FUNDIRANJE (TEMELJENJE)
|
|
- Λάρισα Μανιάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1/11/013 FUNDIRANJE 1 FUNDIRANJE (TEMELJENJE) 1. Projektovanje temelja se vrši prema graničnom stanju konstrukcije i tla ispod ojekta sa osvrtom na ekonomski faktor u pogledu utroška materijala, oima radova i troškova gradnje. Postupak ouhvata: prikupljanje potrene dokumentacije, procenu svojstava tla ispod ojekta, izor duine fudiranja i tipa temelja, određivanje nosivosti tla ispod ojekta i napona u kontaktnoj spojnici, kontrola stailnosti temelja, proračun sleganja i izor načina izvršenja radova.. Potrenu tehničku dokumentaciju čine: geodetske, seizmološke, hidrogeološke, geotehničke podloge i arhitektonsko građevinski projekat. 1
2 1/11/013 Parametri koji utiču na izor duine fundiranja Opasnost od mraza Sastav i svojstva tla Hidrogeološki uslovi Osetljivost tla na promenu uslova Duina fundiranja susednih ojekata Postojeće komunikacije i prepreke Veličina i priroda opterećenja Namena ojekta Duina erozije rečnog dna 3 Dejstvo mraza Kada se temelj oslanja na stenu mora se sprečiti prodor vode u kontaktnu površinu ako je ona u zoni zamrzavanja. Kada se temelj oslanja na sloj peska ili šljunka duina fundiranja je najmanje 0.5m a nivo podzemne vode mora iti ispod duine zamrzavanja. Za ostale vrste tla duina fundiranja zavisi od NPV. Duina zamrzavanja je ona duina na kojoj se može ostvariti zamrzavanje tla (-1 C za nekoherentno a + 1 C za ostale vrste tla). U našim uslovima min duina fundiranja je m. 4
3 1/11/013 Sastav i svojstva tla 5 Osetljivost tla na promenu vlažnosti Ekspanzivna tla tla visoke plastičnosti su tla koja pri promeni vlažnosti menjaju svoju zapreminu (urenje i skupljanje) u meri koja uzrokuje deformacije tla i oštećenja ojekata. Metastailna tla les: prašinasto tlo eolskog porekla, veoma osetljivo na povećanje vlažnosti pri čemu dolazi do raskidanja strukturnih veza i tzv. kolapsa lesa praćenog velikim sleganjima. 6 3
4 1/11/013 Duina fundiranja susednih ojekata D f1 D f3 D f D f D f1 Df3 7 plitki temelji i duoki temelji 1. Trakasti temelji. Temelji samci Vrste fundiranja Vrste plitkih temelja 3. Temeljni nosači (kontragrede) 4. Temeljni roštilji 5. Temeljne ploče 8 4
5 1/11/013 Vrste duokih temelja 1. Temelji na šipovima. Duoki masivni temelji 3. Temelji na unarima 4. Temelji na kesonima 9 Plitki temelji Plitki temelji prenose opterećenje od ojekta na tlo preko kontaktne površine između temelja i tla Temeljne trake Trakasti temelji se postavljaju ispod nosivih zidova Određivanje naležuće površine temelja se vrši iz uslova nosivosti tla (širina temelja se određuje, dužina L je 1 m) 10 5
6 1/11/013 Olikovanje trakastog temelja nearmirani eton a a z z D f d d d d 11 Olikovanje A trakastog temelja 1 6
7 1/11/013 Centrično opterećena temeljna traka H V P H a/ Gde je P- vertikalno opterećenje koje se prenosi sa zida G-težina temelja i tla iznad temelja 13 Određivanje širine temelja Ukupno opterećenje u nivou temeljne spojnice je: P+G gde je: G=FH +Fh z z =F(H+zhz) h GFD z z f 1 1 F D h h Gde je: 1 z 1 z 0, 85 h P G Napon u nivou temeljne spojnice je: F 1m (m ) F P G F za = dop dop f H V P 14 7
8 1/11/013 F F dop dop F PF Df D P dop f P D f -širina temelja P-vertikalno opterećenje dop -dopušteni napon u tlu -zapreminska težina etona D f -duina fundiranja =0,85 Ekscentrično opterećen temelj u jednoj ravni Df ht hz M P H 15 -simetrična stopa temelja Df ht hz M P T / / H Redukcija sila na težište temeljne spojnice P-vertikalno opterećenje H-horizontalno opterećenje M-momenat savijanja Df ht hz M P T / / H M-ukupni momenat u težištu temeljne spojnice M MH h t Napon u nivou temeljne spojnice P G M F W 16 8
9 1/11/013 P G M F W GF D f F 1,0 1,0 W 6 6 P P Df 6M dop / dop Df 6M dop D P6M 0 dop f Jednačina iz koje se doija širina temelja 17 -nesimetrična stopa temelja Df ht hz M MHht Pe Napon u nivou temeljne spojnice P G M F W M P H T e /-e / / M-ukupni momenat u težištu temeljne spojnice Temelj se postavlja ekscentrično u odnosu na osu zida. Razlog tome je ujednačavanje napona na kontaktnoj površini. Temelj se centriše za stalno opterećenje. M e V G G M G - momenat usled stalnog opterećenja V G - vertikalno stalno opterećenje Širina temelja D P6M 0 dop f 18 9
10 1/11/013 NAPONI NA KONTAKTU TEMELJA I TLA -centrično opterećen temelj -ekscentrično opterećen temelj 1 V T H V=P+G V e=0 1==V/ V H c e R T V V V * 0<e</6 1> e=/6 1=N/ =0 V=P+G e= M V /6<e</ c=/-e *=3c 1=N/* = Ekscentrično opterećen temelj u oe ravni 0 10
11 1/11/013 I. Centrično pritisnuta temeljna traka od nearmiranog etona ZADATAK 1 Izvršiti dimenzionisanje trakastog temelja od nearmiranog etona. Vertikalna sila u zidu V=80 kn/m Deljina zida d z =5 cm Dozvoljeno opterećenje tla σ zdoz =0.15 MPa =150 kn/m Zapreminska težina tla =18 kn/m 3 Duina fundiranja D f =1.0 m Marka etona M0 kn/m3 V Df kn/m Određivanje širine stope F dop V D f 80 F 0,61m 15041,0 0,85 Usvojeno =0,65m 1. Reaktivno opterećenje na temelj n V 80 13,07kN/ m 0, Veličina konzolnog prepusta d / 0,65 0,5 / 0,0m a z ht hz 050 a dz a 100 Df n 11
12 1/11/ Određivanje visine temelja Određivanje visine temelja prema PA87,, V 80 3 h z z 13,07kN/ m t a 0,65 z a 0,m dozvoljeni napon zatezanja u etonu izazvan savijanjem h a t M(Mpa) z 0,0 0,35 0,50 0,80 1,00 3 z, z 0, Kao uprošćenje može da se koristi 30,13 0, 0,86 0,17m 0,5 h t a Određivanje visine temelja prema S. Stevanoviću ht 10 ctg tg a k n M(Mpa) ,11 0,089 0,078 0,070 0,063 n k M 0,078 n 13,07 11,09 ctg 0,07811,09 0,87 h t 0, ,40cm 4 1
13 1/11/ Određivanje visine temelja prema Johan Sklena h a t n n N/ cm M(Mpa) ,378 0,93 0,45 0,15 0,194 0,45 n 1,31 h t 0 0,45 1,31 17,19cm Usvojena visina temelja h t =40 cm Kontrola napona u nivou temeljne spojnice Analiza opterećenja: Vertikalna sila 80.00kN/m Opterećenje od zemlje iznad stope ( )x0.65x18= 7,0kN/m Sopstvena težina stope 0,65x0.40x4.0 = 6,4kN/m Ukupno opterećenje ΣV= 93,6kN/m Stvarni napon u tlu na nivou temeljne spojnice iznosi V 93,6 143,47kN /m 150kN /m 0,
14 1/11/013 II. Centrično pritisnuta temeljna traka od armiranog etona. ZADATAK Izvršiti dimenzionisanje trakastog temelja od armiranog etona. Vertikalna sila u zidu V=00 kn/m Deljina zida d z =0cm Dozvoljeno naprezanje tla σ zdoz =0.16MPa=160kN/m Duina fundiranja D f =1.m Zapreminska težina tla =18 kn/m 3 Marka etona M30 Vrsta čelika RA400/500- dz kn/m3 V Df kn/m3 7.1 Određivanje širine stope F dop V D f 00 F 1,48m , 0,85 Usvojeno =1,50m. Reaktivno opterećenje na temelj n V ,33kN/ m 1,50.3 Veličina konzolnog prepusta d / 1,5 0, / 0,65m a z ht hz a dz a 10 Df n 8 14
15 1/11/013.4 Usvajanje visine temelja Usvaja se visina temelja h t =40 cm..5 Kontrola napona u nivou temeljne spojnice Analiza opterećenja: Vertikalna sila 00,0 kn/m Opterećenje od tla iznad stope ( )x0.8x18= 18,7kN/m Sopstvena težina stope 1.50x0.40x5.0 = 15,00kN/m Ukupno opterećenje ΣV= 33,7kN/m Stvarni napon u tlu na nivou temeljne spojnice iznosi V 33,7 155,81kN /m 1,50 160kN /m 9.6 Dimenzionisanje temeljne trake Momenat savijanja u preseku I-I M II M U n a 133,33 0,65 1,658,16 46,46kNm/ m 8,16kNm/ m,, ht hz I I a dz a 10 Df n M30 f 0,5MPa,05kN/ cm RA400/500 v 400MPa 40kN/ cm 30 15
16 1/11/013 -statička visina preseka h ht a cm -statička visina (rastojanje od pritisnute ivice do težišta zategnute armature) Računamo: k h Mu f 35 46,4610,05100 Iz talica Za k=7,347 čitamo: 10 / 0,675 a / 0, , 879 M o 7, h a a h h a I I 10 Df podeona armatura glavna armatura glavna armatura podeona armatura usvajanje armature f Aa 1M h A A a Mu h v v 1,879, ,37cm /m , ,39cm 0, h 0, ,3cm h 34,3 0,855 h 40 t /m Zaključujemo da se može armatura priližno odrediti po formuli a M 0,85 h u t v 46, ,4cm 0, /m 3 16
17 1/11/013 -usvajamo R10 1 a cm A 0,79 -razmak profila glavne armature 1 A 100 0, e a a 3,09cm A 3,4 pot -usvojeno Glavna armatura R10/0cm Podeona armatura R8/0cm -površina jedne šipke armature R8/0 R10/ Kontrola temelja na prooj, n 133,33 Pr z, Pr 40 p 0,017kN / cm 0,13MPa z 100 0,9 35 RA 5R10 5 0,79 0,0011 0,11% h d h 1,5 0, 0,35 40kN 1 1,3 a 1,3 1,3 0,11 0,56 0,7 1 a 0,7 0,56 0,8 0,31MPa 0,7 1 a p 0,31 0,13MPa Nije potreno ojačanje 34 17
18 1/11/013 III. Ekscentrično pritisnuta temeljna traka od armiranog etona 3. ZADATAK Izvršiti dimenzionisanje trakastog temelja od armiranog etona. Opterećenje zida -stalno V g =10 kn/m -povremeno V p =60 kn/m M p =60 knm/m H p =0 kn/m Deljina zida d z =0cm Dozvoljeno naprezanje tla σ zdoz =0.18MPa=180kN/m Duina fundiranja D f =1.m Zapreminska težina tla =18 kn/m 3 Marka etona M0 Vrsta čelika RA400/ Određivanje širine temeljne stope M-ukupni momenat u težištu temeljne spojnice M MH h t V V V kN g Određivanje širine temelja D V 6M 0 dop p f 180 0,85 51, , , 180 1,31m , ,40 154,5 309 Usvojena širina temelja =,35 m 36 18
19 1/11/ Određivanje kontaktnih napona Stalno opterećenje g Vg 10 51,06kN / m F,35 1,0 Povremeno opterećenje p,1, p,1 Vp 6 M ,53 73,87 L L,35 1.0,35 1,0 5,53 73,87 99,40kN / m p, 5,53 73,87 48,34kN / m Usvojena visina temelja h t =40 cm Dimenzionisanje temelja Sile u preseku I-I II 1,075 M g 51,06 9,50kNm /m II 1,075 Mp 31,77 99,40 31,77 1, ,075 31,38kNm /m 3 T I g I 51,06 1,075 54,90kN /m T I p I 31,77 1,075 1,075 99,40 31,77 70,50kN / m Ultimativno opterećenje II II Tu 1,6 Tg 1,8 Tp 1,6 54,90 1,8 70,50 14,74kN /m II II M u 1,6 M g 1,8 Mp 1,6 9,50 1,8 31,38 103,68kNm / m 38 19
20 1/11/013 Kontrola smičućih napona II u T 14,74 n 0,068kN / cm z 100 0,9 35 Nije potreno osiguranje Dimenzionisanje na savijanje -statička visina preseka h ht a cm 0.08kN / cm r M 0 f=1,4 kn/cm RA400/500 v =40 kn/cm k h Mu f , , ,067 Iz talica Za k=4,039 čitamo: 10/1, 375 o 0, , 406 A a 1M f h v a / 6,406 1, ,85cm /m M 39 -usvajamo R10 1 a cm A 0,79 -razmak profila glavne armature 1 A 100 0, e a a 10,06cm A 7,85 pot -usvojeno Glavna armatura R10/10cm Podeona armatura R8/0cm -površina jedne šipke armature
21 1/11/ Kontrola temelja na prooj P, r 51, ,8 0, A k a p 99,4 53,8 9,56 r 0,09kN / cm z 100 0,9 35 0,75 9,56kN, P RA h 1 10R ,9MPa 10 0,79 0,005 0,5% ,3 a 1,3 1,3 0,5 0,8 0,7 1 a 0,7 0,8 0,6 0,336MPa 0,7 a p 0,37 1,8 0,67MPa 0,336 0,9MPa Potreno ojačanje, r P 1,35 v p 9, ,1cm 40 R10/0cm glavna R8/0 cm podeona
FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI
1/11/013 FUNDIRANJE TEEJI SACI 1. CENTRIČNO OPTEREĆEN TEEJ SAAC. EKSCENTRIČNO OPTEREĆEN TEEJ SAAC 1 Temelj samac ekscentrično oterećen rostor 1 1/11/013 Dimenzionisanje A temelja samca 3 Određivaje visine
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Διαβάστε περισσότερα1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2
OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραProračunski model - pravougaoni presek
Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORIJA BETONSKIH KONSTRUKCIJA 1 PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - "T" PRESEK Na skici dole su prikazane sve potrene geometrijske veličine, dijagrami dilatacija i napona,
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 1 -
Betonske konstrukcije 1 - vežbe 1 - Savijanje pravougaoni presek Sadržaj vežbi: Osnove proračuna Primer 1 vezano dimenzionisanje Primer 2 slobodno dimenzionisanje 1 SLOŽENO savijanje ε cu2 =3.5ä β2x G
Διαβάστε περισσότεραKolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,
Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότεραPoglavlje 8 Temelj samac. Temelj ispod niza stubova. Ukršteni temeljni nosači. Pločasti temelji.
Poglavlje 8 Temelj samac. Temelj ispod niza stubova. Ukršteni temeljni nosači. Pločasti temelji. 8.1. TEMELJ SAMAC Da bi temelj bio temelj samac mora da zadovolji sledeće uslove: da je opterećen koncetrisanom
Διαβάστε περισσότεραTeorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραUNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA datum: 27. avgust 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU
UNIVERZITET U NOVOM SADU 01 08 FAKULTET TEHNIČKIH NAUKA datum: 7. avgust 01 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit Zadatak 1 je eliminatornog tipa (kvalifikuje
Διαβάστε περισσότεραDIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN
GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit Modul za konstrukcije 16.06.009. NOVI NASTAVNI PLAN p 1 8 /m p 1 8 /m 1-1 POS 3 POS S1 40/d? POS 1 d p 16 cm 0/60 d? p 8 /m POS 5 POS d p 16 cm 0/60 3.0 m
Διαβάστε περισσότεραZadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
Διαβάστε περισσότεραPRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραMEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada
Διαβάστε περισσότεραOpšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A
TEORIJA BETONSKIH KONSTRUKCIJA 25.12.2012. grupa A 1. 1.1 Dimenzionisati prema momentima savijanja (Mu) karakteristične preseke nosača prikazanog na skici 1. Prilikom dimenzionisanja obezbediti graničnu
Διαβάστε περισσότερα10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Διαβάστε περισσότεραKonstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A
Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)
Διαβάστε περισσότεραSVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET
SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije
Διαβάστε περισσότερα30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca
. Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA (NOVI NASTAVNI PLAN)
Odsek za konstrukcije 27.01.2009. TEORIJA BETONSKIH KONSTRUKCIJA (NOVI NASTAVNI PLAN) 1. Za AB element konstantnog poprečnog preseka, armiran prema skici desno, opterećen aksijalnom silom G=10 kn usled
Διαβάστε περισσότερα3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Διαβάστε περισσότεραII. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότεραDimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραPROSTA GREDA (PROSTO OSLONJENA GREDA)
ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje
Διαβάστε περισσότεραPRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)
Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F
Διαβάστε περισσότεραTEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραTemelji i potporni zidovi
Temelji i potporni zidovi Temelj Temelj je dio konstrukcije koji omoguava prijenos reaktivnih sila i momenata oslonaca u tlo. 3 Temelj mora: 1. prenositi reaktivne sile i momente u tlo s dovoljnom sigurnošu
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότεραOBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Διαβάστε περισσότεραPROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA
GRA EVINSKI FAKULTET UBEOGRADU PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA 1 12.06.2013. p=10 kn/m 2 p=8kn/m 2 p=10 kn/m 2 25 W=±60 kn 16 POS 1 80 60 25 25 POS 1 60 POS 3 60 POS 4 POS 2 POS 3 POS 4 POS
Διαβάστε περισσότεραII. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE. Program
BETONSKE KONSTRUKCIJE Program Zagreb, 017. Ime i prezime 50 60 (h) 16 (h0) () () 600 (B) 600 (B) 500 () 500 () SDRŽJ 1. Tehnički opis.... Proračun ploče POZ 01-01... 3.1. naliza opterećenja ploče POZ 01-01...
Διαβάστε περισσότερα4. STATIČKI PRORAČUN STUBIŠTA
JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0
Διαβάστε περισσότερα4. STATIČKI PRORAČUN STUBIŠTA
JBG 4. STTIČKI PRORČUN STUBIŠT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 9 6 5 5 SVEUČILIŠTE U ZGREBU JBG 4. Statiči proračun stubišta 4.. Stubišni ra 4... naliza opterećenja 5 5 4 6 8 0 Slia 4..
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE. Program
BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče
Διαβάστε περισσότερα35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD
Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti
Διαβάστε περισσότεραPREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar
PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραPREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
Διαβάστε περισσότερα4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I
4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραMETALNE KONSTRUKCIJE ZGRADA
METALNE KONSTRUKCIJE ZGRADA 1 Skr. predmeta i red. br. teme Dodatne napomene objašnjenja uputstva RASPORED SADRŽAJA NA SLAJDOVIMA NASLOV TEME PODNASLOVI Osnovni sadržaj. Važniji pojmovi i sadržaji su štampani
Διαβάστε περισσότεραTABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II
TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo
Διαβάστε περισσότεραCENTRIČNO PRITISNUTI ELEMENTI
3/7/013 CETRIČO PRITISUTI ELEMETI 1 Primeri primene 1 3/7/013 Oblici poprečnih presea 3 Specifičnosti pritisnutih elemenata ivijanje Konrola napona u poprečnom preseu nije dovoljan uslov a dimenionisanje;
Διαβάστε περισσότεραPRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE
1 BETONSKE KONSTRUKCIJE RAMOVSKE KONSTRUKCIJE Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Ramovske konstrukcije 1.1. Podela 1.2. Statički sistemi i statički proračun 1.3. Proračun
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
Διαβάστε περισσότεραUZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
Διαβάστε περισσότεραAksijalno pritisnuti štapovi konstantnog višedelnog preseka
Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότεραPriveznice W re r R e o R p o e p S e l S ing n s
Priveznice Wire Rope Slings PRIVEZNICE OD ČEIČNO UŽEA (RAE) jenosruke SINE WIRE ROPE SINS Sanar EN P P P P P P P P P P P P ozvoljeno operećenje kg elemeni priveznice prekina jenokrako vešanje ) ouvaanje
Διαβάστε περισσότερα5. NAPONI I DEFORMACIJE
MEHANIKA TLA: Naponi i deformacije 59 5. NAPONI I DEFORMACIJE Klasifikacija tla i poznavanje osnovnih pokazatelja fizičkih osobina tla je potrebno ali ne i dovoljno da bi se rešio najveći broj zadataka
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότερα5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I
5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni
Διαβάστε περισσότεραTEMELJENJE STUP PRO[IRENJE KOJE NIJE OBAVEZNO PRESJEK A-A TLOCRT A A. Temelji samci i temeljne trake TLOCRT TLOCRT KONSTANTNE DEBLJINE PROMJENJIVE
TEMELJENJE TEMELJ je dio konstrukcije koji omogućuje da se opterećenje sa "ležajeva" konstrukcije raspodjeli na toliku površinu tla, kolika je potrebna kako bi se postigla potrebna sigurnost od sloma tla,
Διαβάστε περισσότεραSEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Διαβάστε περισσότεραMETALNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1. Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja.
3/7/013 Označavanjeavanje čelika i osnove proračuna METLNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1 1 Označavanje čelika Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja.
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7.
ODSEK ZA KONSTRUKCIJE 28.01.2015. grupa A g=50 kn/m p=60 kn/m 60 45 15 75 MB 35, RA 400/500 7.5 m 5 m 25 1.1 Odrediti potrebnu površinu armature u karakterističnim presecima (preseci na mestima maksimalnih
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραPoglavlje 7 PLITKO FUNDIRANJE. TRAKASTI TEMELJ.
Poglavlje 7 PLITKO FUNDIRANJE. TRAKASTI TEMELJ. 7.1. UVOD Fundiranje je disciplina inženjerske specijalnosti geotehnike. Geotehnika se bavi problemima vezanim za razna ispititvanja, projektovanja i građenja
Διαβάστε περισσότερα20 mm. 70 mm i 1 C=C 1. i mm
MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότερα3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
Διαβάστε περισσότεραGrađevinski fakultet Modul konstrukcije pismeni ispit 22. jun 2015.
Univerzitet u Beogradu Prethodno napregnuti beton Građevinski fakultet grupa A Modul konstrukcije pismeni ispit 22. jun 2015. 0. Pročitati uputstvo na kraju teksta 1. Projektovati prema dopuštenim naponima
Διαβάστε περισσότεραKrute veze sa čeonom pločom
Krute veze sa čeonom pločom Metalne konstrukcije 2 P6-1 Polje primene krutih veza sa čeonom pločom Najčešće se koriste za : Veze greda sa stubovima kod okvirnih nosača; Montažne nastavke nosača; Kontinuiranje
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραKlasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)
UNIVERZITET U NOVOM SADU 2012 03 FAKULTET TEHNIČKIH NAUKA datum: 07. April 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) Zadatak 1 (100%) - eliminatorni
Διαβάστε περισσότερα1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa
a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak
Διαβάστε περισσότεραPonašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Διαβάστε περισσότερα