Međutim, Organskih jedinjenja (OJ) ima preko 30,000,000.
|
|
- Πηνελόπεια Μακρή
- 7 χρόνια πριν
- Προβολές:
Transcript
1 rganska hemija emija ugljenikovih jedinjenja GANSKI MLEKULI. Ime GANSKA EMIJA je pogrešno, a potiče iz vremena tzv. VITALISTIČKE TEIJE (vis vitalis): "GANSKA JEDINJENJA (J) mogu biti sintetisana samo pod uticajem vitalnih sila u telima životinja i biljaka". Sintezom uree (organsko jedinjenje) iz amonijum cijanata (neorganska so), Veler (Wohler) god. pobija vitalističku teoriju: + - N 4 N amonijum-cijanat N 2 N 2 urea rganskih jedinjenja (J) ima preko 30,000,000. Predmet izučavanja Izolovanje i sintetsko dobijanje J. Dokazivanje strukture J. dređivanje fizičkih i hemijskih osobina J. Upoznavanje sa načinima primene J. 1 EMIJSKE EAKIJE Da bismo mogli da transformišemo jedne molekule u druge, moramo poznavati EMIJSKE EAKIJE i njihov MEANIZAM. Primer: eakcija hlorovanja metana (r-ja supstitucije) Međutim, 4 + l 2 3 l + l ili hν metan hlor hlormetan hlorovodonik EAKTANTI (SUPSTATI) PIZVDI simboli: - zagrevanje hν - ozracivanje ultra-ljubicastom (Ulj) svetlošcu 4 + l 2 s.t. nema r-je 2
2 MEANIZAM EMIJSKE EAKIJE Poznavati MEANIZAM EAKIJE znači znati: koje hemijske veze o se raskidaju o nastaju, postoji li na putu supstrat-proizvod intermedijarno jedinjenje, energetski bilans reakcije (da li je r-ja egzotermna ( < 0) ili endotermna ( > 0)). eakcija hlorovanja metana je primer egzotermne hemijske r-je: D o 3 + l l l l ili hν D o = energija disocijacije veze = unos energije izlaz energije = ΣD (raskinutih veza) ΣD (nastalih veza) = ( ) ( ) = 25 kcal mol 1 Poznavanje EKING MEANIZMA nam omogućava da: utičemo na tok hemijske reakcije, planiramo sintezu (pravljenje) željenog J. 3 Sirovi proizvod Kao proizvod organske sinteze dobija se tzv. sirovi proizvod smeša željenog jedinjenja i različitih primesa, kao što su: neizreagovali regensi, intermedijarni proizvodi sinteze, sekundarni proizvodi nastali sporednim r-jama, rastvarač, proizvodi razgradnje čistih reaktanata. Izolovanje i prečišćavanje J Neke od metoda koje se koriste za izolovanje i prečišćavanje organskih supstanci su: prekristalizacija i kristalizacija, destilacija, ekstrakcija, hromatografija itd. ne se zasnivaju na različitim: hemijskim i fizičkim osobinama organskih supstanci. 4
3 Kao kriterijum čistoće J služe nam fizičke konstante, poput: temperatura o topljenja o ključanja, relativna gustina, indeks prelamanja. Spektroskopske tehnike Na čistoću ali i na strukturu organskih jedinjenja ukazuju njihovi SPEKTI, dobijeni primenom raznih SPEKTSKPSKI TENIKA: ultraljubičasta (UV) spektroskopija, infracrvena (I) spektroskopija, nuklearno-magnetna rezonantna (NM), spektroskopija, masena spektroskopija (MS), elektron-spin spektroskopija (ES). 5 EMPIIJSKA FMULA Prikazuje vrstu i relativni odnos atoma u molekulu. Najjednostavnija formula nekog jedinjenja. dređujemo je: elementarnom analizom, na osnovu rezultata kvalitativne i kvantitativne hem. analize. MLEKULSKA FMULA Prikazuje vrstu i broj atoma u molekulu. dređujemo je na osnovu EMPIIJSKE formule i MLEKULSKE MASE. MLEKULSKA MASA se određuje masenom spektroskopijom. STUKTUMA FMULA Prikazuje strukturu molekula, konstituciju (način vezivanja atoma u molekulu). Tabela 1. azličite formule butana Naziv formule Formula empirijska 2 5 ( : = 2 : 5; rel. odnos) molekulska 4 10 strukturna
4 7 8 STUKTUNA FMULA Tabela 2. Strukturne formule nekih jedinjenja Kekulé-ova formula formula u razvijenom obliku: veze su prikazane pomoću crtica, slobodni elektronski parovi su prikazani tačkicama. Formula Jedinjenje 1 Kekulé-ova. Br... acionalna formula: acionalna Br izostavljene su jednostruke veze i slob. el. parovi, osnovni ugljovodonični niz se crta horizontalno, a vezani -atomi, obično, sa desne strane odgovarajućeg -atoma, supstituenti u osnovnom nizu dodaju se vezani vertikalnim crtama. Formula veza-crta": veza-crta" Formula Jedinjenje 2 Kekulé-ova Br N ugljovodični skelet se crta "cik-cak linijom, izostavljajući sve vodonikove atome, acionalna 2 N svaki završetak predstavlja metil-grupu ( 3 ), a svaki vrh i račvanje -atom. veza-crta" N
5 MDELI Trodimenzionalni prikaz molekula Loptica i štapić Prostorni model 9 KLINASTE FMULE Predstavljanje TDMENZINALNE strukture organskih molekula: ugljovodični niz se crta "cik-cak" nalazi se u ravni hartije (table.), na svaki -atom duž niza dodaju se klinaste pune i isprekidane crte da bi se predstavile preostale dve veze: o isprekidana crta - veza se nalazi ISPD ravni lista hartije (table.), o klinasta crta veza se nalazi IZNAD ravni lista hartije (table.). uglenikov niz metan. metoksimetan 10
6 NEKI VAŽNI PJMVI: STUKTUA (konstitucija) redosled vezivanja atoma u molekulu. KNFIGUAIJA prostorni raspored atoma i atomskih u molekulu. KNFMAIJE različiti oblici molekula koji su posljedica rotacije dela molekula oko jednostruke veze (jedan isti molekul, određene konstitucije i konfiguracije, može zauzimati bezbroj različitih oblika u prostoru). IZMEI IZMEI su različita jedinjenja iste molekulske formule. Postoje: STUKTUNI (konstitucioni) izomeri - razlikuju se po strukturi tj. po redosledu vezivanja atoma u molekulu, STEEIZMEI (prostorni izomeri) - imaju istu strukturu tj. atomi u molekulu su vezani na isti način ali imaju različit prostorni raspored atoma i u molekulu (KNFIGUAIJU). 11 STUKTUNI (konstitucioni) izomeri a. Izomerija niza butan b. Izomerija položaja l hlorpropan metilpropan l hlorpropan c. Izomerija funkcionalnih etanol (etil-alkohol) metoksimetan (dimetil-etar) d. Tautomeri (nalaze se u ravnoteži) 3 keto-oblik 2 enolni-oblik ( 4 10 ) ( 3 7 l) ( 2 6 ) ( 2 4 ) 12
7 STEEIZMEI (prostorni izomeri) Primer 1: mlečna kiselina 3 * Atom obeležen "* je tzv. ASIMETIČAN atom ili STEEENTA. Vezan je za 4 različita supstituenta! * * 3 3 * 3 (A) (B) (B') ravan rotacija za 180 refleksije o (osa rotacije: veza -) * translacija Strukture A i B' se NE mogu poklopiti NISU identične. A i B su ENANTIMEI (enantios, grčki, suprotan) stereoizomeri koji se međusobno odnose kao predmet i njegov NEpoklopivi lik u ogledalu. 13 Da bi se preveli jedan u drugi neophodno je raskinuti veze. Za molekule koji ne mogu da se preklope sa svojim likom u ogledalu, kaže se da su IALNI. Uslov hiralnosti je ASIMETIČAN atom (npr. *)! A i B su STEEIZMEI! GEMETIJSKA IZMEIJA is- i trans-izomeri. Primer 2: 2-buten cis-2-buten (Z)-2-buten ravan refleksije 3 trans-2-buten (E)-2-buten is- i trans-2-buten su DIASTEEMEI stereoizomeri koji se NE odnose kao predmet i njegov lik u ogledalu! 14
8 PDELA GANSKI JEDINJENJA J su klasifikovana prema njihovoj strukturi. Podela J prema strukturi ugljenikovog niza: organska jedinjenja 15 FUNKINALNE GUPE Funkcionalna (FG) je atom ili atoma koja predstavlja deo organskog molekula i određuje hemijsko ponašanje celog molekula. Tabela 3. Uobičajene funkcionalne grupe 16 -atomi grade otvoreni niz zasicena aciklicna (alifaticna) prsten izgrađen samo od - atoma nezasicena karbociklicna ciklicna -atomi grade prsten heterociklicna prsten izgrađen od -atoma i jednog ili više heteroatoma Klasa jedinjenja pšta formula Funkc. (FG) alkani alkeni () () () () alkini () aromatična jedinjenja Naziv FG dvostruka veza () trostruka veza () () () () () () aromatičan prsten hem. osobine slične alifatičnim jed. aliciklicna (alifaticno- -ciklicna) aromaticna specifične hem. osobine alkilhalogenidi alkoholi X : X : X = F, l, Br, I atom halogena hidroksilna Dalja podela se vrši prema FUNKINALNIM GUPAMA! etri ' Ȯ. etarska
9 17 18 Tabela 3. Nastavak Klasa jedinjenja pšta formula Funkc. (FG) Naziv FG Zadatak: U sledećim primerima zaokružite karakteristične funkcionalne grupe pojedinih klasa organskih jedinjenja. tioli aldehidi ketoni S S : : : : ' karboksilne : : kiseline anhidridi : : : : '() merkapto : : aldehidna : : keto : : : : karboksilna : : anhidridna N 2 S 2 3 l N 2 S 2 3 l estri () : : ' : : estarska amidi : : N '() N ''() : : amidna nitrili N: N: cijano amini Ṅ. amino N ''() '()
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Osnovne veličine, jedinice i izračunavanja u hemiji
Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
HEMIJSKI PRINCIPI U INŽENJERSTVU ZAŠTITE ŽIVOTNE SREDINE
Univerzitet u Novom Sadu Fakultet tehničkih nauka HEMIJSKI PRINCIPI U INŽENJERSTVU ZAŠTITE ŽIVOTNE SREDINE INTERNA SKRIPTA Dr Mirjana Vojinović Miloradov, profesor emeritus Dr Jelena Radonić, docent Dr
STVARANJE VEZE C-C POMO]U ORGANOBORANA
STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
ОРГАНСКA ХЕМИЈA ХАЛОГЕНАЛКАНИ
ОРГАНСКA ХЕМИЈA Предавања ХАЛОГЕНАЛКАНИ Др Весна Антић, ванредни професор Др Малиша Антић, ванредни професор Halogenalkani - alkilhalogenidi- Halogenalkani su jedinjenja opšte formule R-X, gde je X atom
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
C C C C C C C C C C C C H C CH 2 H 3 C H. Br C CH 2. 1 konjugovane 2 izolovane 3 kumulovane C=C veze. C=C veze. C=C veze. 1,3-cikloheksadien
DIENI Dieni su ugljovodonici koji sadrže dve = veze u molekulu U zavisnosti od rasporeda = veza, dieni mogu biti: konugovani, nekonjugovani (izolovani), kumulovani (tzv aleni) konjugovane izolovane kumulovane
Ο H C C H HC5 3CH \ / \ 4 /
1 RUDARSKI ODSEK-Eksploatacija tečnih i gasovitih mineralnih sirovina i gasna tehnika PREDMET: EMIJA I PRERADA NAFTE I GASA (za studente VI semestra) Prof. dr Slobodanka Marinković (21.3.2008) AROMATIČNI
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
UGLJOVODONICI. Organska jedinjenja koja sadrže samo ugljenik i vodonik (C i H)
UGLJOVODONICI Organska jedinjenja koja sadrže samo ugljenik i vodonik (C i ) PODELA UGLJOVODONIKA emijske osobine ugljovodonika Ugljovodonici Veze u molekulu emijska reaktivnost Vrsta hem. reakcija Zasićeni
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Metan CH 4 C H. 0,110 nm. 109,5 o
1 2 ALKANI Zasićeni (aciklični) ugljovodonici ili parafini neaktivni (nedovoljno afiniteta, lat parum affinis) Pokazuju slabu reaktivnost Nemaju funkcionalnu grupu! Svi -atomi su sp 3 hibridizovani Opšta
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa. Presentation 3.
Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa Presentation 3. ACIKLIČNI UGLJOVODONICI Alkeni (nezasićeni ugljovodonici, olefini) Alkeni su aciklični nezasideni ugljovodonici u čijim molekulima je prisutna
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
АЛКАНИ И ЦИКЛОАЛКАНИ
ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ Предавања АЛКАНИ И ЦИКЛОАЛКАНИ Др Весна Антић, ванредни професор Др Малиша Антић, ванредни професор UGLJOVODONICI Jedinjenja koja sadrže samo ugljenik i vodonik Zahvaljujući osobinama
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
HEMIJSKA VEZA ŠTA DRŽI STVARI (ATOME) ZAJEDNO?
HEMIJSKA VEZA ŠTA DRŽI STVARI (ATOME) ZAJEDNO? U OKVIRU OVOG POGLAVLJA ĆEMO RADITI Jonska i kovalentna veza. Metalna veza. Elektronska teorija hemijske veze. Struktura molekula. Međumolekulske interakcije.
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
ANALITIČKA KEMIJA II - SEMINAR
ANALITIČKA KEMIJA II - SEMINAR UVD STATISTIKA osnovni pojmovi BLTZMANNVA RAZDIBA ATMSKA SPEKTRSKPIJA predavanja i seminar MLEKULSKA SPEKTRSKPIJA primjena UV/VIS MLEKULSKA SPEKTRSKPIJA primjena UV/VIS dodatni
Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore OLIMPIJADA ZNANJA 2018. Rješenja zadataka iz HEMIJE za IX razred osnovne škole 1. Koju zapreminu, pri standardnim uslovima, zauzimaju
HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO
HEMIJA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole školska 2012/2013. godina UPUTSTVO Ne otvarajte test dok vam test-administrator ne kaže da možete početi sa radom. Dozvoljen pribor:
C n H 2n+2 ALICIKLIČNI AROMATIČNI. alkani alkeni. dieni. alkini. Jedinjenja sastavljeni samo od dve vrste atoma, ugljenika i vodonika.
PEDAVANJE 9. AIKLIČNI AOMATIČNI ALIIKLIČNI Jedinjenja sastavljeni samo od dve vrste atoma, ugljenika i vodonika. Doc.dr Mirjana Abramović ZASIĆENI alkani alkeni NEZASIĆENI ENI alkini dieni IKLOALKANI IKLOALKENI
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ
ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ Предавања УВОДНО ПРЕДАВАЊЕ Др Весна Антић, ванредни професор Др Малиша Антић, ванредни професор Радна недеља Датум Предавање I - Увод, структура органских молекула II - Алкани III
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
REAKCIJE ELIMINACIJE
REAKIJE ELIMINAIJE 1 . DEIDROALOGENAIJA (-X) i DEIDRATAIJA (- 2 O) su najčešći tipovi eliminacionih reakcija X Y + X Y 2 Dehidrohalogenacija (-X) X strong base + " X " X = l, Br, I 3 E 2 Mehanizam Ova
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Kvantitativni odnosi strukture i dejstva
FARMAEUTSKA HEMIJA 1 KVANTITATIVNI DNSI STRUKTURE I DEJSTVA LEKVA Predavač: Prof. dr. Slavica Erić Kvantitativni odnosi strukture i dejstva X N H N 4-X-pirazoli X Log1/Ki heksil 6.9 pentil 6.82 propil
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
STRUKTURA ATOMA. Dalton (1803) Tomson (1904) Raderford (1911) Bor (1913) Šredinger (1926)
Dalton (1803) Tomson (1904) Raderford (1911) Bor (1913) Šredinger (1926) TALASNO MEHANIČKI MODEL ATOMA Hipoteza de Brolja Elektroni i fotoni imaju dvojnu prirodu: talasnu i korpuskularnu. E = hν E = mc
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
ALKENI. Nezasićeni ugljovodonici Sadrže dvostruku vezu Može biti više dvostrukih veza u molekulu
ALKENI Nezasićeni ugljovodonici Sadrže dvostruku vezu Može biti više dvostrukih veza u molekulu ALKENI (OLEFINI) STRUKTURA DVOSTRUKE VEZE STRUKTURA DVOSTRUKE VEZE NOMENKLATURA Alkeni imaju sufiks en Položaj
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
DERIVATI KARBOKSILNIH KISELINA. Jedinjenja izvedena iz karboksilnih kiselina
DERIVATI KARBKSILNIH KISELINA Jedinjenja izvedena iz karboksilnih kiselina Podela derivata karboksilnih kiselina Derivati kiselina (zamena H grupe u CH grupi) hloridi kiselina amidi kiselina anhidridi
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.
1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje
Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.
Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
LANCI & ELEMENTI ZA KAČENJE
LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n