = 0000 α(c 2 ) = 1001 p 3 = 0 t 3 = 0001 α(k 3 ) = 0110 α(c 3 ) = 0111 p 4 = 0 t 4 = 0010 α(k 4 ) = 0000 α(c 4 ) = 0010 Korak 0 p 5 = 0 Cα =
11 11 2. Odrediti zbir A = 259 i B = 938 u kodu Aα = Bα = P = C α = P = Kα = Cα = Odrediti zbir A = 9001 i B = 999 u kodu Aα = Bα = P = C α = P = Kα = Cα =
12 12 4. Odrediti zbir A = i B = 999 u kodu Aα = Bα = P = C α = P = *** Kα = Cα = Prekoračenje se javlja zbog pojave prenosa p 5 = Odrediti razliku A = 1275 i B = 452 u kodu Bα = [ Bα] nk = [ Bα] pk = C = A + [B] pk Aα = [ Bα] pk = P = C α = P = Kα = Cα = U ovom slučaju, u skladu sa pravilima za sabiranje brojeva u potpunom komplementu pojava prenosa p 5 = 1 ne označava prekoračenje.
13 13 Sabiranje i oduzimanje u kodu višak 3 Funkcija kodiranja definisana je kao α(c) c 3 c 2 c 1 c 0 gde c {0,1,2,3,4,5,6,7,8,9} važi c = c c c c ,c i {0,1},i [0,3] Prva faza je nezavisna od funkcije kodiranja tako da se primenjuje prethodni algoritam. U kodu višak 3 druga faza sabiranja se izvodi u n koraka gde je n maksimum broja cifara dekadnih brojeva koji se sabiraju. Sabiranje se vrši zdesna u levo; postupak u i-tom koraku je: 1. Na osnovu vrednosti p i+1 odredjuje se korekcija α(k i). 2. Krajnja vrednost α(c i ) se dobija kao zbir α(c i ) + α(k i). Pojava prekoračenja ( prenosa ) u ovoj fazi sabiranja se ingnoriše. Korekcija: 1. p i+1 = 1 α(k i) = (0011) p i+1 = 0 α(k i) = (1101) 2. Prekoračenje pri sabiranju se javlja kada je p n = 1. Oduzimanje u kodu višak 3 se izvodi kao sabiranje u potpunom komplementu.
14 14 Primeri 1. Odrediti zbir A = i B = 9567 u kodu višak 3. Aα = Bα = P = C α = Kα = Cα = Dobijeni rezultat sabiranja je broj Odrediti zbir A = i B = 999 u kodu višak 3. Pri sabiranju se dobija prekoračenje (označeno sa ***) zbog prenosa na cifarskom mestu najveće težine (p 5 = 1) u prvoj fazi sabiranja. Aα = Bα = P = *** C α =
15 15 3. Odrediti razliku A = 1275 i B = 452 u kodu višak 3. Rezultat C = A B = 823 se dobija primenom sabiranja u potpunom komplementu: Bα = [ Bα] nk = [ Bα] pk = C = A + [B] pk Aα = [ Bα] pk = P = C α = Kα = Cα = U skladu sa pravilima za sabiranje brojeva u potpunom komplementu pojava prenosa p 5 = 1 ne označava prekoračenje.
16 16 Množenje i deljenje 1. Odrediti proizvod brojeva A = i B = 321 u kodu A = D,B = 321D. Rezultat C = A B = C može da se dobije formiranjem delimičnih proizvoda. 2 * * <--- 2 * 6 = 0C 16 = <--- 2 * 4 = = <--- 2 * 8 = = <--- 2 * 3 = = Sabiranjem delimičnih dobija se ukupan proizvod: * Odrediti količnik i ostatak brojeva A = i B = 321 u kodu U pakovanom zapisu ovu operaciju možemo da zapišemo kao C= A / B= C / 321D = 38460D uz ostatak 018C Cifre količnika se odredjuju uporedjivanjem delioca sa početnim delom deljenika. Redosled koraka je: (a) Upotrebom operacije poredjenja dobijamo 012 < 321 da 0123 < 321 da < 321 ne
17 17 Primenom operacije množenja dobija se da je prva cifra količnika 3. (b) Kako je = 963, dobijeni proizvod se oduzima od (početka) deljenika i prelazi na odredjivanje naredne cifre / 321 = < 321 ne Naredna cifra je 8. Ostale cifre se dobijaju na isti način. (c) / 321 = > 321, [2715/321] = 8, * 321 = > 321, [1476/321] = 4, * 321 = > 321, [1927/321] = 6, * 321 = < 321, [ 018/321] = 0 Pošto nema više cifara u deljeniku, količnik je a ostatak +18.
18 18 Realni brojevi u nepokretnom zarezu 1. Nekorektno smeštanje tačke osnove C 16 E Odbačeni 15 binarnih mesta bit Slika 5: Uticaj nekorektne deklaracije na tačnost zapisa 2. Nekorektno skaliranje pri aritmetičkim operacijama C C Originalne vrednosti C C C Vrednosti poravnate za sabiranje Zbir Slika 6: Poravnanje pri sabiranju pakovanih brojeva
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Celi brojevi su svi nerazlomljeni brojevi, pozitivni, negativni i nula. To su
Poglavlje 1 Brojevi i brojni sistemi Cvetana Krstev 1.1 O brojevima Prirodni brojevi su brojevi sa kojima se broji, uključujući i nulu: 0, 1, 2, 3,.... Pojam pozitivnih i negativnih brojeva nije definisan
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Realni brojevi i aritmetika
Realni brojevi i aritmetika Realni brojevi u nepokretnom zarezu Moguće greške: 1. Nekorektno smeštanje tačke osnove. Na primer, neka je pri deklaraciji navedeno da se odvaja 15 binarnih mesta za razlomljeni
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Realni brojevi u pokretnom zarezu
Realni brojevi u pokretnom zarezu Predstavljaju se pomoću osnove β (koja je uvek parna) i preciznosti p. Primer: β=10, p=4: broj 0.4 se predstavlja kao 4.000 10 1 β=10, p=4: broj broj 564000000000000000000000000
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
2. POJAM KOMPLEMENTA, BINARNI BROJNI SISTEM I BINARNI BROJEVI SA ZNAKOM
2. POJAM KOMPLEMENTA, BINARNI BROJNI SISTEM I BINARNI BROJEVI SA ZNAKOM TEORIJA: KOMPLEMENT je dopuna datog broja do neke unapred definisane vrednosti. Koristi se za prikazivanje negativnih brojeva. Primenjuju
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
2. KONAČNI AUTOMATI. Brojčani sistemi. Kodiranje 1
1 2.1. Konačni automati Konačni automat se u teoriji tretira kao uređaj za azbučna preslikavanja gde svakom slovu, dovedenom na njegov ulaz, odgovara određeno slovo na izlazu, ili kako se još kaže svako
1. Kontinualna i diskretna računska sredstva Kontinualna računska 2. Istorijat razvoja računarskih sistema premehanički period
1. Kontinualna i diskretna računska sredstva Sva računska sredstva se mogu podeliti na dve velike grupe, kontinualna i diskretna računska sredstva. Kontinualna računska sredstva se konstuišu tako da matematički
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Geometrija (I smer) deo 1: Vektori
Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo
Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa
Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.
Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici
Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)
ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F
ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Algoritmi zadaci za kontrolni
Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
4 Numeričko diferenciranje
4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Prediktor-korektor metodi
Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.
Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od
Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.
09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
4 Matrice i determinante
4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}
Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f} nazivamo inverznom korespondencijom korespondencije f. A f B A f 1 B
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Jednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.
5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a
Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
8 Funkcije više promenljivih
8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen
Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.
Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu
M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo
FUNKCIJE - 2. deo Logika i teorija skupova 1 Logika FUNKCIJE - 2. deo Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f}
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za