Οδιαχωρισμόςτωνσχημάτωνσετρίπλευρα,τετράπλευρακλπ. οφείλεταιστονίδιοτον Ευκλείδη,αφούδεναπαντάταιούτεστονΠλάτωναούτεστονΑριστοτέλη.

Σχετικά έγγραφα
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

¾

a x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος.

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

º º½ Destination-Sequenced Distance-Vector (DSDV) º º º º. º º Temporally Ordered Routing Algorithm (TORA) º º º

Å Ñ ¾ º½ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º¾ ÈÙÖ Ò Ò Ñ Ö ÑÑ Ô Ò º º º º º º º º º º º ½ º ÈÒ Ñ Ö ÑÑ Ô Ò º º º º º º

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

p din,j = p tot,j p stat = ρ 2 v2 j,

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

S i L L I OUT. i IN =i S. i C. i D + V V OUT

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. (X, A) f (Y, B) g (Z, C) f 1 (E) A Õ E Eº (iii) a R f 1 ([a, )) Mº (iv) a R f 1 ((, a]) Mº

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Σχηματισμός και αντίληψη εικόνων. Καθηγητής Γεώργιος Τζιρίτας

Z

tan(2α) = 2tanα 1 tan 2 α

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μαθηματική μορφολογία. Καθηγητής Γεώργιος Τζιρίτας

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )

Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009

v w = v = pr w v = v cos(v,w) = v w

Προσομοίωση Δημιουργία τυχαίων αριθμών

N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1


Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

Montreal - Quebec, Canada.

arxiv: v1 [math.dg] 3 Sep 2007

Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù

ÊÁËÌÇÌ Ä ÁÇ È Æ ÈÁËÌÀÅÁÇ Â ËË ÄÇÆÁÃÀË ËÉÇÄÀ Â ÌÁÃÏÆ ÈÁËÌÀÅÏÆ ÌÅÀÅ ÍËÁÃÀË Ð ÃÓÙ ÓÙÐÓ ÒÒ Å Ä ÌÀ ÆÌÇÈÁËÅ ÆÏÆ Ì Ä ÆÌÏË ÏÆ Ë ËÍËÌÀÅ Ì ÈÇÄÄÏÆ ÂÅÏÆ Ä ÍÂ ÊÁ Ë

arxiv:quant-ph/ v1 28 Nov 2002

plants d perennials_flowers

+ m ev 2 e 2. 4πε 0 r.

È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙ

Reserve & Trapped. Mission Fuel. Military Ordnance. Expendable Payload. Passengers + Bags ( lbs/pass.) Revenue Cargo. Non expendable Payload

¾ Ë Öö º¾º Å ØÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ê ÞÙÐØ Ø Ù º º º º º º º º º º º º º º º º º º º º º º º º º½º Ê ÞÙÐØ

Τμήμα Φυσικής, Εργαστήριο Αστρονομίας

iii vii Abstract xiii iii

Ανώτερα Μαθηματικά ΙI

Scientific knowledge is the common heritage of mankind. Abdus Salam

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Γραφικάμετηνχρήσ η ÛØ

½ ÍÚÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ò ÓÔ Ó Ò Ó Ù Ø ÓÖ Ñ Ö ÞÑ ØÖ Ò Ñ ÔÓ Ù Ú ÑÓ Ó Ö ÑÓ ÐÓö ÒÓ Ø Ø ö ÒÙ Ò Ó ÔÖÓ Ð Ñ Ø Ó Ù ÔÖ Ø Ò Ñ ÔÖ Ñ Ò Ñ ö Ð ÑÓ ØÓ ÔÖ ÞÒ ÔÖÓ Ò ÑÓ Ó Ú

Faculté des Sciences. Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: 2-Δ συνεχή σήματα. Καθηγητής Γεώργιος Τζιρίτας

The Prime Number Theorem in Function Fields

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Αποκατάσταση εικόνων. Καθηγητής Γεώργιος Τζιρίτας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών. Καθηγητής Γεώργιος Τζιρίτας

Ç ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º

[Na + ] [NaCl] + [Na + ]

c = a+b AC = AB + BC k res = k 1 +k 2

Δυαδικά Συστήματα. URL:

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Δυναμικοί τύποι δεδομένων

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Προγραμματισ μόςσ ε» ΙωάννηςΓºΤσ ούλος

p a (p m ) A (p v ) B p A p B

imagine virtuală plan imagine

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Εισαγωγή. Καθηγητής Γεώργιος Τζιρίτας. Τμήμα Επιστήμης Υπολογιστών

Στοκεφάλαιοαυτόθαμιλήσ ουμεγιατααρχείασ τηνγλώσ σ α ºΘαχρησ ιμοποιηθούνσ υναρτήσ ειςαπότηνκαθιερωμένηβιβλιοθήκηεισ όδου»εξόδου

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Βελτίωση εικόνων. Καθηγητής Γεώργιος Τζιρίτας

Αρχείασ την Â Ú. ΙωάννηςΓºΤσ ούλος


Ω = {ω 1,..., ω 6 }, ω = ω 1,..., ω m 1, 6, ω 1,...,, ω j {1, 2,...5}, m 1.

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις

Ανώτερα Μαθηματικά ΙI

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý

Γιατηνδήλωσ ητωνδομώνχρησ ιμοποιείταιοπροσ διορισ τής ØÖÙØ όπωςσ την σ υνέχεια

ÔÖÓØ Ô ØÓ ESO (M. Sarazin and F. Roddier, A&A 227, , 1990) Õ Ò ¹

Πρότυπα. ΙωάννηςΓºΤσ ούλος

Μονοδιάσ τατοιπίνακες

Preisdifferenzierung für Flugtickets

½ È Ê Ç Î Ç Ê ÇÚ ÒÓÚ ÓØ À Ð ÖØÓÚ Ç ÒÓÚ ÓÑ ØÖ Ò Ò ÔÖ Ú ÒÓÚ ÔÖ Ö º ÍÔÖ ÚÓ Ù Ò Ò Ù ÑÓ Ò ÔÖ Ú Ñ Ò ÓÔÙÒ º Í ÓÔÙÒ I Ù ÙÔÐ Ò Ò Þ Ú ÒÓ Ø Ù Ø ÑÙ ÓÑ Ö ÐÒ ÖÓ¹ Ú

Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration. DTU Wind Energy - PhD

ca t = β 1z t 1(q t γ)+β 2z t 1(q t >γ)+ε t z t = g(x t,π)+u t


ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Εφαρμοσμένα Μαθηματικά

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

Εισαγωγικά. URL:

ÌÓ ÑÝ Ñ ÐÝ Ò Ö Ò Û Ø ÓÙØ Û ÓÑ Ø ÔÖÓ Ø ÛÓÙÐ Ò Ú Ö ÓÑÔÐ Ø

Ë Ö ½ Ç ÒÓÚÒ ÔÓ ÑÓÚ Þ Õ ÚÓ ØÚ ÐÙ ½ ½º½ ÈÖ Ñ Ø ÞÒ Õ Ö ÞÚÓ Ñ Ò ÐÙ º º º º º º º º º º º º º º º º º º º º ½ ½º½º½ ÈÖ Ñ Ø ÔÓ Ð Ñ Ò ÐÙ º º º º º º º º º º

, z = 1 ( Lψ = Eψ, E = E fixed, L = +v(x,t), = 4 z z, x R 2 ½º µ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

x E[x] x xµº λx. E[x] λx. x 2 3x +2

A Francesca, Paola, Laura

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος

A Threshold Model of the US Current Account *

Θα εμφανίσει την τιμή 232 αντί της ακριβούς

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Á ÆÌÁ Áà ÁÇÆ ËÌÊ ÆÁ ÇÃÌÇÊËà ÁË ÊÌ Á Iº ÙØÓÖ ÁÑ ÔÖ Þ Ñ Ì Ø Ò Ð Ð ØÙÑ Ñ ØÓ ÖÓ Û ÃÖ Ù Ú Ë ßÛ Þ ÔÓ Ð Û Ø ÒØ Ò ÈÖ ÖÓ ÒÓ¹Ñ Ø Ñ Ø ÓÑ ÙÐØ ØÙ ÍÒ Ú

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Transcript:

Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ ÛÑ ØÖ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ¾ ÒÒÓ ÓÖÞÓÒØ Ô Ö Ö ÓÒØ º Ü ôñ Ø ½ ÃÓ Ò ÒÒÓ ½ Ì Ü ôñ Ø Ó Ó Ò ÒÒÓ Ò Ø Ü ôñ Ø Ø Ô Ô ÓÑ ØÖ º ÈÖÓØ ½ ¾ ÈÖÓØ ¾ ¾ ÈÖÓØ ÈÖÓØ Â Ñ ÐÛ Ø Ô Ô ÓÑ ØÖ ÕÛÖ Ø Ò ÕÖ ØÛÒ Ô Ö ÐÐ ÐÛÒº À ÛÖ ØÛÒ Ô Ö ÐÐ ÐÛÒ Ù ôòº ÛÒ ØÖ ôòóùº À ÛÖ ØÛÒ Ô Ö ÐÐ ÐÓ Ö ÑÛÒ ØÛÒ Ñ ôò ØÓÙº ÌÓ ÈÙ Ö Ó Â ôö Ñ º ½

½ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ º¾ ÇÖ ÑÓ Ü ôñ Ø Ç Ù Ð Ñ Ó Ö ØÓ ÑÓÒØ ÐÓ Ò Ñ Ñ Ø Ó Ñ ÒÓÙ Ò Ñ Ô Ö ô ØÙÔÓÔÓ Ñ ÒÓÙ ÓÖ ÑÓ Ü ôñ Ø Ø Ô Ò ÙÒ ÕÞ Ñ Û¹ Ö Ñ Ø ÔÓ Ü º Ô Ø Ò ÖÕ Ø Ö ØÓ Ô Ö ØÒÓ Ñ Ð ÔÓ ÓÙ ÓÙ Ô Ö Ö ØÛÒ ÒØ Ñ ÒÛÒ Ø ÛÑ ØÖ º ÌÓ Ò ÙØ Ñ Ø Ò ÔÖôØ ÓÑ ÓÖ ÑôÒ ½ º ÇÖ ÑÓ ½º Ë Ñ Ó Ò ÙØ ÔÓÙ Ò Õ Ñ ÖÓº ½ ¾º Ö ÑÑ Ò Ñ Ó ÕÛÖ ÔÐ ØÓº ¾ º Ì Ö Ö ÑÑ Ò Ñ º... º ÔÔ ÛÒ Ò Ð Ó Ø ÑÒ Ñ ÒÛÒ Ö ÑÑôÒ ØÓÙ Ô Ô ÓÙ ÔÓÙ Ò ÒØ Ô Ø Ù º º ³ÇØ Ò Ó Ô Ö ÕÓÙ Ø ÛÒ Ö ÑÑ Ò Ù ÛÒ Ð Ø Ù Ö ÑÑ º ³ Õ ÙÕÒ Ô Ö Ø Ö Ø Ó Ù Ð Ò ÕÖ ÑÓÔÓ ØÓÙ Ô Ö Ô ÒÛ ÓÖ ÑÓ Ø ÔÓ Ü ØÛÒ ÔÖÓØ ÛÒ ÔÓÙ ÓÐÓÙ Ó Òº Ç ÓÖ ÑÓ ÙØÓ Ò Ü ÔÓÙ ÔÖ Ô Ò Ü ÖÞÓÙÒ ØÓÒ Ò Òô Ø Ø Ò Ñ ¹ ÖÓÙ ÐÐ Ò Ô ÞÓÙÒ ÔÓ Ó Ö ÐÓ Ø Ô Ñ Ò ÙÑÔ Ö Ñ Ø º ËØÓÒ ÇÖ Ñ Ó Ö ÑÑ ÑÔÓÖ Ò Ò ÑÔÙÐ Ö ÑÑ º ËØÓ ÐÓ ³ Ó Ù¹ Ð ÕÖ ÑÓÔÓ ÛÒ Ñ Ø Ü ÐÛÒ Ù ôò ÐÐ Ò Ü Ñ Ð Ø Ö ÑÓ Ð ÛÒ ôò ÑÔ ÐÛÒ Ö ÑÑôÒ ÙÔ ÖÕÓÙÒ Ô Ö Ø ÖÓ ØÓÙ ÔÖÓ Ù Ð ÓÙ ÕÖ ÒÓÙº Ç Ô Ö Ø ÖÓ Ô ØÓÙ ÐÓÙ ÓÙ ÓÖ ÑÓ Ò ÙÒØÓÑ Ø ØÓÒ ÕÖÓÒÓ ØÖ ÔÓ Ö³ Ô Ò ÇÖ ÑÓ ½ ΚατάτονΑριστοτέλημέροςμενουνεστίνκαιτουείδουςδηλαδή,υπάρχειμέροςακόμα καιστημορφή. (ΜετάταΦυσικά,1035 b32). ΚατάτονΠρόκλο,οπρώτοςορισμόςτου σημείουδόθηκεαπότουςπυθαγορείουςωςμονάςπροσλαβούσαθέσιν. ΚατάτονΠλάτωνα σημείοείναιαρχήγραμμής. ¾ ΚατάτονΠρόκλο,γραμμήείναιμέγεθοςεφ ενδιαστατόν,δηλαδήμονοδιάστατομέγεθος. ΕναςαρχαιότεροςορισμόςτηςγωνίαςοφείλεταιστονΑπολλώνιοτονΠεργαίο,σύμφωνα μετονοποίο,γωνίαείναισυναγωγήεπιφανείαςηστερεούπροςενίσημείωυπόκεκλασμένη γραμμήήεπιφανεία.

º¾º ÇÊÁËÅÇïÁ à Á ÁïÏÅ Ì ½ ½ º º º º ØÖÔÐ ÙÖ Õ Ñ Ø Ò ÙØ ÔÓÙ Ô Ö ÕÓÒØ ØÖ Ù º º º ¾¼º Ô Ø ØÖÔÐ ÙÖ Õ Ñ Ø ÔÐ ÙÖÓ ØÖ ÛÒÓ Ò ÙØ ÔÓÙ Õ Ø ØÖ ÔÐ ÙÖ ØÓÙ Ó Ð ØÖ ÛÒÓ Ò ÙØ ÔÓÙ Õ Ñ ÒÓ Ø Ó ÔÐ ÙÖ ØÓÙ Ð Ò ØÖ ÛÒÓ Ò ÙØ ÔÓÙ Õ Ø ÔÐ ÙÖ ØÓÙ Ò º Ã Ø ØÓÒ ÕÖÓÒÓ ÓÖÑ Ð Ñ Ò ÔÐ ÙÖÓ ØÖ ÛÒÓ Ò Ó ¹ Ð ÐÐ Õ ØÓÒ Ù Ð º È Ö ÑÓ ØÓÒ ÇÖ Ñ ¾¾ Ò ÓÖ Ó ôò Ó ÔÓÙ Ð Ø Ø Ö Ñ µ Ò Ò Ø ØÖ ÛÒÓº ÈÖÓ Òô Ô Ñ ÐÓ ÔÓÝ Ò ÔÖÓØ Ñ Ø ÖÓ Ò ÙÑÔ Ö Ð ÓÙÑ Ø Ø ØÖ ÛÒ Ø ÓÖ Ó ôò º Å Ø ØÓÙ ÓÖ ÑÓ Ó Ù Ð ÔÖÓÕÛÖ Ø Ô Ö Ñ Ø Ñ Ø ØÓÙ ¹ Ü ôñ Ø µº Ì ÕÖÓÒ Ü ôñ Ø Ø ÛÑ ØÖ ÓÑÓ ÞÓÙÒ Ö Ø Ñ Ø Ø Ñ Ø ÙØ º Ü ôñ Ø ½º Õ Ü Û Ø ÑÔÓÖ Ò Õ Ù Ö ÑÑ Ô Ñ Ó ÔÖÓ Ñ Óº ¾º Ã Ô Ô Ô Ö Ñ Ò Ù ÑÔÓÖ Ò Ô Ö Õ Ô Ö Ù Ø ÙÒ Õ ØÖ ÔÓº º à ÑÔÓÖ Ò Ö ÐÓ Ô ÒØ ÒØÖÓÙ Ø Ñ ØÓº º Ã Ð Ó ÓÖ ÛÒ Ò Ñ Ø Ü ØÓÙº º ÌÓ Ô ÑÔØÓ Ø Ñ ÙÞ Ø ÕÛÖ Ø Ô Ö ØÛº Ì Ø Ñ Ø ½ ¾ ÑÔÓÖÓ Ò Ò ØÙÔÛ Ó Ò Ø ØÓÒ ÕÖÓÒÓ ØÖ ÔÓ Û Ü ÓÑ ÒÛÒ Ó ÓÖ Ø ôò Ñ ÛÒ ÙÔ ÖÕ ÑÓÒ Ù ÔÓÙ Ô ÖÒ Ô ÙØ º À Ñ ØÓÙ Ù Ð Ò Ô Ö Ø ÖÓ Ø Ò Ø Ù Õ Ø Ò Ô ÖÜ ÓÖ Ð Ò ØÓÒ ØÖ ÔÓ Õ Ø Ò ÓÙ º ÓÐÓÙ Ó Ò Ó Ø ØÓÒ Ù Ð ÃÓ Ò ³ ÒÒÓ º ÙØ Ò Ü ôñ ¹ Ø Ô Ö Ø ÙÑÔ Ö ÓÖ Ò Ø ÖÛÒ Ñ ôò Õ Ñ ÒÓ ÛÑ ØÖ ôò ÒØ Ñ ÒÛÒº Οδιαχωρισμόςτωνσχημάτωνσετρίπλευρα,τετράπλευρακλπ. οφείλεταιστονίδιοτον Ευκλείδη,αφούδεναπαντάταιούτεστονΠλάτωναούτεστονΑριστοτέλη. Ηλέξησκαληνόπροέρχεταιείτεαπότοσκάζω(=κουτσαίνω)είτεαπότοσκολιός(= επικλινής,λοξός). Εδώδιάστημα=ακτίνα,ανκαιοΕυκλείδηςχρησιμοποιείτονόροδιάστημακαιγιατη διάσταση. Τοαίτημααυτόείναιισοδύναμομετηνισχύτηςισοδυναμίαςτωνσχημάτων,ήμεάλλα λόγια,τηςομογένειαςτουχώρου.

½ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ÃÓ Ò ÒÒÓ ½º Ì ÔÖÓ ØÓ Ó ÔÖ Ñ ÔÖ Ñ Ø Ò Ñ Ø Ü ØÓÙº ¾º Ã Ò ÔÖ Ñ Ø ÔÖÓ Ø Ó Ò ÔÖ Ñ Ø Ø ÙÒÓÐ ÔÖ ¹ Ñ Ø Ò º º Ã Ò Ô ÔÖ Ñ Ø Ö Ó Ò ÔÖ Ñ Ø Ø ÙÔÓÐ Ô Ñ Ò ÔÖ Ñ Ø Ò º º Ã Ø ÖÑ ÞÓÒØ Ñ Ø Ü ØÓÙ ÔÖ Ñ Ø Ò Ñ Ø Ü ØÓÙº º à ØÓ ÐÓÒ Ò Ñ Ð Ø ÖÓ ØÓÙ Ñ ÖÓÙº ÈÓÐÐÓ Ù Ö Ô Ö Ø Ö Ò Ø Ò Ò Ô Ö ØÛÒ Ü ÛÑ ØÛÒ ØÓÙ Ù¹ Ð Ö Ñ Ø ÕÖÓÒ Ñ Ð Ø ÛÑ ØÖ º ÌÓ ÔÐ ÓÒ ÔÖÓ ¹ Ò Ñ Ó Ò ÔÓÙ ÓÔÓ ÔÓØ Ý Ø Ò Ø Ü ØÛÒ Ñ ÛÒ Ô ÒÛ Ñ Ö ÑÑ Ø ÒÒÓ ØÓÙ Ñ Ø Ü º Ç Ù Ð ÕÖ ÑÓÔÓ Ð Ø ÙÔÓ Ô Ö Ø Ò Ø Ü ØÛÒ Ñ ÛÒ Ô ÒÛ Ñ Ø ¹ º È Ö³ Ð ÙØ Ø Ò Ò ØÖ ÔÓ Ò Ñ ôò Ø ØÓ Ö Ó ØÓÙ Ù Ð ØÓ ØÓÙ Ø Ö ÛÑ ËØ Ñ Ñ Ø ÔÓ Ó ÔÖ Ô Ò Ü Ò Ô Ò ÐÙØ Ø Ñ Ò ÖÕ Ò Ô Ö Ð Ø Ô Ñ Ò ÙÑÔ Ö Ñ Ø Ô Ø ÖÕ ÙØ º º ÐÓ ³ Å ÖÓ Â Ñ Ð Ì ÓÙ Ø Ô Ö Õ Ñ Ò ØÓÙ Å ÖÓÙ ØÓÙ ÐÓÙ ³ Ò ÔÖôØ Ø ÛÖ Ñ Ø Ø Ø ØÖ ôòûò ØÓ Õ ô Ø Ù ÔÛ ÕÓØ Ñ ¹ ÛÒ ôò Ù Ù Ö ÑÑÛÒ ØÑ Ñ ØÛÒ ÙØ Ö Ù ÒØÛ ÔÓ ÔÖÓØ Ô Ö Ñ Ð Ø ÖÛÒ³ Õ ÛÒ ØÛÒ ÛÒ ôò ØÛÒ ÔÐ ÙÖôÒ Ò ØÖ ôòóù ÔÓÙ ÓÒØ Ø Ò ³ ½ ÓÖÙ ôòóòø Ñ Ø Ò ØÖ ÛÒ Ò Ø Ø ³ ¾¼º ΚατάτονΑριστοτέλη,κανείςπροσπαθείνααποδείξειαξιώματαμόνοναπόαδημοσύνη. Σανπαράδειγμα,οΠρόκλοςπαραθέτειτηνακόλουθη απόδειξη τουαπολλωνίου,τηςκοινής έννοιας1:αςείναι A = Bκαι B = C. Λέγωότι A = C. Διότι,εφ όσον A = B,τα A, B καταλαμβάνουντονίδιοχώρο,καιεφ όσον B = Cτα B, Cκαταλαμβάνουντονίδιοχώρο. Άρα A = C. Ηαπόδειξηαυτήεμπεριέχειτιςεπιπλέονυπόθεσειςότια) A = Bανκαιμόνοεάντα A, B καταλαμβάνουντονίδιοχώροκαιβ)πράγματαπουκαταλαμβάνουντονίδιοχώρομεκάποιο άλλοπράγμακαταλαμβάνουνκαιτονίδιοχώρομεταξύτους. Μεάλλαλόγιαπροσπαθείται ναεξηγηθείτοπροφανέςμεκάτιπερισσότεροομιχλώδες,αφούοχώροςείναιμίαποσότητα πιο δύσκολη απότακαθεαυτάπράγματατουίδιουτουχώρου. Τούτηηκοινήέννοιανομιμοποιείτηνχρησιμοποίησητηςεναπόθεσηςγιατηναπόδειξη τηςισότηταςδύοσχημάτωνπουέχουντααναγκαίαμέρηαντίστοιχαίσα.

º º Á ÄïÁÇ ï Åï ÊÇË Â Åï ÄÁ ½ Ç ÖÕ ÔÖÓØ ÕÒÓÙÒ ÔÛ Ø Ù Þ Ø Ò ÔÐ ÙÖÓ ØÖ ÛÒÓ ÔÛ ÒØ Ö ÓÙÑ ØÑ Ñ Ø ÕÛÖ Ò Ø Ñ Ø ÒÓ Ñ º Ç Ð ÔØ Ø Ù Ø ³ ¾ ÞÓÒØ Ù Û Ø Ü ôñ Ø ½ ¾ º À ÈÖ Ø ³ Ò ØÓ ÔÖôØÓ Ñ ÒØ ôö Ñ ØÓ Ö Ø Ö Ó Ø Ø Ø Ô Ö Õ Ñ Ò ÛÒ º ÈÖ Ø ³ Ò Ó ØÖ ÛÒ ÕÓÙÒ Ø Ó ÔÐ ÙÖ Ø Ô Ö Õ Ñ Ò ÙÔ ØÛÒ ÛÒ ÔÐ ÙÖôÒ ÛÒ ÒØ ØÓ Õ ½¼ Ø Ø ÕÓÙÒ Ø Ø Ó ØÖ¹ ÛÒ Ò Ó ÐÓ Ô ÛÒ Ô Ø ÓÔÓ Ó ÔÐ ÙÖ ÙÔÓØ ÒÓÒØ Ò ÒØ ØÓ Õ Ñ Ø ÐÓ Ô ÛÒ º ³ ØÛ Ó ØÖ ÛÒ Ø ÔÓÙ ÕÓÙÒ Ø Ó ÔÐ ÙÖ ÒØ ØÓ Õ Ñ Ø Ð Ø Ò Ñ Ø Ò Ø Ò Ñ Ø Ò º à ØÛ Ø ÛÒ Ò Ñ Ø Ò º Ä Û Ø Ò Ñ Ø Ò ØÓ ØÖ ÛÒÓ Ò Ó Ñ ØÓ ØÖ ÛÒÓ Ó ÐÓ Ô ÛÒ Ô Ø ÓÔÓ ÙÔÓØ ÒÓÒØ Ó ÔÐ ÙÖ Ò ÒØ ØÓ Õ Ñ Ø ÐÓ Ô ÛÒ Ð Ò Ñ Ø Ò Ò Ñ Ø Ò º ËÕ Ñ º½ ÈÖ Ø ³ º ÈÖ Ò Ô Ñ Ø Ò Ô Ü Ü Ø ÓÙÑ ÓÖ Ñ Ò Ø Ö Ø Ø ØÓÙ ØÖ ÔÓÙ Ö ØÓÙ Ù Ð º È ÒØ Ø Ø ÛÖ Ñ Ø ØÓÙ Ñ Ó ØÖ ÔÓÙ ÖÕ Ñ Ò Ð Ñ Ñ Ø Ö ÓÖ Ø Ò ÓÒØ Ñ Ö ÑÑ ÛÒ ºÓº º Ñ ÓÖ Ö ÑÑ Ø º ½½ ÈÓÐ ÙÕÒ ØÓ ôö Ñ ½¼ Αντίτου μίαπροςμία πουαντιστοιχείστοευκλείδειο εκατέραεκατέρα προτιμούμε στοεξήςτοαντίστοιχα. ½½ Αυτόγίνεταικαιστιςμέρεςμας: Θεώρημα: Μίασυνεχήςπραγματικήσυνάρτησηαπεικονίζεικλειστάδιαστήματασεκλειστάδιαστήματα. Εστω [a, b]ένακλειστόδιάστημακαι f : [a, b] Rμίασυνεχής...

¾¼ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ÙÒÓ Ø Ô Ø ÐÐ ÐÓ Õ Ñ º Å Ù Ö Ñ Ò Ö ÕÖ Þ Ô Ö Ø ÖÛ Ô Ü ØÓ ØÖ ÛÒÓ Ò Ó Ñ ØÓ ØÖ ÛÒÓ º ÔÐô Ñ Ò Ø Ø ØÖ ÛÒ ÕÓÙÒ ØÓ Ó Ñ Òº Ç Ù Ð ÕÖ ÑÓÔÓ Ø Ò Ð Ü Ñ Ò Ñ ÒÓ Ô Ö Ø º ½¾ Ô Ü Ø ÈÖ Ø ³ º Ø Ò ØÓ ØÖ ÛÒÓ ÖÑÓ Ø ½ Ô ØÓÙ ØÖ ôòóù ØÓ Ñ Ó Ø ØÓ Ñ Ó Ù Ô Ø Ò Ø Ø ØÓ Ñ Ó ÖÑ Þ Ô ØÓ Ñ Ó Ó Ò Ñ Ø Ò º ³ Ø Ô ÖÑ Þ Ô Ø Ò Ù ÖÑ Þ Ô Ô Ø Ò Ð Û ØÓÙ Ø ÛÒ Ò Ñ Ø Ò º ³Ï Ø ØÓ Ñ Ó ÖÑ Þ Ô ØÓ Ô Ø Ò Ñ Ø Ò º ÐÐ ØÓ Ñ Ó ÖÑ Þ Ô ØÓ ô Ø ÖÑ Þ Ô Ø º Ø Ò ØÓ ÖÑ Ô ØÓ ØÓ Ô ØÓ Ò ÖÑ Ô Ø Ò Ø Ø Ó Ù Ö ÑÑ Ô Ö ÕÓÙÒ Ñ Ò ØÓ ÓÔÓÓ Ò Ò ØÓº ½ ³ Ö ÖÑ Ô Ø Ò Ò Ñ ÙØ Òº ³Ï Ø ÐÓ ØÓ ØÖ ÛÒÓ ÖÑ Ô ÐÓ ØÓ ØÖ ÛÒÓ Ò Ó Ñ ÙØ Ó ÐÓ Ô ÛÒ ÖÑ ÓÙÒ Ô Ø ÐÓ Ô ÛÒ Ò Ñ ÙØ Ð Ò Ñ Ø Ò Ñ Ø Ò Ñ Ø Ò º Ò Ö Ó ØÖ ÛÒ ÕÓÙÒ Ø Ó ÔÐ ÙÖ Ø Ô Ö Õ Ñ Ò ÙÔ ØÛÒ ÛÒ ÔÐ ÙÖôÒ ÛÒ ÒØ ØÓ Õ Ø Ø ÕÓÙÒ Ø Ø Ó ØÖ ÛÒ Ò Ó ÐÓ Ô ÛÒ Ô Ø ÓÔÓ Ó ÔÐ ÙÖ ÙÔÓØ ¹ ÒÓÒØ Ò ÒØ ØÓ Õ Ñ Ø ÐÓ Ô ÛÒ Ô Ö Ü º ½ ½¾ Οι Ελληνεςήξερανπολύκαλάναμετρούντιςγαίεςτους, καιήξερανεπίσηςότιοι φοροεισπράκτορεςτουφαραώμετρούσανταχωράφιατωναιγυπτίωναγροτώνμετρόποπου δενήτανκαθόλουπροςόφελοςτωντελευταίων. Σταμαθηματικά,αποφεύγουντηνέννοια του εμβαδού προτιμώνταςφράσειςόπωςτηνπαραπάνω,δηλαδή, τοορθογώνιοείναιίσομε τοορθογώνιο κ.ο.κ. ½ εναποτεθεί. ½ ΛόγωτουΑξιώματος1. ½ =τοοποίοέπρεπενααποδειχθεί.οευκλείδηςχρησιμοποιείτηνφράσηαυτήστοτέλος όλωντωναποδείξεων.οόροςχρησιμοποιείταιαυτούσιοςωςτιςμέρεςμαςκαιστοεξήςθα γράφουμεαπλώςο.ε.δ.

º º Á ÄïÁÇ ï Åï ÊÇË Â Åï ÄÁ ¾½ ËÕ Ð Ô ÒÛ Ø Ò Ô Ü Ø ÈÖ Ø ³ À Ñ Ó Ó Ô Ü Ø ÈÖ Ø ³ Ò ÔÐ Ö ÒØ ØÓÐ Ñ Ø Ð ÔØÓÑ Ö ÔÓ Ü ØÛÒ ÔÖÓØ ÛÒ ³ ½ º Ô³ Ø Ð ÔÓÙÑ Ó Ù Ð ÔÐô Ò ÔÓ Ø ØÓ ØÖ ÛÒÓ Ô ØÓÙ ØÖ ôòóù Ñ ØÖ ÔÓ ô Ø ØÓ Ò Ø Ô ØÓÙ ØÓ Ô ØÓÙ ØÓ Ô ØÓÙ Ô ÔÖÓ ÔØ ØÓ ÙÑÔ Ö Ñ º Ô Ø Ñ ÔÐ ÙÖ Ñ Ó Ó Ø Ò Ô Ò Õ ÑÑ Ø Ù Ð Ü ôñ Ø ÐÐ Ô Ø Ò ÐÐ ÔÖ Ø ØÔÓØ Ò Ò Ø ÕÛÖ Ø Ö Ø Ö Ø Ø ØÖ ôòûòº ËØ Ò ÈÖ Ø ³ ÓÐÓÙ Ø Ñ Ó¹ Óµº ÇÙ Ø ÙØ ÔÓÙ Ð ÔÓÙÑ ô Ò ÐÐÓ Ò ÜÛÑ º Ë ÕÖÓÒ Ü ÛÑ Ø Ñ Ð Ø Ô ØÓÒ ÉÐÑÔ ÖØ ÐÐÓÙ Ø Ü Ò Ø Ò ÙÔ ÖÕ ØÖ ÔÓ Ò Ü Ô Ö Ø ÙØ ØÓ ÐÐ Ñ Ø ÈÖÓØ ³ ÔÖ Ô Ò Ò ÜÛÑ ½ ÔÖ Ô Ò ÕÖ ÑÓÔÓ Ó Ñ Ø Ò Ò Ô ÔÓ ÓÕ ÔÓÙ Þ Ø Ò Ø Ñ Ô ÖÜ ÔÓ ÛÒ Ø Ö ôò Ò ÛÒ ØÓÙ Ô Ô ÓÙº ËØÓ Ô Ñ ÒÓ Þ Ó ÔÖÓØ ÛÒ ³ Ó Ù Ð ÔÓ Ò Ò Ñ ¹ Ð ô Ð ÑÑ Ô Ö Ó ÐôÒ ØÖ ôòûò ÔÓÙ ÕÖ ÑÓÔÓ Ø ÙÕÒ Ø Ð ³ سº ÈÖ Ø ³ ½ Ç ÔÖ Ø Ò ÛÒ ØÛÒ Ó ÐôÒ ØÖ ôòûò Ò º º º ½ ³ ØÛ Ó Ð ØÖ ÛÒÓ ØÓ ÔÓÙ Õ Ø Ò ÔÐ ÙÖ Ñ Ø Ò ÔÐ ÙÖ º º º Ð Û Ø ÛÒ Ò Ñ Ø Ò º º º ÈÖ Ø ³ ½ Ò Ó ÛÒ ØÖ ôòóù Ò Ø Ø Ó ÔÐ ÙÖ ÔÓÙ ÙÔÓØ ÒÓÒØ Ô Ø ÛÒ Ò º Ø Ò Ô Ü Ó Ù Ð Ø Ù Þ Ó ØÖ ÛÒ À ³ ØÛ ØÙÕ Ó Ñ Ó Ô ÒÛ Ø Ò ØÛ À Ò Õ Ö Ô Ø Ò Ò Ò Ñ Ø Ò º ÒôÒÓÙÑ Ø Ù À º ½ ΟπωςπροτείνειοΡάσσελστα Principia Mathematica. ½ ΣύμφωναμετονΠρόκλο,ηαπόδειξηαυτήςτηςπρότασηςοφείλεταιστονΘαλή. Μία προ Ευκλείδειααπόδειξηπουχρησιμοποιεί μεικτέσ γωνίεςκαιοφείλεταιστοναριστοτέλη παρατίθεταιστον Heath, vol. I II, p.252. ½ Παραλείπουμετοεπόμενοσυμπέρασμαπουλέειότικαιοιεξωτερικέςγωνίεςείναιίσες. ½ Είναιηαντίστροφητηςα 5.

¾¾ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ËÕ Ñ º¾ ÈÖ Ø ³ º ËØ Ô Ñ Ò Ó Ñ Ø ÕÒ Ø ÔÖôØ Ø Ø ØÛÒ ØÖ ôòûò À ØÓÙ Ö Ø ÖÓÙ Ø Ô Ö Õ Ñ Ò ÛÒ Ñ Ø Ô Ð Ô ØÓ Ó Ö Ø Ö Ó Ø Ø À ½º ³ ÕÓÙÑ À À Ô Ø Ù Ö À Ø Ö À À º ¾º Ô Ø Ù ÕÓÙÑ Ø À Ô ÔÐ ÓÒ Ò Ó Ò ÔÐ ÙÖ Ô ØÓ ½µ ÕÓÙÑ À Ö Ô ØÓ Ö Ø Ö Ó Ø Ô Ö ÕÓÑ Ò ÛÒ ÔÖÓ ÔØ À º Ã Ø Ð Ó Ù Ð Ò Ó ØÖ ÛÒ ÕÓÙÒ Ø Ó ÔÐ ÙÖ ÒØ ØÓ Õ Ø Ô Ö Õ Ñ ¹ Ò Ô Ø Ù ÛÒ ÒØ ØÓ Õ Ø Ø ÕÓÙÒ Ø ÒØ ØÓ Õ Ø Ó ØÖ ÛÒ Ò Ó ÐÓ Ô ÛÒ Ó ÓÔÓ ÙÔÓØ ¹ ÒÓÒØ Ô Ø ÔÐ ÙÖ Ò Ñ Ø ÒØ ØÓ Õ ÐÓ Ô ÛÒ Çº º º º ÜÞÓÙÒ Ò ÕÓÐ Ó Ò Ó Ó Ô Ö ØÛ ØÖ ÔÓ Ô Ü Ø ÈÖ Ø ³ º À ÔÖôØ Ó Ð Ø ØÓÒ ÈÖ ÐÓ ÔÓÙ ÛÖ Ñ Ô ÒÛ Ø ÒØ ØÓ Õ ÒØ Ò ÔÖÓ Ø Ò Ø º Ã Ø Ø ÐÐ ÓÐÓÙ Ø Ò Ô Ü ØÓÙ Ù Ð º Ç È ÔÔÓ Ø Ò Ô Ö ØÛ Ò ÖÓÙ Ô Ü Ô Ü Ø ÈÖ Ø ³ º

º º Á ÄïÁÇ ï Åï ÊÇË Â Åï ÄÁ ¾ ³ ØÛ Ò Ó Ð ØÖ ÛÒÓ ÔÓÙ Ò Ñ Ø Ò º ÛÖ ÓÙÑ ÙØ ØÓ ØÖ ÛÒÓ Û Ó ØÖ ÛÒ Ô Õ Ö Ñ ØÓÐÓ Ó Ñ Û Ü Ó Ó Ó ÔÐ ÙÖ Ò ÒØ ØÓ Õ Ñ Ø º Ô Ø Ò º ³ Ö Ð Ø ÒØ ØÓ Õ Ñ Ö ØÓÙ ØÖ ôòóù Ò Ô Ö ô Ø Ó ÔÐ ÙÖ ÙÔÓØ ÒÓÒØ Ô Ø ÙØ Ø ÛÒ º ³ Ö Ó Ô Ö Ø Ò ÛÒ Ó ÐÓ ØÖ ôòóù Ò Çº º º º º½ ÈÖÓØ ³ ½ ËØ ÈÖÓØ Ó Ù Ð ÔÓ Ò ØÓ Ö Ø Ö Ó Ø Ø ØÛÒ ØÖ ôò ÔÐ ÙÖôÒ ÕÖ ÑÓÔÓ ôòø Ø Ò Ñ Ó Ó Ø Ò Ô Ø Ö ÓÖ º Ç ÈÖÓØ ½ Ò ÖÛÑ Ò Ø Ó Ò Ø Ù ÔÖÛØ ÖÕ ÔÖÓØ Ø Ô Ô ÓÑ ØÖ ÕÓØ Ñ ÛÒ ôò Ù Ö ÑÑÛÒ ØÑ Ñ ØÛÒ Ø Ù Ñ Ó ØÛÒ Ô Ö ÔÐ ÖÛÑ Ø ôò ÓÖ ôò ÛÒ ôòº ÈÖ Ø ³ ½ º Ò ÔÓ Ô Ø ÔÐ ÙÖ ØÖ ôòóù ÔÖÓ Ø ÜÛØ Ö ÛÒ Ò Ñ Ð Ø Ö Ô Ñ ØÛÒ ÛØ Ö ôò Ô Ò ÒØ ÛÒ ôòº Á ÕÙÖ Ñ º α = < δ = º Ã Ø Ù º ÕÓØÓÑÓ Ñ Ø Ò ØÓ ÖÒÓÙÑ Ø Ò Ø Ò ÔÖÓ Ø ÒÓÙÑ Ø ô Ø ÒôÒÓÙÑ ØÓ Ñ ØÓ ØÛ α = º Ô Ü ½º ÌÓ ØÖ ÛÒÓ Ò Ó Ñ ØÓ Ô ØÓ Ö Ø Ö Ó Ø Ô Ö Õ Ñ Ò ÛÒ º ³ Ö α = α ¾º ÐÐ α Ò Ñ ÖÓ Ø δ. ³ Ö α = α < δ Ô Ø Ò Ó Ò ÒÒÓ Çº º º Ò Ó Ù Ð Õ Ø ØÓÙ Ø ÛÖ ØÛÒ Ô Ö ÐÐ ÐÛÒ ÙØ ØÓ Ñ Ó ÈÖ Ø ³ ½ ÔÖÓ ÙÔØ Û Ø ØÖ ÑÑ ÒÓ Ô Ö Ñ Ø ÈÖ Ø ³ ¾ Ô Ö ØÓÙ ÖÓ Ñ ØÓ ØÛÒ ÛÒ ôò ØÖ ôòóù Ð ÔÓÙÑ ÑÛ Ô Ó ÔÖÓ ¹ Ø ÔÖÓÕÛÖ º ÙÞ Ø ÓÙÑ ÙØ ØÓ Ñ Ó Ø ÒÒ Ø Ô Ü Ø ÈÖ Ø ³ ½ Ñ Ø Ò Ó ØÛÒ Ô Ö ÐÐ ÐÛÒº

¾ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ËÕ Ñ º ÈÖ Ø ³ ½ º À Ô Ü Ò ÔÖ Ñ Ø Ù Ù º à ÔÓ Ó ÑÔÓÖ Ò ÔÛ Ó Ù Ö Õ Ø Ò ÔÐ ÔÖÓ Ø Ø Ò ØÓ Õ Ñ º Ò Ð ÔÓÙÑ Ò Ô Ö ÐÐ Ð Ö ÑÑÓ Ô Û Ô Ø Ò Ô Ü Ø ÈÖ Ø ³ ½ º Ë ÙØ ØÓ Ø Ó ÑÔÓÖÓ Ñ Ò ÕÖ ÑÓÔÓ ÓÙÑ Ô Ö ÐÐ Ð Ò ÕÓÙÑ α = α Ø ÑÒ Ø Ó Ô Ö ÐÐ Ð º Ô ÔÐ ÓÒ ØÓ Ò ØÓ Ñ Ó ØÓÑ ØÛÒ ÛÒÛÒº È Ö³ Ð ÙØ ÙØ Ò ÓÙ Ø Ò ÔÓ ÜÓÙÑ Ø Ò ÈÖ Ø ³ ½ Ò ÙÒ Ø Ò ÔÓ ÓÙÑ Ø Ô Ö ÐÐ Ð Ò ÕÖ ÑÓÔÓ ÓÙÑ ØÓ Ö Ø Ö Ó Ø Ø ³ º ¾¼ Ô Ø Ò ÐÐ ÙÔ ÖÕ Ò Õ Ñ Ø Ò Ô Ü º Ç ÕÙÖ Ñ Ø α Ò Ñ ÖÓ Ø δ Ò ÓÐÓ Ø Ô Ø Ü ôñ Ø º Ô ÔÐ ÓÒ ÔÖ Ø Ò Õ ÐÐ ÛÑ ØÖ ÔÛ ÐºÕº Ö º ¾½ ¾¼ ΗεπιδεξιότητατουΕυκλείδηφαίνεταιαπότηνικανότητάτουνασυνδέσειτηνα 16μετο σημαντικόθεώρημαα 20,τηντριγωνικήανισότητακαιτηνα 27,τηνύπαρξητωνπαραλλήλων ¾½ ΟΜενέλαος, πουέγραψεπερίσφαιρικήςγεωμετρίαςτο100μ.χ. σίγουραήξερετο φαινόμενο.

º º Á ÄïÁÇ ï Åï ÊÇË Â Åï ÄÁ ¾ º º¾ ÈÖÓØ ³ ½ ¾¼ À ÈÖ Ø ³ ½ Ò Ô Ö Ñ Ø ³ ½ º È Ð Ò Ñ Ò ÓÕ Ø ³ ¾ Ô Ö ØÓÙ ÖÓ Ñ ØÓ ÛÒ ôò ØÖ ôòóù ÈÖ Ø ³ ½ º ÌÓ ÖÓ Ñ ØÛÒ Ó ÛÒ ôò ØÖ ôòóù Ò Ñ Ö Ø ÖÓ Ô Ó ÓÖ Ñ ÔÓ Ó ØÖ ÔÓ Ò ÙØ Ð Ó Òº ËÕ Ñ º ÈÖ Ø ³ ½ º À ÈÖ Ø ³ ½ Ñ Ð Ø ØÖ ÛÒÓ Ñ Ð Ø Ö ÔÐ ÙÖ Ù¹ ÔÓØ Ò Ø Ñ Ð Ø Ö ÛÒ ³ ½ Ò ÒØ ØÖÓ Ø º ÙØ Ó ÔÖÓØ Ó Ó Ò Ø Ò Ô Ö Ñ ØÖ ÛÒ Ò Ø Ø ÈÖ Ø ³ ¾¼º ÌÓ ÖÓ Ñ ØÛÒ Ó ÔÐ ÙÖôÒ ØÖ ôòóù Ò Ô ÒØ Ñ Ð Ø ÖÓ Ô Ø Ò ÐÐ ÔÐ ÙÖ Ñ ÔÓ Ó ØÖ ÔÓ Ò ÙØ Ð Ó Òº ËÕÓÐ Þ Ó ÈÖ ÐÓ Ç Ô Ó Ö Ó ÔÓÙ ÐÓÙÒ Ò ÐÓ ÓÔÓ ÓÙÒ ÙØ ØÓ ôö Ñ Ð Ò Ø Ò ÔÖÓ Ò Ñ Ò ÖÓ Ò ÕÖ Þ Ø Ô Ü º º º ØÓ ÙÑÔ Ö ÒÓÙÒ ÙØ Ô Ø Ò Ô Ö Ø Ö Ø Ò ØÓ Ø ÕÙ ØÓÔÓ Ø ØÓ Ò ÖÓ Ñ ÔÐ ÙÖ Ò Ô Ò Ñ ÒÓ ÖÓ ÔÓÙ Ö Ø ØÓ ÐÐÓ ÖÓ Ø ÔÐ ÙÖ Ô ÖÔ Ø Ô ÒÛ Ø Ò ÔÐ ÙÖ ÔÓÙ Ö Ø Ò Ô ØÓ Ø ÕÙ Ñ Û ØÛÒ Ó ÐÐÛÒ ¾¾ ¾¾ ΟισημερινοίΕπικούρειοιθαμπορούσανίσωςναπροσθέσουνκάτιγιααυτούςπουδιασχίζουντογρασσίδιγιασυντομία,κατάτοντρόποτουγαϊδάρου...

¾ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ Ç ÈÖ ÐÓ Ô ÒØ Û Ø Ø Ñ ÔÐ ÒØÐ Ý Ø Ð Ò ÔÓ¹ Ø Ð Ô Ø ÑÓÒ Ô Ü º ËØ Ò Ô ÖÔØÛ Ø Ù Ð ÛÑ ØÖ ØÖ ÛÒ Ò Ø Ø ÑÔÓÖ ÔÖ Ñ Ø Ò Ô Ö Õ Ô Ø ÐÐ Ü ÓÙ ÐÓ Ü ôñ Ø º Ô Ø Ò ÐÐ Ó Ô Ó Ö Ó Ö ÞÓÙÒ Ø Ò ÕÖÓÒ ÛÖ ØÛÒ Ñ ØÖ ôò ÕôÖÛÒ ÔÓÙ ØÖ ÛÒ Ò Ø Ø Ò ØÓ Ñ Ð ô ÜÛÑ ØÓÙ ÐÓÙ Ó Ó ÓÑ Ñ ØÓº º º ÈÖÓØ ³ ¾½ ¾ º ÌÖ Ô Ø Ò ÔÓÑ Ò ÔÖÓØ ØÓÙ Å ÖÓÙ ÓÖÓ Ò Ø ÓÐ Õ Ñ Ø Ü ÔÐ ÙÖôÒ ÛÒ ôò Ò ØÖ ôòóù ¾½ ¾ ¾ º À ÈÖ Ø ³ ¾¾ Ø Ò Ø Ù Ò ØÖ ôòóù Ô Ø ÔÐ ÙÖ ØÓÙ ÙÔ Ø Ò ÙÒ Ø Õ ØÖ ÛÒ Ò Ø Ø º Ç Ù Ð ØÓ ÕÖ ÑÓÔÓ ÙØ Ø Ò ÈÖ Ø ³ ¾ Ò Ü ÔÛ ÒØ Ö ÓÙÑ Ñ ÛÒ º Ì ÙÔ ÐÓ Ô Ö Ø Ö Ø Ø ØÖ ôòûò ÔÖÓ ÓÐÐôÒØ Ø Ò ³ ¾ Û Ò Ó Õ Ð ÖÓ ÖÓÙº º ÐÓ ³ Å ÖÓ Â ÛÖ ØÛÒ Ô Ö Ð¹ Ð ÐÛÒ Ä Ó ÇÖ Ñ ³ ¾ ØÓÙ Ù Ð Ø Ô Ö ÐÐ Ð Ù ¾ È Ö ÐÐ Ð Ò Ó Ù Ó ÓÔÓ Ò ØÓ Ó ÔÔ Ó ÔÖÓ Ø Ò ¹ Ñ Ò Ô ÖÛ ¾ Ô Ø Ó Ñ Ö ¾ Ò ÙÑÔÔØÓÙÒ Ñ Ø Ü ØÓÙ Ò Ò Ô ÙØ Ø Ñ Ö µº ËÕ Ø Ñ Ø Ô Ö ÐÐ Ð Ù Ò ØÓ Ô Ö ÑÓ Ó Ø Ñ ¾ ÜÛÑ º Ã Ò Ñ Ù ÑÔÔØ ¾ Ó ÐÐ Ù Ø ô Ø ØÓ ÖÓ Ñ ØÛÒ ¾ ÒØ Ô Ø ÙØ Ñ Ö ÛÒ ôò ¾ Ò Ò Ñ Ö Ø ÖÓ ØÛÒ ¾ ΚατάτονΑριστοτέλη,παράλληλεςευθείεςείναιαυτέςπουδεντέμνονται.Γιαδιάφορους άλλουςορισμούς,αρχαίουςκαισύγχρονους,παραπέμπουμεστον Heath, Vol I,σελ.190. ¾ ΟΕυκλείδηςλέγειεκβαλλόμεναιειςάπειρον.Δενμεταφράζουμεόμωςπροεκτεινόμενες στοάπειροδιότιτότεθαπρέπειναορίσουμετο άπειρο. Ημετάφρασήμαςαπλώςσημαίνει απεριόριστα. ¾ Δηλαδήαπόκάθεμίακατεύθυνση. ¾ ΤοΚεφάλαιο4πουακολουθείείναιαφιερωμένοστηνιστορίατου5ουΑιτήματος. ¾ =διασχίζει,τέμνει.σταεπόμεναδιατηρούμετοευκλείδειο εμπίπτει αντίτου τέμνει. ¾ ΟΕυκλείδηςδενγράφειτηνλέξη άθροισμα αλλατηνεννοείσαφώς. ¾ Αφήνουμεαμετάφραστοτπ εντόςκαιεπίτααυτάμέρηγωνιών αντίτου εσωτερικών

º º Á ÄïÁÇ ï Åï ÊÇË È Êï ÄÄÀÄ Ë ¾ Ó ÓÖ ôò Ø Ø Ø Ò Ô Ö ÔÖÓ Ø ØÓÙ Ó Ó Ù Ø ÑÒÓÒØ Ô ØÓ Ñ ÖÓ ÔÓÙ ØÓ ÖÓ Ñ ØÛÒ ÛÒ ôò Ò Ñ Ö Ø ÖÓ ØÛÒ Ó ÓÖ ôòº Å Ó Ò Ñ ÓÕ ØÓÙ ÓÙ Ø Ñ ØÓ ÔÓÙ ÕÖ ÑÓÔÓ Ø Ø Ò ¹ ÕÖÓÒ ÛÑ ØÖ ÑÔÓÖ Ò ØÙÔÛ Û Ü ³ ØÛ Ù Ñ Ó Ë Ø ÙØ º ÍÔ ÖÕ ÑÓÒ Ù ³ ÔÓÙ ÖÕ Ø Ô ØÓ Ë Ò Ô Ö ÐÐ Ð Ñ Ø Ò º À Ò ØÓÙ Ù Ð Ò ØÓ Ó Ø Ñ Ø Ò Ò ÔÓ Ü Ø Ò ÈÖ Ø ³ ¾ º ÈÖ Ò Ô ÙØ Ò ÔÓ Ò Ø Ò ÈÖ Ø ³ ¾ º ¼ Ò Ñ Ù ÑÔÔØ Ó ÐÐ Ù Ø ô Ø Ó Ò ÐÐ Ü ½ Û¹ Ò ¾ Ò Ñ Ø Ü ØÓÙ Ø Ø Ó Ó Ù Ò Ô Ö ÐÐ Ð Ñ Ø Ü ØÓÙº Ø Ò Ò Ó Ù Ò ÑÔÔØÓÙ Ø Ø Ó Ò ÐÐ Ü ÛÒ Ò Ñ Ø Ü ØÓÙº Ä Û Ø Ò Ô Ö ÐÐ Ð Ñ Ø Ò º Ô Ü Ø Ò Ò Ø Ò ÔÖÓ Ø Ò Ñ Ò Ó ÙÑÔ ÓÙÒ Ø Ô ØÓ Ñ ÖÓ ØÛÒ Ô ØÛÒ º ÔÖÓ Ø Ó Ò ÙÑÔ ÓÙÒ ØÓ À Ô ØÓ Ñ ÖÓ ØÛÒ º καιαπότοίδιομέροςγωνιών. ¼ ΗΠρότασηαυτήόπωςκαιηακόλουθηα 28ήτανγνωστέςστονΑριστοτέλη. ½ Προφανώςεννοείτιςεντόςεναλλάξ ¾ Απότηνδεύτερηεκφώνησηπουακολουθεί,φαίνεταιότιεννοείτιςεντόςεναλλάξγωνίες. ΟΝτεΜόργκανπαρατήρησεότιηΠρότασηα 27είναιλογικάισοδύναμητηςΠρότασης α 16: ΕστωΑηπρότασηευθείεςσχηματίζουντρίγωνομεμίαεμπίπτουσακαιΒηπρότασηευθείεςσχηματίζουνγωνίεςμεμίαεμπίπτουσαστοίδιομέροςπουτοάθροισματων εσωτερικώνγωνιώνείναιμικρότεροαπόδύοορθές,έχουμε τουοποίουτολογικόισοδύναμοείναι A = B όχι B = όχι A. ΛόγωτουΟρισμού23.

¾ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ËÕ Ñ º ÈÖ Ø ³ ¾ º Ì Ø ØÓ ØÖ ÛÒÓ À ÜÛØ Ö ÛÒ ÔÖ Ô Ò Ò Ñ Ø Ò ÛØ Ö Ô Ò ÒØ ÛÒ À ÔÖ Ñ Ò ØÓº ³ Ö ÔÖÓ Ø Ò Ñ Ò Ó Ò ÙÑÔÔØÓÙÒ Ô ØÓ Ñ ÖÓ ØÛÒ º ³ÇÑÓ ÑÔÓÖ Ò Õ Ø Ò ÙÑÔÔØÓÙÒ Ô ØÓ Ñ ÖÓ ØÛÒ º ÐÐ Ù ÔÓÙ Ò ÙÑÔÔØÓÙÒ Ô Ò Ò Ñ ÖÓ Ò Ô Ö ÐÐ Ð Ö Ò Ô Ö ÐÐ Ð Ñ Ø Ò º ³ Ö Ò Ñ Ù Ø ÑÒ Ó ÐÐ Ù Ø ô Ø Ó Ò ÐÐ Ü ÛÒ Ò Ñ Ø Ü ØÓÙ Ø Ø Ó Ó Ù Ò Ô Ö ÐÐ Ð Ñ Ø Ü ØÓ٠Ǻ º º À ÈÖ Ø ³ ¾ Ò Ñ ÕÖ Ñ Ô Ö ÐÐ Ø ¾ ÈÖ Ø ³ ¾ º Ò Ñ Ù ÑÔÔØ Ó ÐÐ Ù Ø ô Ø Ó ÒØ Ô Ø ÙØ Ñ Ö ÛÒ Ò Ñ Ø Ü ØÓÙ ØÓ ÖÓ Ñ ØÛÒ ÒØ Ø Ô Ø ÙØ Ñ Ö ÛÒ ôò Ò Ó Ñ Ó ÓÖ Ø Ø Ó Ó Ù Ò Ô Ö ÐÐ Ð Ñ Ø Ü ØÓÙº ÌÓ Ó ÜÛÑ ÕÖ ÑÓÔÓ Ø ØôÖ Ø Ò Ô Ü Ø ÈÖ Ø ³ ¾ º ÈÖ Ø ³ ¾ º À Ù ÔÓÙ ÑÔÔØ Ó Ô Ö ÐÐ Ð Ù Ò Ø Ò ÐÐ Ü ÛÒ Ø Ò Ø Ñ Ø Ò ÒØ Ô Ò ÒØ Ø ÖÓ Ñ ØÛÒ ÒØ Ô Ø ÙØ Ñ Ö ÛÒ ôò Ó Ñ Ó ÓÖ º Ø ØÛ Ø Ù ÑÔÔØ Ø Ô Ö ÐÐ Ð Ù Ð Û Ø Ò Ø Ò ÐÐ Ü ÛÒ À ÀÂ Ø Ò Ø ÛÒ À ΑπότηνΠρότασηα 16.

º º Á ÄïÁÇ ï Åï ÊÇË È Êï ÄÄÀÄ Ë ¾ ËÕ Ñ º ÈÖ Ø ³ ¾ º Ñ Ø Ò ÒØ Ô Ò ÒØ ÛÒ ÀÂ Ø ÖÓ Ñ ØÛÒ ÒØ Ô Ø ÙØ Ñ Ö ÛÒ ôò À ÀÂ Ó Ñ Ó ÓÖ º ËÕ Ñ º ÈÖ Ø ³ ¾ º Ô Ü º Ø ØÛ ÓØ Ó ÛÒ À ÀÂ Ò Ò º Ì Ø Ñ Ô ÙØ Ò Ñ Ð Ø Ö º ³ ØÛ Ø Ñ Ð Ø Ö Ò Àº ³ ØÛ Ø À ÔÖÓ Ø Ø Ø Ó Ö ØÓ ÖÓ Ñ ØÛÒ À ÀÂ Ò Ñ Ð Ø ÖÓ Ô ØÓ ÖÓ Ñ

¼ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ØÛÒ À À º ÐÐ ØÓ ÖÓ Ñ ØÛÒ À ÀÂ Ò Ó Ñ Ó ÓÖ º ³ Ö ØÓ ÖÓ Ñ ØÛÒ À ÀÂ Ò Ñ Ö Ø ÖÓ Ô Ó ÓÖ º Ç Ù ÔÓÙ ÔÖÓ Ø ÒÓÒØ Ô ÖÛ Ô ÛØ Ö ÛÒ ØÛÒ ÓÔÓÛÒ ØÓ ÖÓ Ñ Ò Ñ Ö Ø ÖÓ ØÛÒ Ó ÓÖ ôò ÙÑÔÔØÓÙÒº ³ Ö Ó Ô Ö ÔÖÓ Ø ØÛÒ ÙÑÔ ÓÙÒ ÐÐ Ò ÙÑÔÔØÓÙÒ Ø ÙÔÓØ Ø ÙØ Ò Ô Ö ÐÐ Ð º ³ Ö Ò Ò Ò Ó À ÀÂ Ö Ò º ÐÐ ÀÂ Ò Ñ Ø Ò À À Ò Ñ Ø Ò À º ÈÖÓ Ø Ø Ø Ó ÀÂ Ö ØÓ ÖÓ Ñ ØÛÒ À Àµ Ó Ø Ñ ØÓ ÖÓ Ñ ØÛÒ À ÂÀ º ÐÐ ØÓ ÖÓ Ñ ØÛÒ À ÀÂ Ó Ø Ñ Ó ÓÖ Ö ØÓ ÖÓ Ñ ØÛÒ À ÀÂ Ó Ø Ñ Ó ÓÖ º ³ Ö Ù ÔÓÙ ÑÔÔØ Ó Ô Ö ÐÐ Ð Ù Ò Ø Ò ÐÐ Ü ÛÒ Ø Ò Ø Ñ Ø Ò ÒØ Ô Ò ÒØ Ø ÖÓ Ñ ØÛÒ ÒØ Ô Ø ÙØ Ñ Ö ÛÒ ôò Ó Ñ Ó ÓÖ Çº º º À ÈÖ Ø ³ ¼ ÕÒ Ø Ò Ñ Ø Ø Ø Ø Ø Ô Ö ÐÐ Ð ÈÖ Ø ³ ½ Ü Ö ÙÒ Ø Ò Ø Ù Ô Ö ÐÐ ÐÛÒ Ô Ò ÐÐ Ü ÛÒ º ÈÖ Ø ³ ¾º Ë ØÖ ÛÒÓ Ò Ñ ÔÐ ÙÖ ØÓÙ ÔÖÓ Ø Ø Ø ÜÛØ Ö ÛÒ Ò Ñ ØÓ ÖÓ Ñ ØÛÒ Ó Ô Ò ÒØ ÛØ Ö ôò ÛÒ ôò ØÓ ÖÓ Ñ ØÛÒ ØÖ ôò ÛØ Ö ôò ÛÒ ôò ØÓÙ ØÖ ôòóù Ò Ó Ñ Ó ÓÖ º ³ ØÛ ØÖ ÛÒÓ ØÓ ØÛ Ø Ñ ÔÐ ÙÖ ØÓÙ ÔÖÓ Ø Ò Ø Ô ØÓ Ð Û Ø ÜÛØ Ö ÛÒ Ò Ñ ØÓ ÖÓ Ñ ØÛÒ Ó ÛØ Ö ôò Ô Ò ÒØ ÛÒ ôò ØÓ ÖÓ Ñ ØÛÒ ØÖ ôò ÛØ Ö ôò ÛÒ ôò ØÓÙ ØÖ ôòóù Ò Ó Ñ Ó ÓÖ º Ô Ü º Õ Ô ØÓ Ñ Ó Ù Ô Ö ÐÐ Ð Ø Ò º Ã Ô Ò Ô Ö ÐÐ Ð Ø Ò ÑÔÔØ ÙØ Ó Ò ÐÐ Ü ÛÒ Ò Ñ Ø Ü ØÓÙº È Ð Ô Ò Ô Ö ÐÐ Ð Ø Ò ÑÔÔØ ÙØ ÜÛØ Ö ÛÒ Ò Ñ Ø Ò ÛØ Ö Ô Ò ÒØ º Λόγωτου5ουΑξιώματος. Πρότασηα 31. Πρότασηα 29. ό.π.

º º Á ÄïÁÇ ï Åï ÊÇË È Êï ÄÄÀÄ Ë ½ ËÕ Ñ º ÈÖ Ø ³ ¾º ÐÐ Õ Ø Ò Ñ Ø Ò Ö Ð ÛÒ Ò Ñ ØÓ ÖÓ Ñ ØÛÒ Ó ÛØ Ö ôò Ô Ò ÒØ ÛÒ ôò º ÈÖÓ Ø Ø ÙØ Ö ØÓ ÖÓ Ñ ØÛÒ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ º ÐÐ ØÓ ÖÓ Ñ ØÛÒ Ò Ó Ñ Ó ÓÖ º ¼ ³ Ö ØÓ ÖÓ Ñ ØÛÒ Ò Ó Ñ Ó ÓÖ º ³ Ö ØÖ ÛÒÓ Ò Ñ ÔÐ ÙÖ ØÓÙ ÔÖÓ Ø Ø Ø ÜÛØ Ö ÛÒ Ò Ñ ØÓ ÖÓ Ñ ØÛÒ Ó Ô Ò ÒØ ÛØ Ö ôò ÛÒ ôò ØÓ ÖÓ Ñ ØÛÒ ØÖ ôò ÛØ Ö ôò ÛÒ ôò ØÓÙ ØÖ ôòóù Ò Ó Ñ Ó ÓÖ Çº º º ÌÓ ÖÓ Ñ ØÛÒ ÛÒ ôò Ò ØÖ ôòóù Ò Ñ ÒØ Ø Ö Ñ Ð Û¹ Ø Ö Ò ÐÐÓÛØ Ø ÕÖÓÒ ÛÑ ØÖ º Ò Ü ÖØ Ø Ô ØÓ Õ Ñ ØÓÙ ØÖ ôòóù ØÓ ÖÓ Ñ ØÛÒ ÛÒ ôò ØÓÙ Ò Ô ÒØÓØ Ó Ñ Ó ÓÖ ½ ¼ ÑÓÖ πºµ ÌÓ ØÓ ÕÖ ÑÓÔÓ Ø Ø Ó ÙÕÒ ÔÓÙ Ø ÒÓÙÑ Ò Ð ÑÓ¹ ÒÓ Ñ Ø Ñ ØÓÙº Ç Heath Ö Ø ØÓ ÔÓØ Ð Ñ ÙØ Ò Ð Ø ÔÓÐ ÔÖô Ñ Ø Ø ÐÐ Ò ÛÑ ØÖ º Ø Ò ØÓÖ ØÓÙ ÕÓÙÒ Ö Ý Ó ÙØ Ó Ó ÈÖ ÐÓ Ó Ó Ò Ä ÖØ Óº ½ Å ÔÖôØ Ñ ÔÔØÛ Ò Ó Ø ÔÓ ØÓ ÖÓ Ñ ØÛÒ ÛØ Ö ôò ÛÒ ôò Ò ÙÖØÓ ÔÓÐÙ ôòóùº Ò ÙØ Õ n ÓÖÙ ÑÔÓÖ Ò ØÑ ¼ Πρότασηα 13 ½ Βλ. Heath, Vol. I, p.317 322.

¾ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ n 2 ØÖ ÛÒ Õ ÖÓ Ñ ÛÒ ôò Ó Ñ 2(n 2) ÓÖ = (n 2)πµº ¾ À ÈÖ Ø ³ ¾ Õ Ö Ø Ö Ô Ü Ö ÐÓ Ø ÐÓ Ó º Ò Ö Ó ÑÑ ÒÓÙ Ð Ã ÒØ Ø Ò ÃÖ Ø ØÓÙ Ã ÖÓ Ä ÓÙ Ø ÔÖ Ø ÙØ Ò Ô ÑÔØÓÙ ÙØÓ ÔÓÙ Ð ÙÒ Ø ØÛÒ ÔÖÓØ ÖÛÒ Ö Ð Ò Ò ÙÑÔ Ö Ñ Ô ÐÙØ Ø Ø Ò Ü ÖØ ØÓ Ø ÑÔ Ö ÔÓÙ ÔÖÓ Ø Ø Ò Òô Ñ º Ç ÓÑÔ ËØ Ò Ö ½ ½ µ Ö Ñ ÔÓÐ Ñ ÒØ Ô ÖÖÓ Ø ÈÖ Ø ³ ¾º ÉÖ ÑÓÔÓ ØÓÒ Ø ÔÓ (n 2)π Ò ô Ñ ÔÐ Ô Ü ØÓÙ Ø ÔÓÙ ØÓÙ ³Ç ÙÐ Ö Ø ÙÖØ ÔÓÐ Ö Ò Ò Ø ØÓ Ó ÔÓÐ ÖÓ Õ K ÓÖÙ A Ñ E Ö Ø Ø K + E A = 2. ËÙÒ Ôô ÔÐ Ò ÐÐÓÛØÓ ØÛÒ ØÖ ôòûò ÔÖÓÕÛÖ Ø Ó Ñ ÖÙ Ó Ñ ¹ ÕÖ Ø Ò Ô Ü Ñ ØÛÒ ÔÐ ÓÒ Ñ ÒØ ôò Ò ÐÐÓ ôøûò Ø Ò ÕÖÓÒ Ð Ö ØÓÔÓÐÓ Ø Õ Ö Ø Ö Ø ³Ç ÙÐ Ö Ø Ò ÔÖôØ Ò Ø Ô ÖÔØÛ ØÛÒ ÙÖØôÒ ÔÓÐÙ ÖÛÒº º ÐÓ ³ Å ÖÓ È Ö ÐÐ Ð Ö ÑÑ Ñ ØÓÙ ËØÓ Å ÖÓ ØÓÙ ÐÓÙ ³ Ö ÓÙÑ Ñ Ù Ø Ñ Ø Ñ Ð Ø ØÛÒ Ù Õ Ø ¹ ÛÒ ØÛÒ ÒÒÓ ôò Ø Ô Ö ÐÐ Ð ØÓÙ ÓÙ Ô Ö ÕÓÑ ÒÓÙ º Ç Ù Ð ÓÖÞ ÖÛÒ ôò Ø ØÖ ÔÐ ÙÖ Õ Ñ Ø ØÓÒ ÇÖ Ñ ¾¾ ÐÐ Õ Ø Ô ¹ Ö ÐÐ Ð Ö ÑÑ ÔÓÙ Ô ÞÓÙÒ ÙØ ØÓ Å ÖÓº ÒØ ÙØ Ø Ñ Þ Ñ Ø ØÓÙ Ø Ø Ø ÙÑÑ ØÖ Ø ÈÖÓØ º ÈÖ Ø ³ º Ç Ù ÔÓÙ ÙÒ ÓÙÒ Ô Ø ÙØ Ñ Ö Ô Ö ÐÐ Ð Ù Ò Ñ Ø Ü ØÓÙ Ô Ö ÐÐ Ð º ¾ ΑυτόαποδεικνύεταιαπότονΠρόκλοστασχόλιάτουστηνΠρότασηα 32. Μάλιστα προσθέτει:..ηιδιότηταότιτοάθροισματωνεσωτερικώνγωνιώνισούταιμεδύοορθέςείναι μίαουσιαστικήιδιότηταγια(χαρακτηρίζει)ένατρίγωνο. Οόροςουσιαστικήιδιότηταείναι αριστοτέλειος. ΣύμφωναμετονΠρόκλο,ηπρότασηαυτήείναιοσυνδετικόςκρίκοςτηςθεωρίαςτων παραλλήλωνκαιτηςδιαπραγμάτευσηςτωνπαραλληλογράμμων. Διότι,ενώμιλάμόνογια παράλληλεςκαιίσεςευθείεςπουσυνδέονταιεπίτααυτάμέρη,δίδει,χωρίςνατοεκφράζει

º º Á ÄïÁÇ ï Åï ÊÇË È Ê ÄÄÀÄïÇ Ê ÅÅ ³ ØÛ Ø Ó Ò Ô Ö ÐÐ Ð ØÛ Ó Ù ÔÓÙ Ø ÙÒ ÓÙÒ Ô Ø ÙØ Ñ Ö Ð Û Ø Ó Ò Ô Ö ÐÐ Ð º ËÕ Ñ º ÈÖ Ø ³ º Ô Ü º ÙÒ º Ã Ô Ò Ô Ö ÐÐ Ð Ñ Ø Ò Õ ÑÔ ÙØ Ó Ò ÐÐ Ü ÛÒ Ò Ñ Ø Ü ØÓÙº Ã Ô Ò Ñ Ø Ò Ò Ó Ò Ó Ò Ñ Ø º à ÛÒ Ò Ñ Ø º ³ Ö Ò Ñ Ø ØÓ ØÖ ÛÒÓ Ò Ó Ñ ØÓ ØÖ ÛÒÓ Ó ÐÓ Ô ÛÒ Ô Ø ÓÔÓ ÙÔÓØ ÒÓÒØ Ó ÔÐ ÙÖ Ò ÒØ ØÓ Õ Ñ Ø ÐÓ Ô ÛÒ º ³ Ö ÛÒ Ò Ñ Ø º Ã Ô ÑÔÔØÓÙ Ø Ó Ù Ò Ø Ò ÐÐ Ü ÛÒ Ñ Ø Ü ØÓÙ Ò Ô Ö ÐÐ Ð Ñ Ø Ò º Õ Ø Ò Ñ Ø Ò º ³ Ö Ó Ù ÔÓÙ ÙÒ ÓÙÒ Ø Ô Ö ÐÐ Ð Ô Ø ÙØ Ñ Ö Ù Ò Ñ Ø Ü ØÓÙ Ô Ö ÐРРǺ º º ÈÖ Ø ³ º ρητά,τηνκατασκευήτουπαραλληλογράμμου. Ετσι,στηνεπόμενηακριβώςπρόταση,αναφέρει παραλληλόγραμμαχωρία χωρίςκαμμίαάλληεξήγηση.

à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ Ç Ô Ò ÒØ ÔÐ ÙÖ Ó Ô Ò ÒØ ÛÒ ØÛÒ Ô Ö ÐÐ ÐÓ Ö ÑÑÛÒ Ò Ñ Ø Ü ØÓÙ Ñ ØÖÓ Ø ÕÓØÓÑ º ³ÇÔÛ Ð ÔÓÙÑ Ø Ò Ô Ö Ô ÒÛ ÔÖ Ø Ó Ù Ð Ñ Ð ô ѹ ÕÛÖ Ò Ò Ö Ø Ò Ð Ü ÙØ ÙØ Ó Ø ô ÐÐ Ó Ø Ø Ô Ñ Ò ÔÖÓØ º ËØÒ Ñ Ö Ò ØÓÙ ÞÛ Ó ³ ÐÐ Ò Ñ ØÖÓ Ò Ø Ô Ö ÓÙ ØÓÙ ÐÐÛ Ø Ð Ü ÛÑ ØÖ Ñ Ò Ö ô ÙØ Ð ÔÖÓ ÖØÓ Ò Ò Ò Ö Ñ ÔÓ Ó Ù Ö Ñ ÒÓ ÔÓÐÙ ÛÒ µ Õ Ñ º ËØ Ñ Ñ Ø Ü ÖÓÙÑ Ø ÙØ Ò Ò ØÔÓØ ÐÐÓ Ô Ñ ÙÒ ÖØ ÑÓÐ ¹ Ø Ø ÒÒÓ Ø ÙÒ ÖØ Ò Ü Ò Ø ËØÓ Õ º Ç Ù Ð Ò Ø ÕÖ ÑÓÔÓ Ñ Ò ÕÖ ÑÓÔÓ Ò Ò ÓÙ Ø ÔÓÙ ÔÓÙ Ö ¹ Þ Ò Ò ÕÓÑ ÒÛ ÔÓ ÙÒ ÖØ º Ä Ó Hartshorne ØÓ à º Áº ØÓÙ ÐÓÙ ØÓÙ The Theory of Area Ô ØÓÒ ØÖ ÔÓ ÔÓÙ ÕÖ ÑÓÔÓ Ó Ù Ð Ø Ò ÒÒÓ ØÓÙ Ñ Ó ÙÒ Ø Ø Ø Ò ÛÖ Û Ñ Õ Ó ÙÒ Ñ ÔÓÙ ÒÓÔÓ Ø Ó Ò ÒÒÓ º Ø Ö ½º ³Á ÕÛÖ ÕÓÙÒ Ó Ô Ö Õ Ñ ÒÓº ¾º Ò Ó ÕÛÖ ÕÓÙÒ Ó Ô Ö Õ Ñ ÒÓ Ñ ÔÓ Ó ØÖØÓ Ø Ø ÕÓÙÒ Ó Ô Ö Õ Ñ ÒÓº º Ò Þ ÕÛÖÛÒ ÓÙ Ô Ö ÕÓÑ ÒÓÙ ÔÖÓ Ø Ó Ò Ø ØÖ ÔÓÒ ô Ø Ò Ñ Ò Ô Ð ÔØÓÒØ Ò Õ Ñ Ø ÓÙÒ Ñ Ð Ø Ö ÕÛÖ Ø Ø Ø ÔÖÓ ÔØÓÒØ ÕÛÖ Ò ÓÙ Ô Ö ÕÓÑ ÒÓÙº º ÌÓ Ó Ø Ò Ö Õ Ñ ØÛÒº Ë Ñ ÛØ ÓÒ Ø Ø Ø Ô Ö ¹ ÕÓÑ ÒÓÙ ØÛÒ ÖÓÙÑ ÒÛÒ ÕÛÖÛÒ Ò Ü ÖØ Ø Ô ØÓ ÔÓÙ ÖÓ ÒØ Ø ÕÛÖ ÙØ º ΟΕυκλείδηςλέγει τωνπαραλληλογράμμωνχωρίων καιμετονόροαυτόεννοείχωρία φραγμένααπόπαράλληλεςευθείεςμετονεπιπλέονπεριορισμόότικάτιτέτοιομπορείναισχύει μόνογιατετράπλευρασχήματα. Οόρος παραλληλόγραμμο είναιευκλείδειος,σύμφωναμε τονπρόκλο. =διαγώνιοςτουπαραλληλογράμμου.οόρος διάμετρος χρησιμοπιήθηκεπαντοιοτρόπως απότουςμαθηματικούςτηςαρχαιότητας. ΛέγειλόγουχάρηοΑπολλώνιοςστα Κωνικά : Σεκάθεκαμφθείσακαμπύλητουεπιπέδου,ονομάζωδιάμετροκάθεευθείαπουφερόμενηαπό τηνδοθείσακαμπύλη,διχοτομείόλεςτιςευθείες(χορδές)πουφέρονταιαπότηνκαμπύλη προςδοθείσαευθεία. Εδώκαμπύληείναι,όπωςλ.χ,στονΑρχιμήδη,κάθεσύνθετηγραμμή πουαποτελείταιαπόευθείεςκαικαμπύλεςπουσυνδέονταιμεοποιοδήποτετρόπομεταξύτους.

º º Á ÄïÁÇ ï Åï ÊÇË È Ê ÄÄÀÄïÇ Ê ÅÅ º ÀÑ ÕÛÖ ÕÛÖÛÒ ÓÙ Ô Ö ÕÓÑ ÒÓÙ ÕÓÙÒ Ó Ô Ö Õ Ñ ÒÓº º ÌÓ ÐÓÒ Ò Ñ Ð Ø ÖÓ ØÓÙ Ñ ÖÓÙ ØÓ ÓÔÓÓ Ø Ò Ô ÖÔØÛ ÙØ Ñ Ò Ø Ò Ò ÕÛÖÓ Ô Ö Õ Ø ÔÐ ÖÛ Ò ÐÐÓ Ø Ø Ø Ó ÕÛÖ Ò ÑÔÓÖ Ò Ò ÓÙ Ô Ö ÕÓÑ ÒÓÙº ÈÖÓ ÔØ Ø ØÓ Ñ Ó ÙØ Ó Ù Ð Ñ Ò Ñ ÓÖ Ñ Ò ÒÒÓ ÙØ ØÓÙ ÓÙ Ô Ö ÕÓÑ ÒÓÙ Ø Ø Ø ÔÛ Ð Ó Ó ÕÖ ÑÓÔÓ Ø Ô Ö Ô ÒÛ Ø Ø Û Ò Ü ôñ Ø ÔÓÙ Õ Ö Ø ÖÞÓÙÒ Ø Ò ÒÒÓ ÙØ º ÈÖ Ø ³ º Ì Ô Ö ÐÐ Ð Ö ÑÑ ÔÓÙ Ö ÓÒØ Ø Ò Ñ Ø Ü ØÛÒ ÛÒ Ô Ö ÐÐ ÐÛÒ Ò Ñ Ø Ü ØÓÙº ³ ØÛ Ô Ö ÐÐ Ð Ö ÑÑ Ø Ô ÒÛ Ø Ò Ñ Ø Ü ØÛÒ ÛÒ Ô Ö ÐÐ ÐÛÒ ØÛÒ Ð Û Ø ØÓ Ò Ó Ñ ØÓ Ô Ö ÐÐ Ð Ö ÑÑÓ º ËÕ Ñ º½¼ ÈÖ Ø ³ º Ô Ü º ΑυτόχρησιμοποιείταιστηναπόδειξητηςΠρότασηςα 37. ΤούτοχρησιμοποιείταιστηναπόδειξητηςΠρότασηςα 39. ΟΠρόκλοςλέγει,ότιτούτηηπρότασηείανιτοπρώτοτοπικόνθεώρηματουΕυκλείδη: δηλαδήαναφέρεταισεγεωμετρικούςτόπους.τοσχόλιοτουπρόκλουείναισημαντικό,διότι,στονίδιο,τονευτόκιοκαιτονπάππομπορούμεμόνοναβασιστούμεγιατοοτιδήποτε είναιγνωστόαπότηναρχαιότηταπερίγεωμετρικώντόπων. Αλλάαςδούμετονορισμότου Πρόκλου:Καλώτόπονγραμμήςήεπιφανείαςθέσινποιούσανένκαιτοαυτόνσύμπτωμα.

à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ Ø Ô ØÓ Ò Ô Ö ÐÐ Ð Ö ÑÑÓ Ò Ñ Ø Ò º ØÓÒ Ó Ð Ó Ò Ñ Ø Ò º ³Ï Ø Ò Ñ Ø Ò Ò Ó Ò Ö Ð Ò Ñ Ð Ø Ò º Ò ÑÛ Ñ Ø Ò Ö Ó Ò ÒØ ØÓ Õ Ñ Ø º Ã ÒØ ÛÒ Ò Ñ Ø Ò Ø ÛÒ º ³ Ö Ò Ñ Ø ØÓ ØÖ ÛÒÓ Ò Ó Ñ ØÓ ØÖ ÛÒÓ º Ö Ø ØÓ Ó Ò À ØÓ ÐÓ Ô ØÖ Ô Þ Ó À Ò Ó Ñ ØÓ ÐÓ Ô ØÖ Ô Þ Ó À Ò Ó Ò ØÓ À ØÖ ÛÒÓº ³ Ö ÐÓ ØÓ Ô Ö ÐÐ Ð Ö ÑÑÓ Ò Ó Ñ ÐÓ ØÓ Ô Ö ÐÐ Ð Ö ÑÑÓ º ³ Ö Ø Ô Ö ÐÐ Ð Ö ÑÑ ÔÓÙ Ö ÓÒØ Ø Ò Ñ Ø Ü ØÛÒ ÛÒ Ô Ö ÐÐ ÐÛÒ Ò Ñ Ø Ü ØÓ٠Ǻ º º È Ö ÐÐ Ø Ô Ö Ô ÒÛ ÔÖ Ø Ò ÈÖ Ø ³ º Ì Ô Ö ÐÐ Ð Ö ÑÑ ÔÓÙ Ö ÓÒØ Ñ Ø Ü ØÛÒ ÛÒ Ô Ö ÐÐ ÐÛÒ Ò Ñ Ø Ü ØÓÙº Ç ÈÖ Ø ³ ¼ Ð Ò Ô Ö ÑÓ ÔÖ Ñ Ø ØÖ ÛÒ ÈÖ Ø ³ ½ ÙÒ Ô Ö ÐÐ Ð Ö ÑÑ ØÖ ÛÒ º ËØÓ Ñ Ó ÙØ ÛÖ ØÓÙ ÓÙ Ô Ö ÕÓÑ ÒÓÙ Ð ôò Ø Ó Ø Ù Ò º Ç ÔÖôØÓ Ð Ó Ó Ø Ù Ò ØÓ ÈÙ Ö Ó Â ôö Ñ ÈÖÓØ ³ µ Ó Ø ÖÓ Ð Ó Ñ Û ØÛÒ ÈÖÓØ ÛÒ ³ ¾ ØÓ Ñ ÒØ ÔÓØ Ð Ñ Ø ÈÖ Ø ³ ½ Ò ÙÒ Ø Ò Ø Ù Ø Ø ØÖ ÛÒÓ ÓÙ Ô Ö ÕÓÑ ÒÓÙ Ñ ÓÔÓ Ó ÔÓØ Ø ØÖ ÔÐ ÙÖÓ ÕÛÖÓº ³À Ñ ÐÐ Ð Ç Ó ÔÓØ Ø ØÖ ÔÐ ÙÖÓ Ø ØÖ ÛÒÞ Ø º ËØ Ö ÑÑ ØÓÙ Ù Ð ÙÞ ØÓ Ñ Ô Ö ØÛ Ø ÈÖÓØ ³ ¾ ØÛÒ ÓÔÓÛÒ Ó ÙÒ Õ Ö ÓÒØ ØÓ ÐÓ ³º ÈÖ Ø ³ ¾º ΣύμφωναμετονΠρόκλο,οιΠροτάσειςα 35και36ανήκουνσεαυτόπουοιΑρχαίοι Ελληνεςονόμαζανο παράδοξοςτόπος υπότηνέννοιαότιφαίνεταιπαράδοξοστοναρχάριο ότιτοεμβαδόντουπαραλληλογράμμουπαραμένειαναλλοίωτο,ενώκάποιαμήκηπλευρών μπορούννααυξηθούναπεριόριστα!ο παράδοξοςτόπος,ή τόποςαναλυόμενος,ή τόπος αστρονομούμενος ήτανησυλλογήτέτοιωνπροτάσεων,σεαντιστοιχίαμεταδείγματατων Στωϊκών.

º º Á ÄïÁÇ ï Åï ÊÇË È Ê ÄÄÀÄïÇ Ê ÅÅ Æ Ø Ù Ø Ó Ù Ö ÑÑ ÛÒ ¼ Ô Ö ÐÐ Ð Ö ÑÑÓ Ó Ñ Ó Ò ØÖ ÛÒÓº À Ô Ü Ò Ö Ø ÓÐ º Ø ØÓ Ô Ö ØÛ Õ Ñ ÔÓÙ Ø ØÓ ØÓ Ò ØÓ Ñ ÓÒ ØÓÙ º ËÕ Ñ º½½ ÈÖ Ø ³ ¾º ÈÖ Ø ³ º Ë Ô Ö ÐÐ Ð Ö ÑÑÓ Ø Ô Ö ÔÐ ÖôÑ Ø ½ ØÛÒ Ô Ö ÐÐ ÐÓ Ö ÑÑÛÒ ÖÛ Ô Ø ôò Ó Ò Ñ Ø Ü ØÓÙº ÌÓ Ô Ö ØÛ Õ Ñ Õ Ñ ½½µÕÖ ÑÓÔÓ Ø Ü Ò Ü Ò Ø ËØÓ Õ Ø Ò ÓÖ Ó ôò ØÓÙ Ó º Å Ð Ø Ö Ø ÓÖ Ó Ù Ð ØÓ Ð ¼ ΗδοθείσαγωνίαθαείναιορθήστιςεπόμενεςεφαρμογέςτουΕυκλείδη. Γιααυτότο λόγο,μπορούμεκάλλισταναπεριοριστούμεσ αυτήντηνπερίπτωσηστιςεπόμενεςπροτάσεις. ΔηλαδήστιςΠροτάσειςα 43 45μπορούμενααντικαταστήσουμετα παραλληλόγραμμο και δοθείσαγωνία μετα ορθογώνιο και ορθήγωνία,αντίστοιχα. ΤοΒιβλίοβ ασχολείται μόνομεορθογώνια. ½ Οόροςαυτόςεξηγείταιπαρακάτω.

à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ÔÐô ØÓ Õ Ñ º ÌÓ Ñ Ó Ã Ø ÛÒÓÙ ØÓÙ Ó Ù ÀÂ Ò Ô Ö ÐÐ Ð Ñ Ø ÔÐ ÙÖ º Ç Ù Ð ÐôÒ ØÓ Àà ÔÐô Ñ Ã ØÓ Ã Â Ñ Ã º ÌÓ Ø Ø Ô Ö ÐÐ Ð Ö ÑÑ Ò Ø Ð Ñ Ò Ô Ö ÔÐ ÖôÑ Ø º ËÕ Ñ º½¾ ÈÖ Ø ³ º Ô Ü Ø ÈÖ Ø ³ º Ô Ø Ò ÈÖ Ø ³ º È Ö ÑÓ Àà à ÃÀ º ÖôÒØ Ø Ó Ñ Ö Ø Ö ØÖ ÛÒ Ô ØÓ Ñ Ð Ø ÖÓ ÔÐ ÙÖ Ø ÛÒÓÙ ÔÖÓ ÔØ ØÓ ÔÓØ Ð Ñ º ÈÖ Ø ³ º Æ ÖÑÓ Ø ¾ Ô Ö ÐÐ Ð Ö ÑÑÓ Ó Ñ Ó Ò ØÖ ÛÒÓ Ô ÒÛ Ó Ù Ñ ÓÑ Ò ÛÒ º Ã Ø Ù º ³ ØÛ ØÓ Ù ÔÛ ØÓ Õ Ñ º½¾º à ¹ Ø Ù ÞÓÙÑ Ô Ö ÐÐ Ð Ö ÑÑÓ À ÓÙ Ô Ö ÕÓÑ ÒÓÙ Ñ ØÓ Ñ Û Ø ÈÖ Ø ³ ¾º ÌÓ ØÓÔÓ ØÓ Ñ Ø ô Ø Ò Ò ÔÖÓ Ø Ø Ø Ù ÞÓÙÑ ØÓ À º ÈÖÓ Ø ÒÓÙÑ Ø Â Ñ ÕÖ Ò ÙÒ Ò¹ Ø Ó Ò ØÓ ú ËÙÑÔÐ ÖôÒÓÙÑ ØôÖ ØÓ Õ Ñ º ÌÓ Å Ä Õ ÔÐ ÙÖ Ø Ò Ð Û Ø ÈÖ Ø ³ Ò ÓÙ Ô Ö Õ ÓÑ ÒÓÙ Ñ ØÓ Àº ÈÖ Ø ³ º ¾ Λέγοντας εφαρμοστεί,οευκλείδηςεννοείνακατασκευαστείπαραλληλόγραμμομεπλευράτηδοθείσα,γωνίατηδοθείσα,καιεμβαδόίσομεαυτότουδοθέντοςτριγώνου. ΟΕυκλείδηςδείχνειότιτούτοεπιτυγχάνεψαιλόγωτου5ουαξιώματος.

º º Á ÄïÁÇ ï Åï ÊÇË È Ê ÄÄÀÄïÇ Ê ÅÅ ËÕ Ñ º½ ÈÖ Ø ³ º Æ Ø Ù Ø Ô Ö ÐÐ Ð Ö ÑÑÓ Ó Ñ Ó Ò Ù Ö ÑÑÓ ÕÛÖÓ Ñ ÓÑ Ò ÛÒ º Ç Ù Ð ÕÛÖÞ ØÓ Ø ØÖ ÔÐ ÙÖÓ Ó ØÖ ÛÒ Ñ Û Ø ÈÖ ¹ Ø ³ Ø Ñ Ø Õ Ñ ØÞ Ó Ô Ö ÐÐ Ð Ö ÑÑ ÔÓÙ ÕÓÙÒ Ñ Ó Ò ÔÐ ÙÖ º ËÙÒ ÓÒØ Ø Ô ÖÒ ØÓ Ô ÙÑ ØÓ Ô Ö ÐÐ Ð Ö ÑÑÓº À Ô Ü Ò Ø Ð ÔØÓÑ Öô ÓÐÓ ôòø Ø Ñ º ËÕ Ñ º½ µº º º½ Å Ö Õ Ð Ô ÒÛ Ø ÈÖÓØ ³» ÕÖ ÑÓÔÓ ÓÙÑ ÔÖÓ Ø Ñ ÕÖÓÒ ÓÖÓÐÓ ÙÔÓ ÓÙÑ Ø Ó ÈÖÓØ ³» Ò ÖÓÒØ ÓÖ Ó ôò º ÌÓ Ñ Ò A ØÓÙ ÓÖ Ó ÛÒÓÙ Ñ ÔÐ ÙÖ Ñ ÓÙµ a, b Ø Ô Ø Ò A = abº ËØ Ò ³ ØÛ R ØÓ Ó Ò ÓÖ Ó ôò Ó a Ó ÔÐ ÙÖ º Å ÙØ Ø Ö ÓÐÓ ØÓ ÔÖ Ð Ñ Ø ³ Ò Ò ØÔÓØ ÐÐÓ Ô ØÓ Ò Ö Ð Ø Ö ÑÑ Ü Û R = ax ΟΕυκλείδηςλέγειευθυγράμμω,καιεννοείμεσύγχρονουςόρουςένακυρτόπλύγωνο. Είναιενδιαφέροντοότιενώηαπόδειξηασχολείταιμόνομετηνπερίπτωσητουτετραπλεύρου, περνάεύκολαστηνγενική,χρησιμοποιώνταςεπαγωγή. Εντψπωσιακόςεπίσηςείναικαιο τριγωνισμόςτουσχήματος.

¼ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ÔÓÙ x Ò Ø Ö ÔÐ ÙÖ ØÓÙ Ô ÙÑ ØÓ Ò ÓÙ ØÖ ôòóùº  ÛÖÓ Ñ Ò ÙÔ ÙØ ØÓ ÔÖ Ñ ³ Ò Ð Ö Ñ Ø Ñ Ñ Ò ÛÑ ØÖ º Ò Ò ÓÔ ÙØôÒ ØÛÒ Ñ ô ÛÒ Ò Ô ÖÓÙÒ Ø Ò Ô Ð Ñ Õ ØÛÒ ØÓÖ ôò ÔÓÙ Ô Ø ÓÙÒ Ø ÙØ ÖÑ Ò Ò ÓÐÓ Ø Ò Ò ¹ ÕÖÓÒ Ø ÔÓ ÛÒµ Ñ Ñ Ø ôò ÔÓÙ Ô Ø ÓÙÒ Ø Ó Ð Ö Ó Ø ÔÓ ÔÛ Ó Ô Ö Ô ÒÛ Ò ÓÑÓÖ Ò Ø ÛÑ ØÖ Ø Ø Ö Ò Ó Û Ø ØÖ ÔÓ Ò ÖÑ Ò ÓÙÑ ØÓÒ Ù Ð º ÌÓ Ó ÔÖ Ð Ñ Ò ÔØ ØÓ ÐÓ Ø³º ËÕ Ñ º½ ÈÖ Ø ³ º º ÐÓ ³ Å ÖÓ ÌÓ ÈÙ Ö Ó Â ôö Ñ ËØ Ò ÈÖ Ø ³ Ó Ù Ð ÕÒ ÔÛ Ø Ù Þ Ø Ø ØÖ ÛÒÓ Ô ÒÛ Ó Ù ³ Ò ØÓ Ô Ö ÑÓ ÈÙ Ö Ó ôö Ñ ³ ØÓ ÒØ ØÖÓ ØÓÙº ÈÖ Ø ³ º Οιτελευταίοιείναιοιθιασώτεςτηςλεγόμενης ΓεωμετρικήςΆλγεβρας.

º º Á ÄïÁÇ ï Åï ÊÇË ÈÍ ïçê ÁÇ Â ïïêàå ½ ËØ ÓÖ Ó ôò ØÖ ÛÒ ØÓ Ø ØÖ ÛÒÓ Ø ÙÔÓØ ÒÓÙ Ø Ò ÓÖ ÛÒ ÔÐ ÙÖ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ ÔÐ ÙÖôÒ ÔÓÙ Ô Ö ÕÓÙÒ Ø Ò ÓÖ ÛÒ º ³ ØÛ ÓÖ Ó ôò Ó ØÖ ÛÒÓ ØÓ ÔÓÙ Õ ÓÖ Ø Ò ÛÒ Ð Û Ø ØÓ Ø ØÖ ÛÒÓ Ø Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ º ËÕ Ñ º½ ÈÖ Ø ³ º ÈÙ Ö Ó Â ôö Ñ º Ô Ü º Ø ØÛ Ø Õ Ö ØÓ Ø ØÖ ÛÒÓ Ô ÒÛ Ø Ò Ø À Â Ô ÒÛ Ø º Ã Ô ØÓ Ø Ä Ô Ö ÐÐ Ð Ñ Ñ Ô Ø ÙÒ ÓÒØ Ó º Ã Ô Ñ Ô Ø ÛÒ À Ò ÓÖ ÔÖ Ô Ó Ó Ù ÔÓÙ Ò Ö ÓÒØ ØÓ Ó Ñ ÖÓ Ò ÒÓÙÒ Ø Ü ÛÒ ΟλατατετράγωναμπορούννακατασκευαστούνλόγωτηςΠρότασηςα 46. Επίσης, ταηβ,θγείναιτατετράγωναηζβακαιθαγκαντίστοιχα. ΟΕυκλείδηςσυνηθίζεινα συμβολίζειταπαραλληλόγραμμαμεταάκρατηςμιαςδιαγωνίουτους.

¾ à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ Ñ ÔÓ Ù ØÓ Ñ Ó Ñ Ó ÓÖ º ³ Ö Ö Ø Ø Ò Ù Àº ØÓÒ Ó Ð Ó Ö Ø Ô ÒÛ Ø Ò Ù Âº Ã Ô ÛÒ Ò Ñ Ø Ò Ò Ñ ÓÖ ØÛ Ø ÔÖÓ Ø Ø Ø Ó º ³ Ö Ð Ò Ñ Ð Ø Ò º Ã Ô Ñ Ò Ò Ñ Ø Ò Ñ Ø Ò ÔÖ Ô Ó Ò Ò ÒØ ØÓ Õ Ñ Ø ÛÒ Ñ Ø ÛÒ º ³ Ö Ò Ñ Ø ØÓ ØÖ ÛÒÓ Ò Ó Ñ ØÓ ØÖ ÛÒÓ º Ã Ò ØÓÙ Ñ Ò ØÖ ôòóù ÔÐ Ó ØÓ Ô Ö ÐÐ Ð Ö ÑÑÓ Ä Ø ÕÓÙÒ Ø Ò Ø Ö ÓÒØ Ø Ó ÒØ ØÛÒ ÛÒ Ô Ö Ð¹ Ð ÐÛÒ Ä ØÓÙ ØÖ ôòóù Ò ÔÐ Ó ØÓ Ø ØÖ ÛÒÓ À Ø Ô Ð ÕÓÙÒ Ø Ò Ö ÓÒØ ÒØ ØÛÒ ÛÒ Ô Ö ÐÐ ÐÛÒ À º Ì ÔÐ ÛÒ ÔÖ Ñ ØÛÒ Ò º ¼ ³ Ö ØÓ Ô Ö ÐÐ Ð Ö ÑÑÓ Ä Ò Ó Ñ ØÓ Ø ØÖ ÛÒÓ À º ½ ÇÑÓÛ Ò ÙÒ Ó Ò Ó Ã ÑÔÓÖ Ò Õ Ø ØÓ Ô Ö ÐÐ ¹ Ð Ö ÑÑÓ Ä Ò Ó Ñ ØÓ Ø ØÖ ÛÒÓ Â º Ö ÐÓ ØÓ Ø ØÖ ÛÒÓ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò À  º Ã Ò ØÓ Ñ Ò Ø ØÖ ÛÒÓ ÙØ ÔÓÙ Ò Ö Ø Ô Ø Ò Ø À Â ÙØ ÔÓÙ Ò Ö ¹ ÓÒØ Ô Ø º Ö ØÓ Ø ØÖ ÛÒÓ Ø ÔÐ ÙÖ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ ÔÐ ÙÖôÒ º ³ Ö Ø ÓÖ Ó ôò ØÖ ÛÒ ØÓ Ø ØÖ ÛÒÓ Ø ÙÔÓØ ÒÓÙ Ø Ò ÓÖ ÛÒ ÔÐ ÙÖ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ ÔÐ ÙÖôÒ ÔÓÙ Ô Ö ÕÓÙÒ Ø Ò ÓÖ ÛÒ Çº º º ÍÔ ÖÕÓÙÒ ÔÓ Ü ØÓÙ ÈÙ ÓÖ ÓÙ Â ÛÖ Ñ ØÓº ¾ Ç ÈÖ ÐÓ ΑπότηνΠρότασηα 14.Αυτόείναιτοπρώτοαποφασιστικόσημείοτηςαπόδειξης. ΖΒ,ΒΓστοαρχαίοκείμενο,κάτιπουείναιπροφανήςπαράβλεψητουαντιγραφέα. Πρότασηα 4. ¼ Εντόςπαρενθέσεωςκαιστοαρχαίοκείμενο.Πρόκειταιπερίάλληςμίαςκοινήςέννοιας. ½ Εδώβρίσκεταιτοδεύτεροαποφασιστικόσημείοτηςαπόδειξης.ΟΕυκλείδηςουσιαστικά δείχνειότιτατρίγωνααβδκαιζβγείναιαντίστοιχαίσουπεριεχομένουμετατρίγωναβζα καιβδλπουδενφαίνονταιστοσχήμα! Ομως,απότηνΠρότασηα 41,τούταείναιίσου περιεχομένουμεταζβγκαιβαδαντίστοιχα. ¾ Δείτελ.χ.τηνιστοσελίδα http://www.cut-the-knot.org/pythagoras/γιαγενικέςπληροφορίεςκαιπατήστετοσύνδεσμοτουδεύτερουσχολίουγιαναδείτε81(!) αποδείξειςτου Π.Θ.

º º Á ÄïÁÇ ï Åï ÊÇË ÈÍ ïçê ÁÇ Â ïïêàå ÔÓ Ø Ò Ô Ö Ô ÒÛ Ô Ü ÔÖÓ ÛÔ ØÓÒ Ù Ð º Ò ÙÔ ÖÕ Ñ ¹ ÓÐ Ø ÔÖ Ø Ô Ö Ò ÙÑ ÓÙ Ñ ØÓ Ñ Ñ Ø Ö Ò ÙÔ ÖÕÓÙÒ Ó Ø ÐÔ Ó Ø ÕÖ ÑÓÔÓ Ø ÔÓ Ó Ø ÔÓº Å ÔÐ ØÖ ÔÓ ØÓ Ø ØÖ ÛÒÓ À Ñ Ø Õ Ñ ØÞ Ø ØÓ ÓÖ Ó ôò Ó Ä ÐÐ Ô Ö Ð Ø Ò ÔÐ Ø Ø ØÓÙ ØÓ Ô Õ Ö Ñ ÔÓÙ ÙÔÓ Ò Ò ÐÓÙ Ø ØÖ ÑÑ ÒÓº ÌÓ ÈÙ Ö Ó Â ôö Ñ Ò Ø Ó Ñ Ð ô Ø Ñ Ñ Ø ØÓÙ ¹ Ñ Ö Ó Ø Ò Ø Ò ÔÓÕ ØÓÙ Ù Ð º Ò Ó ÔÖ ÓÒÓ ÐÛÒ ØÛÒ ÓÖ Ø ôò ôò ØÛÒ Ñ ØÖ ôò ØÛÒ Ø ØÖ ÛÒ ôò ÑÓÖ ôò ÛÖ ¹ Ñ ØÛÒ ÔÛ ØÓ sin 2 a + cos 2 a = 1º Å Û Ø Ò Ù ØÓÙ ØÓÙ Ò ÑÓÙ ØÛÒ ÙÒ Ñ Ø ÒÛÒ ØÓÙ ÒØ ØÓ ÕÓÙ ÛØ Ö Ó ÒÓÑ ÒÓÙ ÒÙ Ñ Ø Ó ÕôÖÓÙ ØÓ ôö Ñ ØÓÙ ÈÙ Ö Ø Ñ Ñ Ø Ø Ó Ñ ÖÙ Ó Ø Ò ØÓ Ñ Ø º ÈÖ Ø º Ò ØÖ ÛÒÓ ØÓ Ø ØÖ ÛÒÓ Ø Ñ ÔÐ ÙÖ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ ÐÓ ÔôÒ ÔÐ ÙÖôÒ ØÓÙ ØÖ ôòóù Ô Ö Õ Ñ Ò Ô Ø ÐÓ Ô ÔÐ ÙÖ ÛÒ Ò ÓÖ º Ø ØÛ ØÓ ØÖ ÛÒÓ Ø ØÓ Ø ØÖ ÛÒÓ Ø Ñ ÔÐ Ö ØÓÙ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ ÔÐ ÙÖôÒ ØÓÙ ØÖ ôòóù Ð Û Ø ÛÒ Ò ÓÖ º ËÕ Ñ º½ ÈÖ Ø ³ º ÌÓ ÒØ ØÖÓ Ó ØÓÙ ÈÙ Ö ÓÙ Â ÛÖ Ñ ØÓº Ô Ü º ³ ØÛ Ø Ô ØÓ Ø ÓÖ ÛÒ Ñ Ø Ò ØÓ Ñ Ó Πρότασηα 11.

à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ ØÛ Ø Ò Ñ Ø Ò ÙÒ Ø º Ô Ò Ñ Ø Ò Ò Ó ØÓ Ø ØÖ ÛÒÓ Ø Ñ ØÓ Ø ØÖ ÛÒÓ Ø º ÈÖÓ Ø Ø Ø Ó ØÓ Ø ØÖ ÛÒÓ Ø º ³ Ö ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ º ÐÐ ØÓ Ø ØÖ ÛÒÓ Ø Ñ Ò Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ Ø ÛÒ Ò ÓÖ º ÌÓ Ø ØÖ ÛÒÓ Ø Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ Ø ÙÔÓØ º ³ Ö ØÓ Ø ØÖ ÛÒÓ Ø Ò Ó Ñ ØÓ Ø ØÖ ÛÒÓ Ø Ö ÔÐ ÙÖ Ò Ñ Ø Ò Ô Ò Ñ Ø Ò Ò Ó Ò Ó Ò ÒØ ØÓ Õ Ñ Ø º Ã Ò Ñ Ø Ö ÛÒ Ò Ñ Ø ÛÒ º ³ÇÑÛ Ò ÓÖ Ö Ò ÓÖ º Ò Ö ØÖ ÛÒÓ ØÓ Ø ØÖ ÛÒÓ Ø Ñ ÔÐ ÙÖ Ò Ó Ñ ØÓ ÖÓ Ñ ØÛÒ Ø ØÖ ôòûò ØÛÒ ÐÓ ÔôÒ ÔÐ ÙÖôÒ ØÓÙ ØÖ ôòóù Ô Ö Õ Ñ Ò Ô Ø ÐÓ Ô ÔÐ ÙÖ ÛÒ Ò ÓÖ Çº º º Ç ÙÒ Ù Ñ ØÛÒ ÈÖÓØ ÛÒ ³» ÔÓØ Ð ØÓ ÔÐ Ö ÈÙ Ö Ó Â ôö Ñ º ÇÐÓ Ð ÖôÒÓÒØ ØÓ Ð Ó ÙØ Ô Ö ØÓÙÑ Ð Ö Ñ Ø Ö Ò ÓÒÒ ØÓ ØÓÙ ÖÑ ÒÓ ÔÓ Ø Adelbert von Chamissoº Ë Ñ ÛÒ Ñ ØÓ Ñ Ó Ó ÈÙ Ö Ù Ø Ñ Ø Ñ µ ØÓÙ Ó Ó Ò ÐÙÝ ØÓ ôö Ñ º Adelbert von Chamisso À Ð À ÄÀ Á Õ Ö Ø Ö Ø Ø ÁÏÆÁÇÌÀÌ Ô Ø Ø ÔÓÙ ØÓÒ Ò ØÓ ÑÓ ØÓ Û Ò ÒÛ Ø ØÓ ôö Ñ ØÓÙ ÈÍ ÇÊ Ñ Ö Ò Ø Ó Û Ø Ó Ø Ò Ø Ø ÔÓÙ ÔÖÛØÓ Õ Ø Ò Ä ÇÌÀÌ º Πρότασηα 3. Πρότασηα 47. Άλλημίαεπιπρόσθετηκοινήέννοια. Λίγοπαρακάτωχρησιμοποιείταικαιηαντίστροφή της. Κατάλλους,τοθεώρημαανκαλύφθηκεαπότονμαθητήτου ΙππασοτονΜεταποντίνο τονοποίοναμέσωςμετάέπνιξανοισυμμαθητέςτουγιαναμηγίνειγνωστότοθεώρημαστον υπόλοιποκόσμο,μιαςκαισήμαινετηνκατάρρευσητηςσχολήςτουπυθαγόρα.αλλάφαίνεται ότιδιαρροέςυπήρχαναπότότε...δείτεκαιτοπαρακάτωκεφάλαιο5.

º º Á ÄïÁÇ ï Åï ÊÇË ÈÍ ïçê ÁÇ Â ïïêàå Ç Â ÇÁ ÔÓÙ ØÓÙ Ø Ð Ò ÙØ Ø Ò ÕØ Ô Û ÙÑ ÓÐ ³ ÙØÓ Ó ÈÍ ÇÊ Ë Ù Ø Ý Ñ Ò ÓÑÑ Ò Ø Ø Ñ Õ Ö ÞÓÒØ ØÓÙ ØÓ ÙÕ Ö Øô ØÓÙ ÔÖÓ Ø ÖÝ ØÓÙ ÔÖÓ Òôº Ì Ô Ò Ø Ñ Ö Ø Ò Ó Ò Ø ÑÓÒÓÔ Ø ØÓÙ Ø Ñ ÒÓ Ö Ð ÑÔÓÖ Ò Ü ÔÖÓ ÐÐ Ô³ ØÓ Ò ÙØÓ Ø Ñ ØÖ ÕÓÙÒ Ò Ü ÓÙÒ Ñ ÑÓÒ ô ÖÙ Ñ º Ô ØÓÒ ÈÍ ÇÊ Ô ÒØ Ô Ò Ó ÐÐÓÒØ ¹ ÈÓÐ Ò Ñ Ò ÔÛ ÓÙÒ Ø Ò ÕÙÖ Ø Ø ØÛÒ ØÒÛÒ ÔÓÙ Ô ÑÔÓÒØ ØÓÙ ÏÌÇË ØÖ ÑÓÙÒ ÐÞÓÙÒ Ø Ñ Ø ØÓÙº

à ï Ä ÁÇ º Á ÄïÁÇ ï ËÁÃïÀ ÏÅ ÌÊïÁ