Mehanika fluida... Osnovna jednačina hidrostatike... Vežba br. 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Mehanika fluida... Osnovna jednačina hidrostatike... Vežba br. 1"

Transcript

1 Mehnik fluid Osnovn jednčin hidrosttike Vežb br ZDTK ) Z svki od fluid u prikznim sudovim usvojiti i ncrtti n slici referentni sistem z=0, ztim odrediti pijezometrsku kotu b) Izrčunti hidrosttički (p) i psolutni (p ps ) pritisk u oznčenim tčkm (-E) c) Izrčunti čitnj n mnometrim p M i p M u drugom sudu d) Ncrtti slobodn nivo fluid u pijezometrim drugog sud i npisti vrednost C p M p M NFT VOD D = α+ β 50 m / VOD E ρ 3 VODE =0 kg/dm α+ β ρ NFTE = ( 0 - ) kg/dm 00 3 ZDTK N slici su prikzn dv spojen sud u kojim se nlze fluidi gustin ρ =083 kg/dm 3, ρ =0 kg/dm 3 i ρ 3 =097 kg/dm 3 Iznd fluid gustine ρ 3 nlzi se vzduh, čij se gustin znemruje Z dtu instlciju izrčunti: ) Pijezometrske kote svih fluid N skici ncrtti položj kot i upisti vrednosti b) Pritisk u vzduhu ) Čitnje n otvorenom (p M ) i diferencijlnom (p M ) mnometru VZDUH p M p M ρ 3 ρ 05 ρ ρ = αβ - 0 m

2 Mehnik fluid Hidrosttičk sil horizontln komponent Vežb br ZDTK Odrediti intenzitet, prvc i smer horizontlne komponente hidrosttičke sile koj deluje n - zid rezervor z tri rzličit slučj Ukupnu silu odrediti ko zbir pojedinčnih komponenti (vektorski sbrti) i odrediti mesto delovnj rezultnte Npomen: Silu rčunti po nčelim z rvnski zdtk tmo gde to nčelo vži ) presek - = α+ β 50 m ρ v ρ v ρ 3 v =0 kg/dm b) presek - ρ ρ = α 0 m ρ 3 =085 kg/dm ρ =0 kg/dm 3 ρ ρ 0 c) presek - vzduh vzduh = β 5 m 4 ρvz 0 ρ 3 v =0 kg/dm h=/4 ` ρ` ρ v ρ v 3 ρ` =36 kg/dm 3

3 Mehnik fluid Hidrosttičk sil vertikln komponent i ukupn sil Vežb br 3 ZDTK 3 Odrediti vertiklnu komponentu hidrosttičke sile (intenzitet, smer i npdnu tčku) koj deluje n zid širine L Ukupnu ve rtiklnu silu rčunti ko zbir pojedinčnih komponenti 5 ρ = = α+ β 50 m α+ β ( +07) kg/dm ρ = ( α+ β 00 +0) kg/dm3 ρ ρ 4 3 L=5 00 ZDTK 3 N slici je prikzn rezervor u kojem se nlzi vod gustine ρ=0 kg/dm 3 i vzduh znemrljive gustine ) N osnovu čitnj n mnometru odrediti pijezometrsku kotu vode b) Z svki od tri oznčen del površine (-3) izrčunti vertiklnu komponentu hidrosttičke sile p M= ( α+ β)/4 kp () 07 () VZDUH (3) 07 presek VOD = α+ β 30 m 4 ZDTK 33 N osnovu slike iz zdtk 3 izrčunti ukupnu hidrosttičku silu n polusferno ispupčenje (3) u slučju d je čitnje n mnometru p M = -06(α+β) kp

4 Mehnik fluid Tečenje u cevim pod pritiskom Vežb br 4 ZDTK 4 Iz rezervor vod dotiče u rezervor kroz horizontlnu cev prečnik 50 mm i koso crevo prečnik 00 mm ) ko je protok kroz horizontlnu cev Q =5+(α+β)/5 L/s izrčunti pijezometrsku kotu Π u rezervoru b) Izrčunti protok kroz crevo Q ko se mlznic n krju crev nlzi n koti Z ml =(α+β)/0+03 m c) U odgovrjućoj rzmeri ncrtti energetsku i pijezometrsku liniju Π =? Z ul=( α+ β)/0 m ξ ul =05 ξ ul =05 λ =0030 D =00 mm Q=? λ =000 D=50 mm L=0 ( α+ β) m ξ ml =005 Z ml = ( α+ β)/0+03 m Π=( α+ β)/0 m ZDTK 4 Iz rezervor vod se isporučuje nselju s potrošnjom Q 3 =(α+β)+5 L/s, deo se koristi z punjenje rezervor ) ko je ukupn protok vode iz rezervor Q =5(α+β) L/s, odrediti koeficijent loklnog gubitk energije n ztvrču n cevi ξ zt tko d nselje dobije odgovrjuću količinu vode b) Odrediti protok Q i pijezometrsku kotu u rezervoru c) U odgovrjućoj rzmeri ncrtti energetsku i pijezometrsku liniju d) ko bi se nselje snbdevlo vodom smo iz rezervor (ztvrč n cevi se potpuno ztvori), koliki bi bio protok kroz cevovod? 5m 5m 5m D=300 mm ξ zt =? ξ kol =03 D=00 mm 3 D=5 0 mm ξ ul =05 Q=5( α+ β) L/s ξ rc =0 m ξ zt =5 8m m Q 3=( α+ β)+5 L/s

5 Mehnik fluid Tečenje u cevi - Dinmičk jednčin Vežb br 5 ZDTK 5 ) Odrediti protok kroz cev ko očitn rzlik pijezometrskih kot u presecim i (pre i n suženju) iznosi Π=(α+β)/0 m b) Odrediti silu kojom vod deluje n mlznik oblik konus od presek 3 do presek 4, ko je ukupn gubitk energije duž konus 5% brzinske visine u preseku 4 Znemriti linijski gubitk energije duž konus Π=( α+ β)/0m 3 4 D=5( α+ β)mm D=3( α+)mm β D=5( α+ β)mm z=0 d ml=( α+ β)mm ξ - =0 3 5D 4 ZDTK 5 ) N osnovu očitnog pritisk n mnometru izrčunti protok u cevim b) Odrediti presečne sile (M, N i T) u preseku - Pri prorčunu uzeti u obzir i sopstvenu težinu cevi p M=5( α+ β) kp Koeficijent trenj z obe cevi λ=00 Sopstven te`in cevi G 4 C=300 N/m 5 ξ kol =04 ξ ml =0 D=50mm 00 d ml=00mm D=50mm 80 ξ ul =05 Q

6 Mehnik fluid Tečenje u cevi Hidruličke mšine Vežb br 6 ZDTK 6 Iz rezervor vod se pomoću pumpe prebcuje u rezervor (gornji cevovod) Iz rezervor vod se grvitciono vrć u rezervor (donji cevovod) ) ko je protok kroz donji cevovod Q =3(α+β) L/s izrčunti pijezometrsku kotu u rezervoru Pretpostviti d su rezervori dovoljno veliki tko d je nivo u njim konstntn b) ko je protok kroz gornji cevovod jednk protoku kroz donji Q =Q izrčunti visinu diznj i sngu pumpe c) U odgovrjućoj rzmeri ncrtti energetsku i pijezometrsku liniju z gornji cevovod 00 m 500 m Π =? Π= α/0 m m ξ ul =05 λ =005 η=07 D=500 mm ξzt= αβ λ =005 D =300 mm Q=3( α+ β) L/s λ 3 =005 D 3=300 mm ξ ul =05 m ξ kol =0 00 m Q=3( α+) β L/s 600 m ξ kol =0 ZDTK 6 ) Izrčunti potrebnu energiju vode n potisu pumpe (presek -), tko d se n poslednjem (četvrtom) prskču održi pritisk od p 4 =50 kp Protok i pritisk kroz prskče su vezni jednčinom Q i = C p, gde je protok u m3 /s, pritisk (p) u brim C=β/(α) Referentn rvn, z=0 m, je n osi cevovod Nizvodno od presek 4 potrebno je obezbediti protok od 0 L/s b) Izrčunti minimln nivo u rezervoru d se n usisu pumpe (presek -), ne pojvi negtivn pritisk c) Izrčunti visinu diznj pumpe d) Ncrtti energetsku i pijezometrsku liniju z grnični slučj (minimlni nivo vode u rezervoru) (br=0 5 P) Π R =? ξ ul =05 Koeficijent trenj z obe cevi λ=00 D=350 mm D =300 mm p =50 kp 4 Q Q Q 3 Q 4 z=0 0 m 30 m α+ β α+ β α+ β 0 L/s

7 Mehnik fluid Tečenje u cevi Kombinovni zdci Vežb br 7 ZDTK 7 Iz ztvorenog rezervor, u kome se nlzi vzduh pod pritiskom p vz = [(α+β)/5]-8 kp, vod teče u rezervor Gustin vode je ρ=000 kg/m 3 d) Iz uslov d ukupni dotok u rezervor iznosi Q =00+α/ L/s odrediti proticje u svim cevim i kotu nivo u rezervoru e) Odrediti rezultujuću silu n koleno n cevi 3 (između presek - i -) U prorčunu znemriti sopstvenu težinu vode i cevi f) U odgovrjućoj rzmeri ncrtti energetsku i pijezometrsku liniju z donju cev Vzduh D=035 m λ =00 ξ rc - =05 ξ rc -3 =03 D=00 m λ = ξ ul =05 00 ξ zt =50 D =05 m 3-0 ξ kol =0 λ 3 =005 ξ kol = ZDTK 7 Iz rezervor vod se pomoću pumpe prebcuje u rezervor Potrebno je d u rezervor konstntno dotiče Q =00 L/s U tčki K n cevovodu postoji konstntn potrošnj vode od Q cvor = α L/s Nivo vode u rezervoru je konstntn, dok nivo vode u rezervoru može d vrir između kot Π min i Π mx ) Ncrtti dijgrm zvisnosti snge pumpe od kote u rezervoru Dijgrm ncrtti n osnovu 4 pr tčk (Π, Np), z Π = Π min ; Π min +5m; Π min +30m; Π mx ( m) 0m D=030 m 0m 00m D D K ξ ul =05 ξ kol =05 Q cvor= α L/s D=05 m

8 Mehnik fluid Tečenje u cevi Hidrodinmički otpori Vežb br 8 ZDTK 8 Iz rezervor u rezervor teče vod kroz cev prem slici ) Ispitivnjim n prikznoj lbortorijskoj instlciji utvrđeno je d se lminrno tečenje u cevi može ostvriti i z Reynolds-ove brojeve do 5000 (obično se smtr s pri Re= nstje turbulentno tečenje) Iz uslov d se u cevi pri Re=5000 ostvruje lminrni režim tečenje, izrčunti mksimlnu rzliku nivo u rezervorim b) Z tko dobijenu rzliku nivo, izrčunti protok kroz cev z slučj d je zbog nestbilnosti lminrno tečenje prešlo u turbulentno tečenje u hidrulički gltkoj cevi Koliki je sd Re broj? Npomen: Sve loklne gubitke znemriti u odnosu n linijske Π=? ρ=000 kg/m 3 ν=0-6 m /s D=30 mm L=( α+ β)/0 m ZDTK 8 U horizontlnoj položenoj kružnoj cevi rspored brzin je dt izrzom: u r =u mx (-4r /D ) gde je u mx brzin u osovini cevi izmeren pomoću Pitot-ove cevi Tečenje je ustljeno i lminrno ) Izrčunti protok kroz cev i srednju brzinu u cevi Odrediti Re broj i proveriti pretpostvku o lminrnom tečenju b) Nći izrz z npon σ r =σ r, srčunti σ r =σ r n rstojnju r=0 i r=d/, (npon n zidu τ= σ r =σ r je z r=d/) c) Izrčunti koeficijent tngencijlnog npon C τ i koeficijent trenj λ d) Izrčunti čitnje n mnometru (M) u=u (-4r r mx /D ) D 7D h 7D+h h= α/5 mm D=( α+ β)/5 mm µ =0 - gr/cm s ρ=000 kg/m3 presek - u mx 5D D/ r D p M 00 0D 05D

9 Mehnik fluid Hidrodinmički otpori trenj i oblik Vežb br 9 ZDTK 9 Proučv se otpor trenj uz rvnu ploču dužine L=α/4 m velike širine (problem je rvnski), koj je postvljen prlelno s fluidnom strujom ) Oko ploče, brzinom U = (α+β)/ m/s, struji vzduh gustine ρ = kg/m 3 i dinmičke viskoznosti µ = x0-4 gr/cms - Pokzti d je grnični sloj celom dužinom lminrn - Odrediti silu trenj F n m širine ploče - Odrediti tngencijlni npon τ i debljinu grničnog sloj δ u tčkm i b) Oko ploče, brzinom U = (α+β)/3 m/s, struji vod gustine ρ = 0 kg/dm 3 i dinmičke viskoznosti µ = x0 - gr/cms - Pokzti d je grnični sloj turbulentn n više od 90% dužine ploče - Odrediti silu trenj F n m širine ploče - Ncrtti dijgrme promene debljine grničnog sloj δ(x) i tngecijlnog npon τ(x) koristeći podtke dobijene u sledećim tčkm: x =05 L, x =05 L, x 3 =075 L i x 4 =L U y k=0 mm L/ L/3 L/6 L x ZDTK 9 N modelu se ispituje uticj vetr n stub trougonog poprečnog presek čije su dimenzije dte n skici rzin rvnomerne vzdušne struje je U m = (α+β)/ m/s (gustin vzduh je ρ = kg/m 3 ) U oznčenim tčkm su mereni pritisci, dobijeni koeficijenti pritisk Cp su dti u tbeli ) Srčunti pritiske u oznčenim tčkm b) Srčunti silu otpor oblik u prvcim X i Y, ko i odgovrjuće koeficijente sile otpor (ko merodvn površin poprečnog presek se uzim mksimln površin poprečnog presek stub, normlnog n prvc strujnj) c) Koristeći rezultt pod b), srčunti ukupnu silu otpor koj će delovti n stub u prirodi koji je 5 put veći od model, koji se nlzi u vodi brzine U o = (α/) m/s (gustin vode je ρ = 0 kg/dm 3 ) U Y 6 X 3 / 5 4 / t~k Cp =( α+ β)/ cm

10 Mehnik fluid Otvoreni tokovi Jednoliko tečenje i hidrulički skok Vežb br 0 ZDTK 0 Z prizmtični knl poprečnog presek prikznog n slici izrčunti: ) Protok u knlu Q ko kritičn dubin iznosi h K =α/0 m b) Normlnu dubinu h N ko podužni ngib dn knl iznosi I D =05 o / oo, z vrednost protok se usvoji podtk dobijen pod ) c) Režim tečenj u knlu pri normlnoj dubini 45 o n=004 m -/3 s 04 h ZDTK 0 Z knl trougonog poprečnog presek ngib strnic : izrčunti: ) Kritičnu dubinu u knlu h K pri protoku od Q=(α-β) m 3 /s b) Dubinu iz hidruličkog skok h ko je protok u knlu Q, ispred skok je izmeren dubin h =h K /3 m c) Gubitk energije n skoku E d) Froude-ov broj Fr z dubine h, h i h K : h Q h h K : h

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između

Διαβάστε περισσότερα

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću Reltivno irovnje tečnosti Trnsltorno kretnje sud s tečnošću Zdtk Cistern čiji je orečni resek elis oluos i b nunjen je tečnošću ustine i kreće se rvolinijski jednklo ubrzno ubrznje w o orizontlnoj rvni

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac ) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

Otpori trenja i otpori oblika

Otpori trenja i otpori oblika 4 Otpori trenja i otpori oblika Zadatak 4.. Na osnovu pritisaka izmerenih duž konture prikazanog stuba, izloženog homogenoj vazdušnoj struji, odre deni su koeficijenti pritisaka C p (dati u tabeli). Izračunati

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

Savijanje elastične linije

Savijanje elastične linije //00 Svijnje estične inije Anitičk metod odreďivnj estične inije Irčunvnje ugi i ngi u pomoć tic Prv jednčin svijnj Normni npon u nekoj tčki poprečnog presek s M moment spreg s M I x I x ksijni moment

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Zakon o količini kretanja

MEHANIKA FLUIDA. Zakon o količini kretanja MEHANIKA FLUIDA Zakon o količini kretanja zadatak Odrediti intenzitet sile kojom mlaz vode deluje na razdelnu račvu cevovoda hidroelektrane koja je učvršćena betonskim blokom (vsl) Prečnik dovodnog cevovoda

Διαβάστε περισσότερα

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006. šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

Podužno ukrućenje na rebru nosača (na h/4 od vrha rebra) vruće valjani L profil: L100x100x MPa 1 E 210GPa ν 0.3 G 81GPa f y.

Podužno ukrućenje na rebru nosača (na h/4 od vrha rebra) vruće valjani L profil: L100x100x MPa 1 E 210GPa ν 0.3 G 81GPa f y. 5. zdtk Izvrši sve potrebne kontrole nosivos i stbilnos z srednje polje krnskog nosč rspon L=6 m po kome se kreće točk dizlice s prorčunskom vrednošću mksimlne sile Q Ed =600 kn. Poprečni presek nosč čine

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata] Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom

Διαβάστε περισσότερα

Istosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora.

Istosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora. Strnic: X stosmjerni krugovi Prilgođenje n mksimlnu sngu. Rješvnje linernih mrež: Strnic: X. zdtk Otpor u kominciji prem slici nlzi se u posudi u kojoj vld promjenjiv tempertur. Pri temperturi ϑ = 0 C,

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Složeni cevovodi

MEHANIKA FLUIDA. Složeni cevovodi MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.

Διαβάστε περισσότερα

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

4. Relacije. Teorijski uvod

4. Relacije. Teorijski uvod VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:

Διαβάστε περισσότερα

Zadatak 1

Zadatak 1 PISMENI ISPIT IZ KLASIČNE MEHANIKE I 3.. 9. Zdtk Čestic mse m izbčen je s površine Zemlje pod kutem α brzinom v. Ako je otpor zrk proporcionln trenutnoj brzini konstnt proporcionlnosti je ), izrčunjte

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

DINAMIKA. u f. Dinamički sistem - pogon sa motorom jednosmerne struje: N: NELINEARAN. m m

DINAMIKA. u f. Dinamički sistem - pogon sa motorom jednosmerne struje: N: NELINEARAN. m m DINAMIKA Dinmički sistem - pogon s motorom jednosmerne struje: N: u u m m i, [ i ],, U opštem slučju ovj dinmički sistem je U opštem slučju ovj dinmički sistem je NELINEARAN MATEMATIČKI MODEL POGONA SA

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1)

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1) TEKSTOV ZADATAKA (2. kolokvijum) iz Elektomgnetike (stuijski pogm EEN, 22/). Oeiti silu koj eluje n tčksto opteećenje Q smešteno izn polusfeične povone izočine nultog potencijl. 2. Oeiti elimične kpcitivnosti

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Многоугао, странице и дијагонале. Број дијагонала многоугла. Obele`i svaki mnogougao, a zatim napi{i kojoj vrsti po broju stranica pripada.

Многоугао, странице и дијагонале. Број дијагонала многоугла. Obele`i svaki mnogougao, a zatim napi{i kojoj vrsti po broju stranica pripada. Многоугао Многоугао, странице и дијагонале. Број дијагонала многоугла 1 Obele`i svki mnogougo, ztim npi{i kojoj vrsti po broju strnic pripd. Petougo Ncrtj osmougo FGH. Obele`i wegov temen. ) Npi{i temen

Διαβάστε περισσότερα

Definicije i osobine statičkog momenta površine poprečnog preseka za proizvoljnu osu. Definicija. - statički moment površine A za osu y.

Definicije i osobine statičkog momenta površine poprečnog preseka za proizvoljnu osu. Definicija. - statički moment površine A za osu y. Definicije i osobine sttičkog moment površine poprečnog presek z proizvoljn os Definicij - sttički moment površine z os Zbog ( ) ( ) immo je - sttički moment površine z os ( ) i i ( ) Ovo tkođe znči je

Διαβάστε περισσότερα

Tečenje sa slobodnom

Tečenje sa slobodnom 3 Tečenje sa slobodnom površinom Zadatak 3.1. Pri ustaljenom jednolikom tečenju u kanalu trapeznog poprečnog preseka, izmerena je dubina vode H = 1.0 m. Nagib dna kanala je I D =0.5% a Manning-ov koeficijent

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

povratnog napona 6 prekidača na slici 1.

povratnog napona 6 prekidača na slici 1. Prktikum iz elektroenergetike Lortorij Elektro Mgneti Trnzient Progrm (EMTP) Zdtk Primjer prorčun prelznog povrtnog npon (prekidnje liskog krtkog spoj) Potreno je prorčunti prijelzni povrtni npon n kontktim

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

MEHANIKA FLUIDA I Što valja zapamtiti 9 3. STATIKA FLUIDA. p (izražava ravnotežu masenih sila i sila tlaka).

MEHANIKA FLUIDA I Što valja zapamtiti 9 3. STATIKA FLUIDA. p (izražava ravnotežu masenih sila i sila tlaka). MENIK FLUID I Što vlj zpmtiti 9. STTIK FLUID snovn jedndžb sttike (slučj i ) p fi ili f rdp (izržv rvnotežu mseni sil i sil tlk). i Iz osnovne jedndžbe sttike imjući n umu svojstv rdijent zključuje se:

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Sistem sučeljnih sila

Sistem sučeljnih sila Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu

Διαβάστε περισσότερα

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656 TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

VISKOZNOST TEČNOSTI Viskoznost

VISKOZNOST TEČNOSTI Viskoznost VISKOZNOST VISKOZNOST TEČNOSTI Viskoznost predstavlja otpor kojim se pojedini slojevi tečnosti suprostavljaju kretanju jednog u odnosu na drugi, odnosno to je vrsta unutrašnjeg trenja koja dovodi do protoka

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE

SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE Do sd smo već definisli skup Ω elementrnih dogđj Ako se elementrni dogđji ω mogu predstviti ko relni brojevi, ond se eksperiment može zmisliti ko izbor jedne promenljive

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: Dinamički sistem Ulazi Izlazi (?)

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: Dinamički sistem Ulazi Izlazi (?) DINAMIKA Dinički siste - pogon s otoro jednoserne struje: N: u u f Dinički siste Ulzi Izlzi (?) i, [ i ],, f f U opšte slučju ovj dinički siste je NELINEARAN MATEMATIČKI MODEL POGONA SA NEZAVISNO POBUĐENOM

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

38. Savezno takmiqenje iz fizike za uqenike srednjih xkola xkolske 2002/2003. god. II razred

38. Savezno takmiqenje iz fizike za uqenike srednjih xkola xkolske 2002/2003. god. II razred Zdtke pripreil: Zoric Pjovi Recenzent: dr Gorn Popri Predednik koiije: dr Mi o Mitrovi JUGOLOVENKO DRUXVO FZQR MNRVO PROVJEE NUKE REPULKE CRNE GORE MNRVO PROVEE POR REPULKE RJE MNRVO Z PROVJEU NUKU KULURU

Διαβάστε περισσότερα

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni

Διαβάστε περισσότερα

GIBANJE (m h) giba miruje giba giba miruje miruje h 1000 :1000 h 1 h h :1000 1

GIBANJE (m h) giba miruje giba giba miruje miruje h 1000 :1000 h 1 h h :1000 1 GIBANJE ( h) gibnje gibnje ijel je projen položj ijel ili dijelo ijel u odnou pre neko drugo ijelu z koje o ujeno (dogoorno) uzeli d iruje U odnou n liječnik: gib iruje gib iruje gib gib iruje iruje gib

Διαβάστε περισσότερα

Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu.

Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu. VISKOZNOST VISKOZNOST Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu. VISKOZNOST Da li očekujete da će glicerol imati veću ili manju

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

Matematika za ekonomiste Časlav Pejdić, (064)

Matematika za ekonomiste Časlav Pejdić, (064) Mtemtik z ekonomiste Čslv Pejdić, (06) 09 0 SADRŽAJ SADRŽAJ UVOD DEO RELACIJE I FUNKCIJE DEO ALGEBRA 6 DEO NIZOVI I REDOVI DEO NEPREKIDNOST I DIFERENCIJABILNOST FUNKCIJE 7 5 DEO LIMESI I IZVODI 9 6 DEO

Διαβάστε περισσότερα