Tema 2. PRELUCRAREA REZULTATELOR EXPERIMENTALE
|
|
- θάνατος Κοτζιάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Tea. PRELUCRAREA REZULTATELOR EXPERIMENTALE. Eror de ăsură A ăsura o ăre X îseaă a copara acea ăre cu alta de aceeaş atură, [X], aleasă pr coveţe ca utate de ăsură. I ura aceste coparaţ se poate scre X=x[X] () ude x este valoarea uercă a ăr de ăsurat. Î geeral, valoarea adevărată a ue ăr de ăsurat u poate f cuoscută. Operaţle de ăsurare sut afectate îtodeaua de eror. D această cauză prezetarea rezultatulu ue ăsurător trebue să fe îsoţtă de precza cu care a fost obţut. Erorle de ăsură se pot clasfca î două categor: - ssteatce - îtâplătoare (aleatoare) Cele dtâ, î geeral se repetă detc la fecare ăsurătoare; ele sut codţoate de o aceeaş cauză care acţoează î acelaş ses (de ex.etaloarea greştă a struetulu de ăsură). Î prcpu acest ge de eror poate f elat prtr-o aalză atetă a codţlor ş etodelor de ăsurare. Erorle îtâplătoare u pot f îlăturate coplet. Ele se datoresc uor cauze dverse care acţoează î sesur dferte de la o ăsurătoare la alta. Pe lâgă acestea, î tpul uor ăsurător pot apărea eror grosolae: rezultatul ăsurător afectate de o astfel de eroare dferă ult de area ajortate a celorlalte ăsurător. Ele sut provocate de o cauză obectvă care u se repetă sau de egljeţa cercetătorulu. Aşadar, estarea precze ue ăsurător este legată de studul erorlor îtâplătoare. Dacă x,x,...,x sut rezultatele î cele ăsurător efectuate asupra ăr X, atuc se adte că valoarea ede x = x () se aprope cel a be de valoarea adevărată x.
2 Prelucrarea datelor experetale 7 Se ueşte eroare (abatere) absolută ărea x = x x (3) Evdet erorle absolute apar cu seul + sau - ş x = 0 (4) Se calculează valoarea ede a odululu eror absolute pr relaţa: x = x = (5) Eroarea relatvă î ăsurătoarea se defeşte pr: x ε r = x (6) ar eroarea relatvă ede este: x ε r = x (7) ş se expră, de obce, î procete. Iversul eror relatve repreztă precza ăsurător. Rezultatul ue ăsurător se va prezeta î fora x = x ± x sau x x r x Dacă d cele expereţe, de (frecveţa absolută) or, se obţe valoarea x, atuc frecveţa relatvă a acestea este ν =. (8) Câd tde către ft, frecveţa ν tde la probabltatea p de realzare a eveetulu x. Dacă se efectuează u set de ăsurător ( destul de are) atuc probabltatea ca să se obţă de or rezultate cuprse ître x ş x + x este dată de p = = f ( x ) x (9) î care fucţa f ( x ) se ueşte fucţe de repartţe (sau de dstrbuţe) ş repreztă destatea de probabltate, adcă probabltatea corespuzătoare utăţ de terval a varable aleatoare x. La ltă, petru x 0 ş relaţa se trasforă î
3 8 FIZICĂ Tee experetale de d dp = = f ( x) d x. (0) Probabltatea de a găs valor x î tervalul (x, x ) este dată x ( x) p = f d x () x cărea î corespude ara haşurată pe fg... Probabltatea ca ărea ăsurată să a valor ître - ş + deve certtude, astfel că ara totală de sub curbă este egală cu utatea. f(x) Fg.. x x x x Cuoaşterea fucţe de dstrbuţe perte calculul valorlor ed ale ue ăr. Itr-adevăr, dacă d cele expereţe, de or se obţe valoarea x, atuc valoarea ede este x x = () care, petru u uăr are de ăsurător ş varaţa cotuă a varable aleatoare, deve xd x = = xf ( x) dx (3) O dstrbuţe orală (Gauss) a erorlor îtâplătoare se caracterzează pr faptul că erorle absolute de acelaş odul au aceeaş frecveţă de aparţe cu seul + ca ş cu seul -, ar erorle
4 Prelucrarea datelor experetale 9 de odul are apar rar. Aseeea coportare este descrsă de o fucţe de dstrbuţe de fora ( x x ) σ f ( x) = e (4) σ π Costata σ d fucţa de dstrbuţe f repreztă eroarea ede pătratcă (abaterea stadard): + ( ) x x f ( x ) σ = d x (5) Petru u uăr ft,, de ăsurător ea se calculează cu relaţa: ( x x) σ = (6) Abaterea stadard a ede ( x x) σ = (7) ( ) perte să se afre cu probabltate de cca 68% că valoarea adevărată x este stuată î jurul valor ed x u a departe î plus sau î us decât cu σ. Calculul erorlor petru ărle ăsurate drect. Fe o ăre y care rezultă dtr-u calcul efectuat cu ajutorul uor ăr drect ăsurable x, x,,x N : y = f x, x,..., x ) (8) ( N Erorle cose la ăsurarea varablelor x afectează valoarea calculată a ăr y. Se poate arăta că eroarea cea a are, î valoare absolută, petru y este dată de f f f y0 = x + x x x xn xn (9) ar eroarea relatvă
5 0 FIZICĂ Tee experetale y f f f = x + x + + ) 0 (l ) (l ) (l... x y x x x N N (0) Se adte că valoarea reală a ăr y va satsface codţa y y0 y y + y 0 ude y = f ( x, x,..., xn ) () Teora arată că î cazul î care asupra fecăre ăr care tră î (8) se face u uăr are de ăsurător, eroarea ede pătratcă a ede artetce (abaterea stadard a ede) este dată de relaţa: f f f = σ σ σ N x x x N σ () î care σ se calculează cu relaţa (7) ar î dervatele parţale se îlocuesc, î calcule, varablele x pr valorle lor ed x.. Reprezetăr grafce I fzca experetală se foloseşte adesea reprezetarea grafcă a datelor ăsurate experetal. Reprezetarea datelor pr grafce perte stablrea depedeţe fucţoale dtre două ăr ş a uor caracterstc cu ar f puctele de tersecţe ale curbe experetale cu axele, puctele de ax ş de, puctele de flexue, pata curbe, caracterstc de perodctate etc. Să cosderă cazul î care se cercetează depedeţa ue ăr y de o aută ăre x, adcă fucţa y(x). Petru u şr de valor alese de experetator petru varabla x se obţe u set de valor petru ărea y, care se arajează, de obce, îtr-u tabel de date. Se trasează u sste de axe rectagulare xoy; pe fecare axă se preczează ce ăre se repreztă ş utăţle de ăsură foloste (fg..). Se aleg scărle de reprezetare pe cele două axe astfel îcât hârta letrcă utlzată să poată cuprde îtregul doeu de varaţe al ărlor ăsurate. Dacă ărle ăsurate varază cu a ulte orde de ăre, ceea ce ar face posblă reprezetarea la o scară lară, se recurge la reprezetarea logartulu acestor ăr, adcă se alege o scară logartcă (fe pe o sgură axă, fe pe aâdouă). Scara aleasă pe o axă u codţoează î c u fel
6 Prelucrarea datelor experetale scara de pe cealaltă axă, ărle reprezetate pe cele două axe fd, î geeral char de atur dferte. Pe axe, la tervale de obce egale (la sau c) se scru valorle uerce corespuzătoare ăr reprezetate ( care expră scara) ş u coordoatele puctelor experetale. Se repreztă perechle de valor d tabelul de date pr pucte de coordoate (x,y). I cazul î care se pot apreca erorle absolute cose î fecare ăsurătoare, acestea se pot reprezeta grafc, î fecare puct experetal, pr bare vertcale ş orzotale (corespuzâd ărlor de pe fecare axă), de luge proporţoală cu eroarea respectvă. Datortă erorlor de ăsură, puctele experetale u se aşază pe o curbă etedă dar este recoadabl să se traseze o curbă prtre pucte, sugerată de asablul puctelor; pr aceasta se obţe o edere a erorlor experetale. Nu se uesc puctele prtr-o le frâtă! I(A) I U(V) U Fg..
7 FIZICĂ Tee experetale Curbă etedă astfel obţută repreztă ftarea (potrvrea) grafcă (to ft=a potrv) a depedeţe y(x) ş poate folos la găsrea fucţe y(x). De exeplu, dacă puctele deterate experetal coduc la u grafc sub fora ue drepte, atuc se caută o fucţe de fora y = x + b (3) î care costatele ş b se deteră d grafc. Petru deterarea pate, se aleg pe dreapta obţută experetal două pucte (î geeral, altele decât cele obţute experetal), cât a îdepărtate uele de altele petru a dua erorle relatve, ş se ctesc pe grafc varaţle x ş y corespuzătoare acestor pucte; atuc = y / x. Ordoata la orge b se obţe ctd pe grafc ordoata puctulu î care dreapta tae axa ordoatelor. Ateţe! Spre deosebre de cazul d geoetre, costatele ş b d forulele fzce au, î geeral, utăţ de ăsură! Dacă curba experetală u este o dreaptă, atuc găsrea fucţe care să o descre este o probleă a coplcată, dar î ulte cazur rezolvablă. 3. Metoda celor a c pătrate După cu s-a arătat a sus, reprezetarea grafcă a deterărlor experetale poate sugera fora fucţe de depedeţă a ăr y de ărea x, y(c,c,...,c k, x), dar răâe deschsă problea găsr costatelor c k care tră î fucţe (î forulă). Petru rezolvarea aceste problee se foloseşte etoda celor a c pătrate. Forulele de fora y= y(c,c,...,c k, x), deduse pe cale teoretcă (raţoală), care coţ costate ce depd de paraetr fzc be deteraţ, se uesc forule raţoale (de exeplu, forula de varaţe a destăţ uu corp sold cu teperatura, ρ = ρ 0 /( + γ t) î care costata ρ 0 este destatea corpulu la 0 o C ar γ este coefcetul de dlatare volucă al ateralulu corpulu). Dacă o astfel de forulă rezultă ua î ura expereţe, care stableşte doar valorle uerce ale costatelor, atuc vorb de o forulă
8 Prelucrarea datelor experetale 3 eprcă (de exeplu, depedeţa de teperatură a coefcetulu de 4 8 dlatare petru ercur γ = t ). Petru a vedea î ce costă etoda celor a c pătrate, să cosderă că erorle cose la ăsurarea ărlor x sut egljable faţă de erorle care afectează valorle y (=,,...,; uărul de ăsurător). Urăr să găs valorle costatelor c k astfel îcât fucţa y(c,c,...,c k, x) să reproducă cel a be datele experetale. Fe abaterle y = y y( c, c,..., c k, x ) (4) o ăsură a devaţe valorlor fucţe căutate faţă de datele experetale.vo spue că fucţa căutată reproduce cel a be datele experetale dacă sua pătratelor acestor abater S = [ y y( c c,..., ck, x )] =, (5) este ă. Ipuâd codţa de petru S, adcă aularea dervatelor sale î raport cu costatele c k, se obţe u sste de k ecuaţ d care se pot obţe costatele căutate. Vo exeplfca aplcarea etode celor a c pătrate, referdu-e, d ou, la cazul depedeţe lare de fora (3). I acest caz, sua pătratelor abaterlor se scre S = ( y x b) = ar ul său se realzează dacă se aulează dervatele: (6) S = = [ x ( y x b) ] = 0 (7) S = b = D ecuaţle (7) ş (8) obţe ssteul: [ ( y x b) ] = 0 (8) x + b = = x = = x y (9)
9 4 FIZICĂ Tee experetale x + b = y = = (30) d care rezultă costatele căutate b ş. Dacă se ţe seaă că x = x = (3) ş y = y = (3) sut valorle ed ale varablelor respectve, atuc soluţa ssteulu (9)+(30) se poate scre: x y = = = = = = x x = = = x y ( x x) y ( x x) (33) b = y x (34) După cu se vede, aplcarea etode celor a c pătrate ecestă aute calcule care pot descuraja experetatorul, de aceea este de preferat să se detere pata drepte ş ordoata la orge b d grafc, aşa cu s-a arătat la sfârştul paragrafulu precedet. Petru aplcarea etode grafce (trasarea drepte pr puctele experetale), este utl să se observe că relaţa (34) e spue că puctul de coordoate ( x, y). se află pe dreapta care ftează cel a be (satsface ecuaţa drepte y = x + b ). 4.Măr aproxatve. Regul de rotujre a uerelor. Pr ăsurător experetale asupra ărlor fzce, u pute cuoaşte valoarea adevărată a acestora c doar valoarea lor aproxatvă, afectată de o aută eroare. Costatele fzce, date î tabele, sut deterate, la râdul lor, cu o aută precze. S-a arătat că rezultatul ue ăsurător se expră î fora x = x ± x. De exeplu, î tabele de costate se găseşte că sarca eleetară este 9 8 e = (, ± 46 0 ) C sau, cu u alt od de screre, e =,6089(46) 0 9 C, acesta d ură arătâd că eroarea absolută
10 Prelucrarea datelor experetale 5 8 ede este e = 46 0 C. Se observă că î odul de screre ştţfc, valoarea uercă a ue ăr se expră prtr-u uăr a căru parte îtreagă are o sgură cfră, îulţtă cu o putere corespuzătoare a lu zece. Rezultatele uor calcule ateatce (logartare, rădăca patrată, îpărţre etc) repreztă valor cu u uăr are de zecale ş se pue, de aseeea, aproxarea rezultatelor. Necestatea aproxăr apare ş î cazurle câd terv uere cu sut π sau e (baza logartlor atural). De regulă, îtr-o forulă terv ăr cu precz dferte. Eroarea rezultatulu fal va depde de eroarea de deterare a tuturor ărlor care tră î forulă. Dacă uele ăr dtr-o forulă fzcă sut deterate cu precze că, u are ses ca celelate ăr să fe luate cu precz ult a ar, astfel că valorle acestor ăr vor f rotujte. Trebue îsă ca eroarea relatvă a valor rotujte să u fe a are ca eroarea relatvă a ăr deterate cu precza cea a că. Valoarea uercă a ue ăr se expră prtr-u aut uăr de cfre sefcatve. Cfrele,,...,9 ale uu uăr sut cfre sefcatve; cfra 0 se cosderă sefcatvă dacă se află î terorul uărulu sau la dreapta acestua. De exeplu, coefcetul de dlatare lară petru - aluu sub fora α = 0,00004 K este prezetat cu două cfre sefcatve, prele cc cfre de zero u sut cfre sefcatve, ar screrea corectă, î otaţe ştţfcă, este α =,4 0 5 K -. Dacă îsă, scre g=9,80 /s, cfra zero este cfră sefcatvă, ea arată a câta zecală este cosderată exactă î aproxarea valor lu g. Dacă u uăr trebue rotujt la u aut uăr de cfre sefcatve, aceasta se face după urătoarele regul: - Dacă pra cfră care trebue egljată este a că decât cc, atuc ulta cfră eţută răâe eschbată; 3,09 3,0 - Dacă pra cfră care trebue egljată este a are ca cc sau este cc urat de cfre dferte de zero, ulta cfră păstrată se ăreşte cu o utate; 3,073 3,0 3,053 3,0 - Dacă cfra ce trebue egljată este cc urat ua de zerour, uărul se rotujeşte la cea a apropată valoare pară.
11 6 FIZICĂ Tee experetale 3,050 3,0 3,050 3,0 Î calcule se vor lua ua cfrele sefcatve care pot f cosderate exacte. Câd se îulţesc sau se îpart două uere, rezultatul se va lua cu atâtea cfre sefcatve câte are factorul cu cele a puţe cfre sefcatve. De exeplu, la îulţrea dtre 4,7 ş 5,93, d calcule se obţe 7,87 dar rezultatul trebue rotujt la două cfre sefcatve, adcă la 8. La aduare sau scădere se păstrează toate cfrele.
Pentru această problemă se consideră funcţia Lagrange asociată:
etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru
Διαβάστε περισσότερα2. Metoda celor mai mici pătrate
Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo
Διαβάστε περισσότεραMETODE DE ESTIMARE A PARAMETRILOR UNEI REPARTIŢII. METODA VEROSIMILITĂŢII MAXIME. METODA MOMENTELOR.
Curs 6 OI ETOE E ETIARE A ARAETRILOR UNEI REARTIŢII. ETOA VEROIILITĂŢII AIE. ETOA OENTELOR.. Noţu troductve Î legătură cu evaluarea ş optzarea proceselor oraţoale apar ueroase problee de estare cu sut:
Διαβάστε περισσότεραCursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Διαβάστε περισσότεραSondajul statistic- II
08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere
Διαβάστε περισσότεραMETODE DE OPTIMIZARE. Lucrarea 8 1. SCOPUL LUCRĂRII 2. PREZENTAREA TEORETICĂ 2.1. METODA CELOR MAI MICI PĂTRATE 2.2. COEFICIENTUL DE CORELAŢIE
Lucrarea 8 METODE DE OPTIMIZARE. SCOPUL LUCRĂRII Prezetarea uor algort de optzare, pleetarea acestora îtr-u lbaj de vel îalt î partcular, C ş folosrea lor î rezolvarea uor problee de electrocă.. PREZENTAREA
Διαβάστε περισσότεραCURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate
Y CURS 0 Regresa lară - aproxmarea ue fuct tabelate cu o fucte aaltca de gradul, pr metoda celor ma mc patrate 30 300 90 80 70 60 50 40 30 0 y = -78.545x + 33.4 R² = 0.983 0 0. 0.4 0.6 0.8. X Fe o fucţe:
Διαβάστε περισσότεραEvaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale.
Modulul 4 APLICAŢII CONTINUE Subecte :. Cotutatea fucţlor defte pe spaţ metrce.. Uform cotutatate. 3. Lmte. Dscotutăţ lmte parţale lmte terate petru fucţ de ma multe varable reale. Evaluare :. Cotutatea
Διαβάστε περισσότεραT R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
Διαβάστε περισσότερα9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL
9. CRCE ELECRCE N REGM NESNSODAL 9.. DESCOMPNEREA ARMONCA Ateror am studat regmul perodc susodal al retelelor electrce, adca regmul permaet stablt retele lare sub actuea uor t.e.m. susodale s de aceeas
Διαβάστε περισσότεραTEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Διαβάστε περισσότεραCu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,,
Cursul 1 Î cele ce urmează vom prezeta o ouă structură algebrcă, structura de spaţu vectoral (spaţu lar) utlzâd structurle algebrce cuoscute: mood, grup, el, corp. Petru îceput să reamtm oţuea de corp:
Διαβάστε περισσότεραLUCRARE DE LABORATOR NR. 1 MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA
LUCRARE DE LABORATOR NR. MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA. OBIECTIVELE LUCRARII Isusrea uor otu refertoare la: - eror
Διαβάστε περισσότεραELEMENTE DE TEORIA PROBABILITĂŢILOR
CAPITOLUL ELEMENTE DE TEORIA PROAILITĂŢILOR Câmp de evemete U feome îtâmplător se poate observa, de regulă, de ma multe or Faptul că este îtâmplător se mafestă pr aceea că u ştm date care este rezultatul
Διαβάστε περισσότεραProcese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. =
Xt () Procese stocastce (2) Fe u proces stocastc de parametru cotuu s avad spatul starlor dscret. Cu spatul starlor S = {,,, N} sau S = {,, } Defta : Procesul X() t este u proces Markov daca: PXt { ( )
Διαβάστε περισσότεραOlimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Διαβάστε περισσότεραCurs 3. Spaţii vectoriale
Lector uv dr Crsta Nartea Curs Spaţ vectorale Defţa Dacă este u îtreg, ş x, x,, x sut umere reale, x, x,, x este u vector -dmesoal Mulţmea acestor vector se otează cu U spaţu vectoral mplcă patru elemete:
Διαβάστε περισσότεραELEMENTE DE STATISTICA DESCRIPTIVA
ELEMENTE DE STATISTICA DESCRIPTIVA Cursul CERMI Facultatatea Costruct de Mas www.cerm.utcluj.ro Cof.dr.g. Marus Bulgaru STATISTICA DESCRIPTIVA STATISTICA DESCRIPTIVA Populate, Caracterstca dscreta, cotua
Διαβάστε περισσότερα1. Modelul de regresie
. Modelul de regrese.. Câteva cosderete de ord geeral La fel ca ş î multe alte dome, î domeul ecoomc ş î partcular î cel al afacerlor se îtâlesc deseor stuaţ care presupu luarea uor decz, care ecestă progoze
Διαβάστε περισσότερα2. Sisteme de ecuaţii neliniare
Ssteme de ecuaţ elare 9 Ssteme de ecuaţ elare Î acest catol abordăm roblema reolvăr umerce a sstemelor de ecuaţ alebrce elare Cosderăm următorul sstem de ecuaţ î care cel uţ ua d ucţle u este lară Sub
Διαβάστε περισσότεραSisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori)
Ssteme cu partajare - cotut Recaptulare: modelul smplu de trafc M / M / PS ( umar de utlzator, server, umar de pozt petru utlzator) M / M / PS ( umar de utlzator, servere, umar de pozt petru utlzator)
Διαβάστε περισσότεραa) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
Διαβάστε περισσότεραECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D
ANALIZA NUMERICA ECUATII NELINIARE PE R (http://bavara.utclu.ro/~ccosm) ECUATII NELINIARE PE R. INTRODUCERE e D R D R : s sstemul: ( x x x ) ( x x x ) D () Daca se cosdera aplcata : D R astel ca: ( x x
Διαβάστε περισσότεραPRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE
Lucrarea r. PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE. GENERALITATI I electrotehcă ş electrocă terv umeroase mărm fzce ca: tesue, curet, rezsteţă, eerge, etc., care se caracterzează pr mărme ş pr aumte
Διαβάστε περισσότεραProductia (buc) Nr. Salariaţi Total 30
Î vederea aalze productvtăţ obţute î cadrul ue colectvtăţ de salaraţ formată d 50 de persoae, s-a extras u eşato format d de salaraţ. Datele refertoare la producţa zle precedete sut prezetate î tabelul
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE
4. ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE Feomeele de masă studate de statstcă se mafestă pr utăţle dvduale ale colectvtăţ cercetate care preztă o varabltate (împrăştere)
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραCapitole fundamentale de algebra si analiza matematica 2012 Analiza matematica
Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραAnaliza bivariata a datelor
Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele
Διαβάστε περισσότεραStatistica matematica
Statstca matematca probleme de dfcultate redusa ) Dtr-o popula e ormal repartzat cu dspersa ecuoscut se face o selec e de volum. Itervalul de îcredere petru meda m a popula e cu dspersa ecuoscut s s este
Διαβάστε περισσότερα6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Διαβάστε περισσότεραMETODE DE ANALIZĂ STATISTICĂ A LEGĂTURILOR DINTRE FENOMENE
METODE DE ANALIZĂ STATISTICĂ A 0. LEGĂTURILOR DINTRE FENOMENE Asura feomeelor de masă studate de statstcă acţoează u umăr de factor rcal ş secudar, eseţal ş eeseţal, sstematc ş îtâmlător, obectv ş subectv,
Διαβάστε περισσότεραProf. univ. dr. Constantin ANGHELACHE Prof. univ. dr. Gabriela-Victoria ANGHELACHE Lector univ. dr. Florin Paul Costel LILEA
Metode ş procedee de ajustare a datelor pe baza serlor croologce utlzate î aalza tedţe dezvoltăr dfertelor dome de actvtate socal-ecoomcă Prof. uv. dr. Costat ANGHELACHE Uverstatea Artfex/ASE - Bucureșt
Διαβάστε περισσότεραElemente de teoria probabilitatilor
Elemete de teora probabltatlor CONCEPTE DE BAZA VARIABILE ALEATOARE DISCRETE DISTRIBUTII DISCRETE VARIABILE ALEATOARE CONTINUE DISTRIBUTII CONTINUE ALTE VARIABILE ALEATOARE Spatul esatoaelor, pucte esato,
Διαβάστε περισσότεραCAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.
CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραLaborator 4 Interpolare numerica. Polinoame ortogonale
Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραCOMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi
OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete
Διαβάστε περισσότεραMinisterul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Διαβάστε περισσότεραCAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât
Cp 2 INTEGRALA RIEMANN 9 CAPITOLUL 2 INTEGRALA RIEMANN 2 SUME DARBOUX CRITERIUL DE INTEGRABILITATE DARBOUX Defţ 2 Se umeşte dvzue tervlulu [, ] orce sumulţme,, K,, K, [, ] stfel îcât = { } = < < K< <
Διαβάστε περισσότερα7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală
Διαβάστε περισσότεραMETODE NUMERICE Obiective curs Conţinut curs
ETODE NUERICE Obectve curs Crearea, aalza ş mplemetarea de algortm petru rezolvarea problemelor d matematca cotuă Aalza complextăţ, aalza ş propagarea erorlor, codţoarea problemelor ş stabltatea umercă
Διαβάστε περισσότεραStatisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5
Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei
Διαβάστε περισσότεραNumere complexe. a numerelor complexe z b b arg z.
Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραContinutul tematic al cursului
MATEMATICI FINANCIARE ŞI ACTUARIALE Obectvul prcpal al cursulu este de a asgura baza teoretcă de îtelegere ş fudaetare a aparatulu ateatc utlzat î cadrul uor dscple de specaltate. Cursul este structurat
Διαβάστε περισσότερα5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Διαβάστε περισσότεραProprietatile descriptorilor statistici pentru serii univariate
Revsta Ioratca Ecooca, r. (3) / 000 67 Proretatle descrtorlor statstc etru ser uvarate Pro.dr. Vergl VOINEAGU, co.dr. Tudorel ANDREI Catedra de Statstca s Prevzue Ecooca, A.S.E. Bucurest Studerea uu eoe
Διαβάστε περισσότεραTEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE
TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE Obectve Cuoaşterea metodelor umerce de descrere a datelor statstce Aalza rcalelor metode umerce etru descrerea datelor cattatve egruate Aalza
Διαβάστε περισσότεραStatistica descriptivă. Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă Şef de Lucrăr Dr. Mădăla Văleau mvaleau@umfcluj.ro MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medaa, Modul, Meda geometrca, Meda armoca, Valoarea cetrala MĂSURI DE DE DISPERSIE Mm, Maxm,
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραSTATISTICĂ MARINELLA - SABINA TURDEAN LIGIA PRODAN
MARINELLA - SABINA TURDEAN LIGIA PRODAN STATISTICĂ STATISTICĂ CUPRINS Captolul NOŢIUNI INTRODUCTIVE... 5. Momete ale evoluţe statstc... 5. Obectul ş metoda statstc... 5.3 Noţu fudametale utlzate î statstcă...
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραFormula lui Taylor Extremele funcţiilor de mai multe variabile Serii de numere cu termeni oarecare Serii cu termeni pozitivi. Criterii de convergenţă
Uverstatea Spru Haret Facultatea de Stte Jurdce, Ecoome s Admstratve, Craova Programul de lceta: Cotabltate ş Iformatcă de Gestue Dscpla Matematc Ecoomce Ttular dscplă Cof uv dr Laura Ugureau SUBIECTE
Διαβάστε περισσότεραSub formă matriceală sistemul de restricţii poate fi scris ca:
Metoda gradetulu proectat (metoda Rose) Î cazul problemelor de optmzare covee ale căror restrcţ sut lare se poate folos metoda gradetulu proectat. Î prcpu, această metodă poate f folostă ş petru cazul
Διαβάστε περισσότεραStatistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea
Διαβάστε περισσότερα5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Διαβάστε περισσότεραProbabilități și Statistică 1.1. Metoda Monte-Carlo
Matematcă ș Iformatcă.. Metoda Mote-Carlo.. Metoda Mote Carlo. Aplcaţ. Precza metode. Termeul,,Metoda Mote Carlo este som cu termeul,,metoda epermetelor statstce. Aparţa aceste metode se raportează de
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότερα3. INDICATORII STATISTICI
3. INDICATORII STATISTICI 3.. Necestatea folosr dcatorlor statstc. Idcator statstc prmar. Idcator statstc dervaţ Am văzut că obectul de studu al statstc îl costtue feomeele ş procesele de masă. Acestea
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραCLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea
EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραAnaliza matematica Specializarea Matematica vara 2010/ iarna 2011
Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila
Διαβάστε περισσότεραElemente de teorie a informaţiei. 1. Câte ceva despre informaţie la modul subiectiv
Elemete de teore a formaţe. Câte ceva desre formaţe la modul subectv Î cele ce urmează vom face câteva cosderaţ legate de formaţe ş măsurare a e. Duă cum se cuoaşte formaţa se măsoară î bţ. De asemeea
Διαβάστε περισσότεραVII. STATISTICĂ 7.1. INDICATORII TENDINŢEI CENTRALE Mărimile medii Media aritmetică
VII STATISTICĂ 7 INDICATORII TENDINŢEI CENTRALE 7 Mărmle med Meda velurlor dvduale ale ue varable (caracterstc) statstce este epresa stetzăr îtr-u sgur vel reprezetatv a tot ceea ce este eseţal, tpc ş
Διαβάστε περισσότεραConcursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008
Cocursul Naţioal Al. Myller CLASA a VII-a Numerele reale disticte x, yz, au proprietatea că Să se arate că x+ y+ z = 0. 3 3 3 x x= y y= z z. a) Să se arate că, ditre cici umere aturale oarecare, se pot
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραAnaliza univariata a datelor
Aalza uvarata a datelor Chestu orgazatorce Nota: Exame fal (mart, 13 ma): 70% Proect semar: 30% Suport curs: Cătou I. (coord.), Băla C., Dăeţu T., Orza Gh., Popescu I., Vegheş C., Vrâceau D. "Cercetăr
Διαβάστε περισσότεραdef def punctul ( x, y )0R 2 de coordonate x = b a
Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă
Διαβάστε περισσότεραNoţiuni de verificare a ipotezelor statistice
Noţu de verfcare a potezelor statstce Verfcarea potezelor statstce este legată de compararea dfertelor poteze asupra ue populaţ statstce (ş u asupra uu eşato) cu datele obţute pr îcercăr expermetale Dacă
Διαβάστε περισσότεραErori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
Διαβάστε περισσότεραUniversitatea din București, Facultatea de Chimie, Specializarea: Chimie Medicală/Farmaceutică
Uverstatea d Bucureșt, Facultatea de Chme, Specalzarea: Chme Medcală/Farmaceutcă Statstcă & Iformatcă TEME ș aplcaț Laborator (M. Vlada, 07 Laborator Tema. Calcule statstce, fucț matematce ș statstce facltăț
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραCAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ
CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe
Διαβάστε περισσότεραSEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότεραUnitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon
ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este
Διαβάστε περισσότεραII. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.
II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric
Διαβάστε περισσότεραPRELUCRAREA DATELOR EXPERIMENTALE
PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραCURS 6 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ (continuare)
CURS 6 ERODIAICĂ ŞI FIZICĂ SAISICĂ (cotuare) 6.1 Prcpul II al termodamc Să e reamtm că prmul prcpu al termodamc a arătat posbltatea trasformăr lucrulu mecac, L, î căldură, Q, ş vers, fără a specfca î ce
Διαβάστε περισσότεραaşteptării pot fi înţelese cu ajutorul noţiunilor de bază culese din acest volum. În multe cazuri hazardul, întâmplarea îşi pun amprenta pe
Cuprs Prefaţă... 5 I. ELEMENTE DE ALGEBRĂ LINIARĂ... 7 Matrc... 8 Matrc partculare... 9 Iversa ue matrc... Ssteme de ecuaţ lare... 5 Problema compatbltăţ sstemelor... 7 Problema determăr sstemelor... 8
Διαβάστε περισσότεραSisteme cu asteptare - continut. Modelul simplu de trafic
Ssteme cu asteptare - cotut Recaptulare: modelul smplu de trafc Dscpla cadrul cozlor de asteptate M / M / Modelul ( server, pozt de asteptare ) Aplcat modelarea trafculu de date la vel de pachete M / M
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραriptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραDETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC 004-005 DETERMINAREA ACCELERAŢIEI
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραFormula lui Taylor. 25 februarie 2017
Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραLucrarea 2. Analiza Componentelor Principale (PCA)
Lucrarea Aalza Copoetelor Prcpale PCA. Baza teoretca Î recuoaşterea forelor, selecţa ş extragerea caracterstclor repreztă o alegere decsvă petru proectarea orcăru clasfcator. Selecţa caracterstclor poate
Διαβάστε περισσότερα