Prijenos zvuka. Amplitudna modulacija
|
|
- Άνεμονη Ελευθερόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Prijenos zvuka Amplitudna modulacija
2 Umetanje signala informacije u prijenosni signal prijenosni signal se nalazi na puno većoj frekvenciji od signala audio ili vizualne informacije koja je u osnovnom pojasu; lakše je projektirati prijenosni sustav na jednoj visokoj frekvenciji (pogledati omjer gornje i donje frekvencije prenošenog signala, audiosignala, videa); umetanje signala informacije (zvuk, slika, dodatni tekstualni podaci) u prijenosni signal se izvodi promjenom amplitude, faze ili frekvencije prijenosnog signala u ritmu signala informacije;
3 Prikaz signala u vremenskoj i frekvencijskoj domeni
4 Signal slike -širina pojasa TV signala je do 3.5 MHZ, osnovni harmonik ima frekvenciju 1/63.5µs= khz ali tu se ovisno o sadržaju linije pojavljuju komponente do 200. og harmonika; -širina pojasa signala zvuka u frekvencijskoj domeni je do 20 khz;
5 Jednostrani i dvostrani spektar signala prikazati kosinusni signal = cos ( + ) pomoću jednog i dva rotirajuća vektora; prikaz sa jednim rotirajućim vektorom: = cos + = = = Prikaz sa dva rotirajuća vektora: = + ( ) 2 = vidi se da u dvostranom spektru postoje dvije frekvencije, pozitivne i negativne;
6 Neperiodički signal u osnovnom pojasu i pojasu signala nosioca -signal informacije u osnovnom pojasu m(t), engl. message -dvostrani spektar -signal informacije u pojasu signala nosioca
7 Amplitudna modulacija -vremenska domena -informacija se prenosi u amplitudi moduliranog signala; modulacijski signal, informacija na jednoj frekvenciji: u m ( t) = U cos( ω t) m m prijenosni signal: u ( t) = U cos( ω t) VF VF p Kako umetnuti signal informacije u amplitudu prijenosnog signala? AM modulirani signal u kojemu informacija mijenja amplitudu prijenosnog signala: uam ( t) = UVF + k um( t) cos( ωvf t) uam ( t) = UVF 1+ ma cos( ωm t) cos( ωp t) Indeks modulacije m a : m a = k U U VF m k=1
8 Amplitudna modulacija-frekvencijska domena u ( t ) = U cos( ω t ) + U m cos ω t cos ω t mod VF p VF a m p 1 cos α cos β = cos( α β) cos( α β) Za normalan rad pretpostavlja se da je m a < 1, pa nakon množenja i trigonometrijskog razvoja za umnožak dvaju kosinusa dobivamo izraz: 1 1 u mod ( t) = UVF cos( ωp t) + UVF m cos a ( ω ) p ωm t U cos VF m a ( ω ) 2 2 p ωm t + + AM signal se sastoji od signala na frekvenciji prijenosnog signala (f p ) te signala na frekvencijama koje su za f m udaljene od frekvencije prijenosnog signala;
9 Amplitudna modulacija-snaga signala AM signal s informacijom sadržanoj u jednoj frekvenciji sastoji se od komponente (U VF ) na frekvenciji prijenosnog signala ω p i dvije bočne komponente amplitude (m a /2) U VF ; snaga amplitudno moduliranog signala se obično razmatra na karakterističnoj impedanciji tereta Z = 50 Ω. Ukupna snaga se dobije sumiranjem snaga svih pojedinačnih komponenti na frekvencijama ω p,ω p -ω m i ω p + ω m ; ukupna snaga po komponentama je dana: veza između efektivne i maksimalne vrijednosti signala je U ef = U m / 2
10 Amplitudna modulacija-primjer f m = 0.05 Hz, f p = 0.4Hz, m a = 0.5, U VF =1V, U m =1V - Ulazni signali: signal informacije i prijenosni signal (VF) 1 u m (t) t[s] 1 u VF (t) t[s]
11 Amplitudna modulacija-rezultat 2 u AM (t) t[s] U AM (f) f[hz]
12 Amplitudna modulacija-povećani m a Indeks modulacije m a =U m /U VF f m = 0.05 Hz, f p = 0.4 Hz, m a = 1, U VF =1V, U m =1V u AM (t) 2 0 AM signal u vremenskoj domeni uz m a = t[s] Amplitudni spektar AM moduliranog signala uz m a =1 U AM (f) f[hz]
13 Premodulirani AM signal:m a =2 f m = 0.05 Hz, f VF = 0.4Hz, m a = 2, U VF =1, U m =1 u AM (t) 5 0 AM signal u vremenskoj domeni uz m a = t[s] Amplitudni spektar AM moduliranog signala uz m a =2 U AM (f) f[hz]
14 AM modulacija složenog signala U m1 =1V;f m1 =400Hz;U m2 =0.5V;f m2 =200Hz;U VF =3.5V; f p =10kHz, k=1; t[s] t[s] t[s] u m (t) u VF (t) u AM (t)
15 Prikaz u frekvencijskoj domeni Amplitudni spektar AM moduliranog signala 3 U AM (f) f[khz]
16 Način dobivanja AM signala superpozicija signala (informacija, prijenosni) na nelinearnom elementu; NE i u m (t) I 0 u VF (t) R<< u iz U 0 i U 0 u Nelinearni element: i= g( u) i= a u+ a u u ( t) = U cos( ω t) + U cos( ω t) ul m m VF p 2 Koje sve komponente se pojavljuju u signalu napona na otporu? uiz ( t) = R i( t) = R a1 ( Um cos( ωm t) + UVF cos( ωp t)) + a2 ( Um cos( ωm t) + UVF cos( ωp t)) 2
17 Praktične izvedbe AM modulatora:
18 Vrste AM moduliranog signala AM DSB (Double Side Band) AM DSB SC Supressed Carrier -potisnuti nosilac AM SSB (Single Side Band) -smanjenje širine pojasa stereo informacija u FM-u -primjena u zaštićenim komunikacijama AM VSB SC (analogna TV radiodifuzija, Vestigial Side Band) AM SSB-SC Single Side Band
19 Dobivanje drugih vrsta AM signala DSB-SC općeniti izraz za AM signal: u ( t) = [ C+ k u ( t)] cos( ω t+ ϕ ) AM m c c AM signal s potisnutom frekvencijom prijenosnog signala (nosioca) se dobije ako se stavi C=0, k=1: u ( t ) = k U cos ω t cos ω t AM m m c k U m k U = cos(( ω ) ) m c+ ωm t + cos(( ω c ω m ) t ) 2 2
20 Osobine AM sustava (preporuke ITU-R BS 639) Audio područje: f g = 4,5 khz ili 5 khz Način prijenosa: AM-DSB (Amplitudna modulacija- Double Side Band ) Širina kanala: 9 khz ili 10 khz, pa se zbog toga koristi samo za govorne emisije; Glazba se prenosi bolje drugim sustavima kao što su FM; Frekvencijska područja u kojima se koristi AM modulacija: DV (dugi val) SV (srednji val) KV (kratki val) 150 khz 400 khz 500 khz 1605 khz 1,605 MHz 30,55 MHz Indeks modulacije m a može biti između 0 i 1: m A A a max min U = U m VF = U = U VF VF (1 + m (1 m a a ) )
21 Zadatak: AM modulacija-1 Nacrtati prikaz u frekvencijskoj domeni AM moduliranog signala kojemu je nosilac na frekvenciji 800kHz i amplitude 3V, a on se modulira signalom informacije frekvencije 2kHz i indeksom modulacije 0.5. Kod crtanja koristiti dbv na y-osi (prikazati maksimalne amplitude). Odrediti maksimalnu i minimalnu amplitudu AM signala, dinamiku zadanog AM signala (u db). Kolika je snaga na svakoj pojedinoj frekvencijskoj komponenti u signalu ako se mjeri na impedanciji Z=50Ω (izraziti snagu db (mw))? Kolika bi bila dinamika kada bi se signal nosilac modulirao s indeksom modulacije 1?
22 Rješenje zadatka 1. Amplitudni spektar (jednostrani) se sastoji od tri komponente: A(f) dbv 9.54 dbv dbv UVF db = 20 log 10(3 V / 1 V ) = 9.54dBV 0.5 3V Ub db = 20 log 10( ) = 2.54dBV 2 1V 800kHz-2kHz 800kHz 800kHz+2kHz f maksimalna amplituda signala: U max =U VF (1+m a ) a minimalna će biti ta ista negativna; kod dinamike se gleda maksimalna prema minimalnoj amplitudi U (1 ) informacije: 20 log 10( VF + m DIN db = a ) = 9.54dB (1 m ) snaga pojedine komponente se računa: pretvoriti snagu u db(mw)= 10 log 10 (P AM /1mW); U VF a
23 Zadatak: AM modulacija-2 Signal informacije sadrži dva tona od 1 khz i 2 khz. Amplitude ova dva signala su jednake i iznose 1. Konstanta modulatora k a =2, a amplituda signala nosioca je U VF =10V. Nacrtati amplitudni spektar AM signala sa nosiocem čija je frekvencija 500 khz. Kolika je snaga AM signala i kako ona ovisi o indeksu modulacije. Pretpostaviti mjerenje snage na otporu Z t =50Ω.
24 Rješenje zadatka 2: početi od osnovne formule: u ( t) = [ C+ k u ( t)] cos( ω t+ ϕ ) AM m VF VF u ( t) = [ U + k U cos( ω t) + k U cos( ω t)] cos( ω t+ ϕ ) AM VF m1 m1 m2 m2 VF VF k U ( ) 1 m1 k U u cos( 2 1 ) m AM t = UVF ωm t cos( ωm2 t) + + cos( VFt VF ) UVF U ω + ϕ VF uam ( t) = UVF cos( ωvf t+ ϕvf ) + UVF ma1 cos( ωm1 t) cos( ωvf t+ ϕvf ) + + U m cos( ω t) cos( ω t+ ϕ ) VF a2 m2 VF VF izračunati amplitude svih komponenti: izračunati snage svih komponenti:
25 Zadatak: AM modulacija-3 Na slici je zadan valni oblik AM moduliranog signala (DSB) sa signalom informacije na jednoj frekvenciji. Odrediti indeks modulacije m a, frekvenciju signala nosioca, frekvenciju signala informacije i amplitudu signala nosioca. Napisati jednadžbu ovakvog AM moduliranog signala te prikazati u frekvencijskoj domeni amplitudni spektar (z-os neka bude u dbv)? Kolika bi bila snaga na pojedinim komponentama i ukupna snaga ovakvog signala na određenoj impedanciji?
26 Slika uz zadatak 3.: u AM (t) t[s] U MAX =1.5V U MIN =0.5 V T inf =0.005s f inf =1/0.005Hz T nosioc =0.005s/20
27 Zadatak 4-AM modulacija, DSB-SC Zadan je sustav modulatora prema slici: m(t) je signal informacije a prijenosni signal je oblika u p (t)=1 cos(2 π f 0 t). Odrediti prikaz u vremenskoj frekvencijskoj domeni ovakvog signala:
28 Prikaz u frekvencijskoj domeni odgovor je Fourierova transformacija signala m(t) i cos(2 π f 0 t) m( t) F m( t) = M ( f ) 1 + j 2π f 2 cos(2 0 ) o t j π fo t π f t = e e F cos(2 π f0 t) δ( f f0) δ( f f0) = F m( t) cos(2 π f0 t) F m( t) * F cos(2 π f0 t) = operacija konvolucije F m( t) cos(2 π f0 t) 1 M ( f )* δ( f f0) δ( f f0) = = 1 1 F m( t) cos(2 π f0 t) = M ( f f0) + M ( f+ f0) 2 2
29 Izgled spektra DSB-SC Bandwidth -širina pojasa AM moduliranog signala Ako je maksimalna frekvencija u audiosignalu 5kHz koja se propušta na AM modulator, tada je širina pojasa B=2 f max
30 Praktična metoda dobivanja DSB-SC: množenje signala informacije sa pravokutnim impulsima: Nakon filtirranja:
31 Dobivanje SSB AM signala filtriranje DSB-SC;
32 Detektori AM signala-demodulacija množenje AM moduliranog signala sa signalom nosioca te filtriranje neželjenih komponenti: uam det ( t) = UVF + k um( t) cos( ωvf t) cos( ωvf t) nakon množenja i filtriranja istosmjerne i 2 ω VF komponenti dobije se: k u uam det( t) = UVF 2 u filtriranom signalu je sadržan signal informacije. m ( t) 32
33 Demodulacija kvadriranjem -kvadriranjem ulaznog AM signala se dobije mnoštvo Komponenti; -filtriranjem se dobije odgovarajuća komponenta; -aproksimacija oko radne točke na nelinearnom elementu, radna točka se dobije razvojem u Taylorov red funkcije y(x); 2 dy d y 2 y( x0) = y0 + ( x x0) ( x x 2 0)... dx + dx + 33
34 Demodulacija na diodi i kondenzatoru 34
35 Demodulacijana na diodi kondenzatoruimplementacija u SIMULINK-u
36 Zadatak 5.: Demodulacija AM signala na diodi Odrediti vremenske konstante punjenja i pražnjenja kondenzatora na kojemu se demodulira AM signal ako je zadan kapacitet kondenzatora C=10nF a otpor R=100kΩ. Pretpostaviti da je otpor diode kada vodi r=10ω a kada ne vodi 10MΩ. Rješenje:Kada je na diodi pozitivna poluperioda AM signala i dioda vodi vremenska konstanta punjenja kondenzatora τ=r C=100ns kada dioda ne vodi,kondenzator se prazni, vremenska konstantaτ=r C=0.01s
37 Povijest radija nakon niza teoretskiih prikaza N.Tesla (u veljači) i A. Popov (u ožujku) ostvaruju prijenos informacije radio valovima; G.Marconi dobiva patent BP koji uključuje saznanja koja su primjenili Tesla i Popov emisija Reginalda Fessendena na Badnjak, smatra se prvom radiodifuznom emisijom iz Brant Rocka, Massachusetts
38 Povijest radija u Hrvatskoj je osnovan Radio klub Zagreb (dr. sc. Oton Kučera); prvo emitiranje na Markovom trgu 9 (Odašiljač snage 350W); se premješta odašiljač u Otok (mjesto kraj Samobora (700W); srednjevalni odašiljač Deanovac (150kW); emitiranje TV programa; FM radio difuzija (UKV) sa Sljemena.
39 Pregled predavanja Umetanja signala informacije na jednoj i više frekvencija u amplitudu nosioca; Indeks modulacije i njegovo određivanje; Snaga AM moduliranog signala; Prikaz AM moduliranog signala u frekvencijskoj domeni; Vrste amplitudno moduliranog signala; Demodulacija amplitudno moduliranog signala;
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
3. OBRADA SIGNALA I MULTIPLEKSNI SUSTAVI
3. OBRADA SIGNALA I MULTIPLEKSNI SUSTAVI 3.1. Modulacija analognim signalom Modulacija je postupak obrade signala kojim se u prijenosni signal utiskuje signal informacije. Na prijemnoj strani se vrši obratni
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
1. Uvod 1.1. Komunikacijski lanac Komunikacijskim lancem smatra se cjelokupni put širenja informacija od izvorišta do odredišta. Iako informacija načelno može imati mnogo oblika (brojka, slovo, riječ,
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Signali i sustavi - Zadaci za vježbu II. tjedan
Signali i sustavi - Zadaci za vježbu II tjedan Periodičnost signala Koji su od sljedećih kontinuiranih signala periodički? Za one koji jesu, izračunajte temeljni period a cos ( t ), b cos( π μ(, c j t
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi
Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi Najčešći sklop punovalnog ispravljača se može realizirati pomoću 4 diode i otpornika: Na slici je ulazni signal sinusodialanog
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Signali i sustavi. Signal. Predstavljanje signala: mr. sc. Karmela Aleksić-Maslać dr. sc. Damir Seršić
Signali i susavi mr. sc. Karmela Aleksić-Maslać dr. sc. Damir Seršić FER-ZESOI Signal Funkcija koja sadrži informaciju o susavu. Funkcija - vremena (npr. zvučni signal), prosora (npr. slika - 2D signal),...
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Gradniki TK sistemov
Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator
Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Dosadašnja analiza je bila koncentrirana na DC analizu, tj. smatralo se da su elementi
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji
Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
Napisat demo program koji generira funkciju prijenosa G(s)=(2s+4)/(s2+4s+3) s=tf('s'); Br=2*s+4;Naz=s^2+4*s+3; G=Br/Naz
LV3 Napisat demo program koji generira funkciju prijenosa G(s)=(2s+4)/(s2+4s+3) s=tf('s'); Br=2*s+4;Naz=s^2+4*s+3; G=Br/Naz s=tf('s'); Br=2*(s+2);Naz=(s+1)*(s+3); G=Br/Naz s=tf('s'); Br=[2 4];Naz=[1 4
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.