Dodatak: Naprezanja, Mohrove kružnice.
|
|
- Κάρμη Παππάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Dodatak: Naprezanja, Mohrove kružnice. D.1 Ravnoteža. Unutarnje sile. Posmična i normalna naprezanja. Mehanika, tehnička mehanika, otpornost materijala discipline su čije razumijevanje prethodi mehanici tla. Ovdje se prikazuje niz primjera sa namjerom da se prizove intuitivno poimanje mirovanja i ravnoteže, te na ilustrativni način ponovi niz pojmova: naprezanj, Mohrova kružnica posve neophodnih za bilo kakovo bavljenje mehanikom tla. Studentu se preporuča da ako je potrebno konzultira bilješke sa predavanja ili potrebnu literaturu. Promatrajmo drveno tijelo oblika kvadra na glatkoj podlozi. Djelujmo silom na to tijelo. Tijelo se giba. Da bismo ga umirili, treba uravnotežiti silu. Na mjestu djelovanja sile, vlakanca su opterećena više nego susjedna, ali, zbog trenja među vlakancima, ako je tijelo dovoljno dugo, u središnjem su dijelu sva vlakanca jednako opterećena. Sila se prenosi kroz tijelo, kroz vlakanca. Promatrajmo unutrašnjost tijela, napregnutost vlakanaca. Kao što mirovanje tijela znači ravnotežu sila koje djeluju na njega, tako i mirovanje pojedinih dijelova tijela znači ravnotežu sila koje djeluju na promatrani dio tijela. Promatrajmo jedan zamišljeni presjek i dio tijela koji je njime određen. Tu djeluje ista sila,, ali raspoređena po svim vlakancima. Srednju veličina sile koja djeluje na jedinici površine promatrane plohe zovemo naprezanje:
2 D-2 U ovom presjeku, rezultantna sila okomita je (normalna) na presjek (i tlačna), pa su naprezanja normalna (i to tlačna). Rezultantna sila djeluje centrično, pa su, dovoljno daleko od ruba tijela na kome djeluje sila, naprezanja jednoliko raspodijeljena. Kako tlo gotovo da ne prima vlačna naprezanja, u mehanici tla tlačni se naprezanja smatraju pozitivnim. Promotrimo neki drugi presjek, n-n, pod nagibom. Rezultantnu silu, ovdje također veličine, običavamo rastaviti na dvije komponente: jednu okomitu (normalnu), N, i jednu paralelnu sa presjekom (posmičnu), T. Presjek n-n definiran je kutom što ga normala zatvara sa osi x. n N T n U tom presjeku razlikujemo okomito ili normalno naprezanje, omjer normalne komponente sile na presjek i površine presjeka, N cos / cos 2 2 cos cos posmično ili tangencijalno naprezanje, omjer tangencijalne (posmične) komponente sile na presjek i površine presjeka, T sin / cos sin cos sin cos Mijenjamo li nagib promatranog zamišljenog presjeka, kut, mijenjaju se i vrijednosti normalnog i posmičnog naprezanja u presjeku prema izvedenim izrazima. X D.2 Jednoosno stanje, izotropno stanje, dvoosno stanje naprezanja. Vrlo zanimljiv je, pokazuje se, grafički prikaz naprezanja u koordinatnom sustavu,: Uobičajeno je okomita ili normalna naprezanja nanijeti na horizontalnu os, posmične ili tangencijalne na vertikalnu. ko je / nanesen na horizontalnu os, hipotenuza trokuta kojemu cos sin je kut uz ishodište, cos je duljina susjedne stranice. O Projiciramo li tu stranicu, dužinu X, na os, dobivamo cos cos, što je vrijednost. Projiciramo li tu stranicu, dužinu X, na os cos 2, dobivamo cos sin, što je vrijednost. Dakle, točka X predstavlja par,, par normalnog i posmičnog naprezanja u ravnini. Mijenjamo li kut, točka X, kao vrh nasuprot hipotenuze, opisuje kružnicu. Tu kružnicu, kojoj svaka točka odgovara jednoj ravnini a obuhvaćene su ravnine svih nagiba zovemo Mohrova kružnica. O cos cos X
3 D-3 Prikazani primjer predstavlja jednoosno stanje naprezanja. Skica pokazuje prizmu tla sa zadanim / u npr. horizontalnoj ravnini, i traženim naprezanjima u ravnini nagnutoj pod :: i, te odgovarajuću Mohrovu kružnicu. max 1 1 /cos Promatrajmo prizmu tla sa jednakim normalnim naprezanjem, 3, na dvije okomite ravnine, posmičnih naprezanja neka nema. Tražimo naprezanja u ravnini pod kutem : i. Ravnoteža u horizontalnom i vertikalnom smjeru implicira 3 sin/cos + cos / cos sin / cos 3 sin / cos cos / cos iz čega slijedi ( 3 ) sin + cos ; ( 3 ) cos sin iz čega slijedi ( 3 ) (sin 2 + cos 2 ) ; (sin 2 + cos 2 ) iz čega slijedi 3 i Drugim riječima, u svakoj su ravnini normalna naprezanja jednaki 3, a posmični jednaki nuli. Odgovarajuća Mohrova kružnica je točka na mjestu ( 3, ). 3 tg /cos Treći, opći slučaj dvoosnog opterećenja, možemo prikazati kao zbroj prethodna dva slučaja: postoje dvije okomite ravnine u kojima nema posmičnih naprezanja, okomita naprezanja u njima mogu se prikazati kao 2 u jednoj i u drugoj. Pretpostavljajući linearnost, dobivamo vrijednosti naprezanja na ravnini nagiba : ( 1 2 ) cos cos sin 2 ( 1 2 ) cos sin Odgovarajuća Mohrova kružnica, prikazujući zbroj stanja naprezanja, predstavlja kružnicu iz prvog slučaja, koja je translatirana za 3. min max 1 tg /cos
4 D-4 D.3 Mohrova kružnica. Pol Mohrove kružnice. Jedna Mohrova kružnica, dakle, grafički prikazuje naprezanja u jednoj točki prostora i vremena. Svaka točka Mohrove kružnice odgovara jednom smjeru tj. jednoj ravnini u toj promatranoj točki prostora. Obratno, svakoj ravnini promatrane točke odgovara jedna točka Mohrove kružnice, tj. jedan par naprezanja,. Korisno je uočiti postojanje pola Mohrove kružnice: paralela promatranoj ravnini u prostoru, povučena kroz pol Mohrove kružnice, siječe Mohrovu kružnicu u točki, koja odgovara naprezanjima u promatranoj ravnini. Rotiranje tijela zajedno sa opterećenjem koje djeluje na njega ne mijenja Mohrovu kružnicu, ali mijenja položaj pola Mohrove kružnice. Pol Mohrove kružnice P 3 Αtg /cos min 3 max D.4 Trag naprezanja. Srednje naprezanje i devijator naprezanja. Pratimo li procese promjene naprezanja, trebao bi nam niz od beskonačno mnogo Mohrovih kružnica. U takvim je slučajevima u mehanici tla uobičajeno crtati samo vrh Mohrove kružnice, točku koja odgovara srednjem normalnom naprezanju i najvećem posmičnom. Krivulju koja se sastoji od tih točaka zovemo tragom naprezanja (stress path). Ponekad se tako zove i promjena naprezanja, ne samo njen grafički prikaz. Mohrova kružnica je prikaz naprezanja u jednoj ravnini. Zato pregledno opisuje naprezanja ako se radi o ravninskom stanju naprezanja ili o ravninskom stanju deformacija kad nije bitan utjecaj naprezanja u ravnini okomitoj na ravninu u kojoj se događa deformiranje. Treća dimenzija može se dodati crtanjem Mohrovih kružnica za tri koordinatne ravnine: najčešće jednu horizontalnu i dvije okomite vertikalne ravnine. Te se Mohrove kružnice po dvije dodiruju na osi normalnih naprezanja jer su oni zajednički za po dvije okomite ravnine. Proračun naprezanja zahtijeva jednostavnije parametre. Najčešće su u uporabi dva parametra koji, pokazalo se, najpotpunije opisuju naprezanja u tlu na jednostavni način. To su srednje naprezanj i devijator naprezanja. Pri tome postoje dva različita para definicija u geotehnici. U novije vrijeme češće se radi sa slijedećim veličinama: srednje naprezanje (mean stress), p ( xx + yy + zz ) /3 ( ) /3 devijator naprezanja (deviator stress), q [[( xx - yy ) 2 + ( yy - zz ) 2 + ( zz - xx ) 2 ]/2 + 3( 2 xy+ 2 xy+ 2 xy)] 1/2 što je najčešće jednako q ( 1-3 ) U važnoj literaturi mehanike tla radi se sa dvije druge veličine istog naziva: srednje naprezanje (mean stress), s ( ) /2, što se ponekad također piše p, devijator naprezanja (deviator stress), t ( 1 2 ) /2, što se ponekad također piše q, Par s,t predstavlja vrh Mohrove kružnice i opisuje trag naprezanja pri promjeni stanja naprezanja.
5 D-5 D.5 Preporučljiva literatura: 1. Despot, Z. bilješke predavanja Tehnička mehanika 2. Šimić,V., 1992, Otpornost materijala I, Školska knjiga, Zagreb 3. Nonveiller,E., 199, Mehanika tla i temeljenje građevina, Školska knjiga, 823 str 4. ostala dostupna literatura iz područja tehničke mehanike, otpornosti materijala ili čvrstoće D.6 Zadaci D.6.1 Mohrova kružnica za uzorak tla opterećen prvo izotropno, potom dodatno aksijalno Uzorak tla promjera je 5 cm i visine 1 cm. Tijekom ugradnje u troosni uređaj (koji se opisuje detaljnije u poglavlju o Deformabilnosti i čvrstoći tla), da se zaštiti od nepovoljnog poremećivanja, uzorak se izvana zaštiti mekanom i tankom nepropusnom membranom, te se opterećuje (a) izotropno, sa naprezanjom 2kPa. Zatim, nakon zatvaranja uzorka u ćeliju, ćelija se ispuni vodom, te se nameće opterećenje na ćelijsku vodu, koja izotropno opterećuje uzorak. Opterećenje se postepeno povećava na (b) 3 2 kpa, što je srednja vrijednost naprezanja u tlu na mjestu vađenja uzorka. Da bi se ispitala deformabilnost datog tla uslijed gradnje, uzorak se potom (c) dodatno opterećuje aksijalnim vertikalnim opterećenjem, sve do sile od 2 kn. Treba iscrtati odgovarajuće Mohrove kružnice. ko je uzorak dobro pripremljen (reconstituted specimen) ili bez znatnog poremećivanja izrezan iz tla koje želimo ispitati (unsdisturbed specimen), te ako je bez znatnog poremećivanja transportiran i ugrađen u uređaj za ispitivanje, te ako je uzorak homogen, i spriječi se trenje na granicama uzorka, također i stanje naprezanja i deformacija homogeno je u cijelom uzorku. Obzirom na veličinu nametnutog opterećenja, vlastita težina uzorka zanemariva je. (a) Stanje naprezanja je izotropno, sva naprezanja u uzorku tla samo su tlačni, i svi su jednaki 2 kpa. Mohrovu kružnicu predstavlja točka na osi, gdje 2kPa ; 2; (b) ko je povećanje opterećenja dovoljno sporo da deformiranje uzorka bude homogeno, sva naprezanja u uzorku u svim smjerovima kontinuirano se povećavaju, od 2 kpa, do 3 2kPa. U svakom trenutku, Mohrova kružnica je točka na osi, od 3 2 kpa, do 3 2kPa. U Mohrovom dijagramu iscrtane su početna i krajnja Mohrova kružnica, te trag naprezanja duž osi. (c) Pri dodatnom aksijalnom vertikalnom opterećenju, horizontalna naprezanja u uzorku ostaju nepromijenjeni, a vertikalni se povećavaju. Mijenjaju se također i ostala naprezanja, u ostalim smjerovima tj. presjecima.
6 Za konačno stanje, gdje sila je 2 N, dodatno vertikalno naprezanje, ili devijator naprezanja, izračunamo iz vrijednosti sile i poprečnog presjeka (5cm/2) 2 *π 2cm 2 : (2 N) / (2cm 2 ) (2 kn) / (2* 1-4 m 2 ) kn/m kpa 1 kpa ko nema trenja ni na vertikalnim ni na horizontalnim plohama, horizontalna i vertikalna naprezanja su glavna naprezanja, tj. najmanje i najveće naprezanje. Dakle, vertikalna naprezanja, na horizontalnim ravinama, maksimalno naprezanje u tom uzroku, jednaki su kPa + 1 kpa 3 kpa Horizontalna naprezanja, na vertikalnim ravninama, minimalna naprezanja u tom uzorku, jednaki su 3 2 kpa Mohrovu kružnicu crtamo između te dvije točke. Središte Morove kružnice je na osi, u ( ) / 2 (3kPa + 2kPa) / 2 25 kpa Radijus Mohrove kružnice jednak je / 2 1 kpa / 2 5 kpa U Mohrov dijagram ucrtan je i trag naprezanja tijekom nanošenja dodatne vertikalne sile. D ; 5 2 2; 3; ; -5 Pronađimo pol Mohrove kružnice. Horizontalno naprezanje, 3 djeluje u vertikalnoj ravnini, pa povucimo vertikalni pravac kroz točku (2;) u Mohrovom dijagramu. Vertikalno naprezanje, 1 djeluje u horizontalnoj ravnini, pa povucimo horizontalni pravac kroz točku (2;) u Mohrovom dijagramu. Pol Mohrove kružnice je u sjecištu ta dva pravca, u točki (2; ). Tražimo li naprezanja u bilo kojoj ravnini promatranog elementa tla, povučemo toj ravnini paralelni pravac kroz pol Morove kružnice i očitamo (, ). Na primjer pod kutem od 3º prema horizontali, očitavamo 275 kpa; ± 43 kpa. Pod kutem od 6º prema horizontali, očitavamo 225 kpa; ± 43 kpa ; ; 43 P 2; 3; ; ; -43
7 D-7 D.6.2 Mohrova kružnica za zarotirano opterećenje Pretpostavimo da uzorak iz prošlog zadatka, zajedno sa opterećenjem, zarotiramo za 3º. Slično će u tlu, za vrijeme gradnje, opterećenje na uzorak rasti, vertikalne i horizontalne ravnine neće nužno biti bez posmičnih naprezanja ; ; 43 P 2; 3; ; ; -43 Očitajmo sad naprezanja u horizontalnim i vertikalnim ravninama: Kroz pol Mohrove kružnice povlačimo paralelu traženoj ravnini, horizontalu, i očitavamo: 225 kpa 43 kpa Kroz pol Mohrove kružnice povlačimo paralelu traženoj ravnini, vertikalu, i očitavamo: 275 kpa 43 kpa. Jednako možemo očitati naprezanja i u bilo kojoj drugoj ravnini, ili možemo iz veličine naprezanja odrediti smjer ravnine.
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ )
Posmična čvrstoća tla Posmična se čvrstoća se često prikazuje Mohr-Coulombovim kriterijem čvrstoće u - σ dijagramu c + σ n tanφ Kriterij čvrstoće C-kohezija φ -kut trenja c + σ n tan φ φ c σ n Posmična
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
Prostorni spojeni sistemi
Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka
Dinamika tijela. a g A mg 1 3cos L 1 3cos 1
Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA
ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,
ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika
1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
OTPORNOST MATERIJALA
3/8/03 OTPORNOST ATERIJALA Naponi ANALIZA NAPONA Jedinica u Si-sistemu je Paskal (Pa) Pa=N/m Pa=0 6 Pa GPa=0 9 Pa F (N) kn/cm =0 Pa N/mm =Pa Jedinična površina (m ) U tečnostima pritisak jedinica bar=0
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD Osijek, 15. rujan 2017. Ivan Kovačević SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD
Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,
Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Značenje indeksa. Konvencija o predznaku napona
* Opšte stanje napona Tenzor napona Značenje indeksa Normalni napon: indeksi pokazuju površinu na koju djeluje. Tangencijalni napon: prvi indeks pokazuje površinu na koju napon djeluje, a drugi pravac
ISPIT GRUPA A - RJEŠENJA
Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)
šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem
PRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):
Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
( ) p a. poklopac. Rješenje:
5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p
Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
1. Trigonometrijske funkcije
. Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela.
S. Varošanec, Nacrtna geometrija, 4. Mongeovo projiciranje 90 Primjer 4.56. Osnovka ABCD uspravne četverostrane prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela
1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ
Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Sustav dvaju qubitova Teorem o nemogućnosti kloniranja. Spregnuta stanja. Kvantna računala (SI) 17. prosinca 2016.
17. prosinca 2016. Stanje qubita A prikazujemo vektorom φ A u Hilbertovom prostoru H A koristeći ortonormiranu bazu { 0 A, 1 A }. Stanje qubita B prikazujemo vektorom φ B u H B... Ako se qubitovi A i B
II. ANALITIČKA GEOMETRIJA PROSTORA
II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
1. Trigonometrijske funkcije realnog broja
1. Trigonometrijske funkcije realnog broja 1. Brojevna kružnica... 1 7.Adicijskeformule.... Definicija trigonometrijskih funkcija....... 8. Još neki identiteti.......... 9. Trigonometrijske funkcije kutova........
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske
Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.
je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O
Zoran Topić, Imotski Menelajev teorem i neke primjene U ovom članku ćemo dokazati Menelajev 1 teorem i pokazati neke primjene tog teorema. Menelajevo najvažnije djelo je Sphaerica u kojem dokazuje i Menelajev
Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva
Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Samo se ukupna naprezanja i porni tlak mogu mjeriti, a efektivna naprezanja su izvedena veličina, izravno nemjerljiva, ali
5 Naprezanja u tlu. 5.1 Načelo efektivnih naprezanja. Ilustracija: položite spužvu u posudu s nešto vode tako da spužva bude potopljena kao na slici i da sve pore budu ispunjene vodom. Dolijevajte vodu
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla