SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

Σχετικά έγγραφα
Curs 4 Serii de numere reale

Curs 2 Şiruri de numere reale

Curs 1 Şiruri de numere reale

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

1 Serii numerice Definiţii. Exemple... 45

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

Metode iterative pentru probleme neliniare - contractii

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Sisteme diferenţiale liniare de ordinul 1

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

1 Şiruri şi serii numerice Proprietăţi ale şirurilorconvergente... 10

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică

Progresii aritmetice si geometrice. Progresia aritmetica.

Integrala nedefinită (primitive)

II. Analiză matematică 0. 7 Şiruri şi serii numerice 1. 8 Calcul diferenţial pentru funcţii de o variabilă reală 43

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

MATEMATICI SPECIALE APLICATE ÎN ECONOMIE

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

Principiul Inductiei Matematice.

ANALIZĂ MATEMATICĂ, GEOMETRIE ANALITICĂ ŞI. pentru studenţi

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Siruri de numere reale

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

Lecţii de Analiză Matematică. Dan Bărbosu şi Andrei Bărbosu

Capitolul 3. Serii Fourier. a unei funcţii periodice de perioadă Dezvoltarea în serie Fourier

Seminar 5 Analiza stabilității sistemelor liniare

Asupra unei inegalităţi date la barajul OBMJ 2006

Integrale cu parametru

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

Subiecte Clasa a VIII-a

1.3 Baza a unui spaţiu vectorial. Dimensiune

3.1. DEFINIŢII. PROPRIETĂŢI

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

z a + c 0 + c 1 (z a)

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Matrice. Determinanti. Sisteme liniare

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

Metode de interpolare bazate pe diferenţe divizate

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

Probleme pentru clasa a XI-a

există n0 N astfel ca pentru orice 1.Teoremă. Orice şir (xn)n din Q convergent la un, x Q are loc xn+p-xn ε (propritatea lui Cauchy).

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Subiecte Clasa a VII-a

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

Functii Breviar teoretic 8 ianuarie ianuarie 2011

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

Criterii de comutativitate a grupurilor

riptografie şi Securitate

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

, m ecuańii, n necunoscute;

Aplicaţii ale principiului I al termodinamicii la gazul ideal

1. ŞIRURI ŞI SERII DE NUMERE REALE

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

Tema: şiruri de funcţii

Transformări integrale şi funcţii complexe cu aplicaţii în tehnică

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

Capitolul 2. Integrala stochastică

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...


( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Laborator 11. Mulţimi Julia. Temă

Examen AG. Student:... Grupa:... ianuarie 2011

2 Transformări liniare între spaţii finit dimensionale

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

Teorema lui Peano de existenţă

Criptosisteme cu cheie publică III

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

Profesor Blaga Mirela-Gabriela DREAPTA

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

7.1 Exerciţii rezolvate Exerciţii propuse cu indicaţii şi răspunsuri Întrebări de autoevaluare... 74

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

METODA FUNCTIILOR GENERATOARE

3. Serii de puteri. Serii Taylor. Aplicaţii.

5.1. ŞIRURI DE FUNCŢII

Seminariile Capitolul IX. Integrale curbilinii

Ecuatii trigonometrice

Transcript:

SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,....................................... s n = 0 + 0 +1 +... +, n IN, n n 0. Se numeşte serie de numere reale (sau serie numerică) perechea {( ) n, (s n ) n } formată din şirurile ( ) n şi (s n ) n. se numeşte termenul general al seriei, iar (s n ) n se numeşte şirul sumelor parţiale asociat şirului ( ) n. Vom nota seria prin:, sau 0 + 0 +1 + 0 +2 +... + +... Definiţia 3.2. sumelor parţiale. Fie (n 0 IN) o serie numerică şi (s n ) şirul a) Seria se numeşte convergentă (sau seria converge) dacă (s n ) este convergent. În acest caz, limita şirului (s n) se numeşte suma seriei şi se notează prin.

b) Seria se numeşte divergentă (sau seria diverge) dacă nu este convergentă deci dacă (s n ) este divergent. Dacă limita şirului (s n ) este + sau, atunci se spune că suma seriei este + sau şi se notează = + sau =. Observaţia 3.3. (Serii remarcabile) a) Seria geometrică de raţie q: q n, q IR (q 0 = 1). Dacă q (, 1], atunci seria este divergentă. Dacă q ( 1, 1), atunci seria este convergentă şi are suma q n = 1 1 q. Dacă q 1, atunci seria este divergentă şi are suma q n = +. b) Seria armonică generalizată: n=1 1 n α, α IR. Dacă α > 1, atunci seria este convergentă. Dacă α 1, atunci seria este divergentă. Pentru α = 1, seria numeşte seria armonică. n=1 1 n se Observaţia 3.4. Fie seria α cu termen general = α IR, n IN (şirul ( ) este constant). Dacă α = 0, atunci seria este convergentă şi are suma 0. Dacă α 0, atunci seria este divergentă. Definiţia 3.5. Fie (b n ) n n0 (n 0 IN) un şir de numere reale. O serie de forma (b n b n 1 ) se numeşte serie telescopică. În acest caz, şirul +1 sumelor parţiale este s n = b n b n0, n IN, n n 0 + 1. Definiţia 3.6. Dacă două serii şi b n (n 0 IN) au aceeaşi natură (adică sunt în acelaşi timp convergente sau divergente), atunci vom nota b n.

Teorema 3.7. (Condiţiecesară de convergenţă) Dacă seria (n 0 IN) este convergentă, atunci lim = 0. În consecinţă, rezultă: Corolar 3.8. Dacă ( ) n este convergent şi lim 0 sau dacă ( ) este divergent (ceea ce vom nota prin 0), atunci seria este divergentă. Propoziţia 3.9. (Proprietăţi generale ale seriilor convergente) i) Fie seria (n 0 IN). Dacă din şirul ( ) se elimină sau se adaugă un număr finit de termeni, atunci natura seriei nu se schimbă (dar în caz de convergenţă, suma seriei se modifică). Astfel, vom face convenţia de ota o serie prin atunci când ne va interesa doar natura seriei (nu şi suma seriei). ii) Dacă într-o serie convergentă se asociază termenii seriei în grupe finite, cu păstrarea ordinii termenilor, atunci se obţine tot o serie convergentă şi cu aceeaşi sumă. Dacă seria este divergentă, atunci rezultatul nu se mai păstrează. De exemplu, fie seria divergentă ( 1) n 1 şi seria: n=1 (1) [1 + ( 1)] + [1 + ( 1)] +... + [1 + ( 1)] +... obţinută prin asocierea termenilor în grupe de câte doi termeni. Se observă că seria (1) este convergentă şi are suma 0. iii) Fie seria (n 0 IN) şi k IN. Atunci +k. În caz de convergenţă, dacă = s, atunci +k = s (0 + 0 +1 +... + 0 +k 1). Invers, dacă +k = t, atunci = t + (0 + 0 +1 +... + 0 +k 1). iv) Fie (n 0 IN) o serie numerică şi pentru orice p IN, fie seria. Atunci. În caz de convergenţă, se +p+1 +p+1

118 notează n=p+1 lim r p = 0. p =r p (numit restul de ordin p al seriei ) şi avem Teorema 3.10. (Teorema lui Cauchy de caracterizare) O serie (n 0 IN) este convergentă dacă şi numai dacă ε > 0, N(ε) = N IN, astfel încât n N, n n 0 şi p IN, +1 + +2 +... + +p < ε. Observaţia 3.11. Dacă seria (n 0 IN) are proprietatea că 0, n n 0, atunci şirul sumelor parţiale este crescător. În acest caz, se spune că seria este cu termeni nenegativi. Teorema 3.12. Fie o serie cu termeni nenegativi şi (s n ) şirul sumelor parţiale. Atunci seria este convergentă dacă şi numai dacă (s n ) este majorat. Observaţia 3.13. a) O serie cu termeni nenegativi (n 0 IN) este divergentă dacă şi numai dacă (s n ) este nemajorat ceea ce este echivalent cu faptul că lim s n = +. b) O serie cu termeni nenegativi are întotdeauna sumă în [0, + ]. Teorema 3.14. (Criteriul de comparaţie de specia I) Fie şi b n (n 0 IN) serii cu termeni nenegativi astfel încât b n, n n 0. i) Dacă seria b n converge, atunci seria converge. ii) Dacă seria diverge, atunci seria b n diverge. Teorema 3.15. (Criteriul de comparaţie de specia a II-a) Fie seriile şi b n (n 0 IN) astfel încât > 0, b n > 0 şi +1 b n+1 b n pentru orice n n 0. i) Dacă seria b n este convergentă, atunci seria este convergentă.

ii) Dacă seria este divergentă, atunci seria b n este divergentă. lim Teorema 3.16. (Criteriul de comparaţie cu limită) Fie şi b n serii cu termeni pozitivi astfel încât există limita = λ [0, + ]. b n i) Dacă λ (0, + ), atunci b n. ii) Pentru λ = 0, dacă seria b n converge, atunci seria converge; dacă seria diverge, atunci seria b n diverge. iii) Pentru λ = +, dacă seria converge, atunci seria b n converge; dacă seria b n diverge, atunci seria diverge. Corolar 3.17. Fie seria b n (n 0 IN) unde > 0, b n > 0, n n 0. Dacă există limita lim b n = λ şi λ (0, + ), atunci b n. Teorema 3.18. (Criteriul lui Cauchy de condensare) Fie o serie cu termeni nenegativi astfel încât şirul ( ) este descrescător. Atunci 2 n a 2 n. Teorema 3.19. (Criteriul rădăcinii cu mărginire) Fie seria (n 0 IN) cu termeni nenegativi. i) Dacă există M < 1 astfel încât n M, n n 0, atunci seria converge. ii) Dacă există M 1 astfel încât n M, n n 0, atunci seria diverge. Teorema 3.20. (Criteriul rădăcinii cu limită superioară) Fie o serie cu termeni nenegativi. i) Dacă lim sup ii) Dacă lim sup n an < 1, atunci seria este convergentă. n an > 1, atunci seria este divergentă. Teorema 3.21. (Criteriul rădăcinii cu limită) Fie seria cu termeni nenegativi astfel încât există limita lim n an = α.

i) Dacă α < 1, atunci seria converge. ii) Dacă α > 1, atunci seria diverge. Teorema 3.22. (Criteriul raportului cu mărginire) Fie (n 0 IN) o serie cu > 0 pentru orice n n 0. i) Dacă există M < 1 astfel încât +1 M, n n 0, atunci seria este convergentă. ii) Dacă există M 1 astfel încât +1 M, n n 0, atunci seria este divergentă. Teorema 3.23. (Criteriul raportului cu limite extreme) Fie (n 0 IN) o serie cu > 0 pentru orice n n 0. i) Dacă lim sup ii) Dacă lim inf +1 +1 < 1, atunci seria converge. > 1, atunci seria diverge. Teorema 3.24. (Criteriul raportului cu limită) Fie (n 0 IN) o serie cu > 0 pentru orice n n 0 astfel încât există limita lim +1 = α. i) Dacă α < 1, atunci seria este convergentă. ii) Dacă α > 1, atunci seria este divergentă. Teorema 3.25. (Criteriul lui Raabe - Duhamel) Fie (n 0 IN) o serie cu > 0 pentru orice n n 0 astfel încât există ( ) limita lim n an 1 = β. +1 i) Dacă β > 1, atunci seria converge. ii) Dacă β < 1, atunci seria diverge. Teorema 3.26. (Criteriul lui Gauss) Fie seria +1 (n 0 IN) cu > 0 pentru orice n n 0 astfel încât se a poate scrie în forma: n +1 = 1 + β n + xn, n n n 1+α 0, unde α, β IR, α > 0 şi (x n ) IR este un şir mărginit.

i) Dacă β > 1, atunci seria converge. ii) Dacă β 1, atunci seria diverge. Corolar 3.27. (Gauss) Fie seria orice n n 0 având proprietatea: (n 0 IN) cu > 0 pentru = 1 + P 1(n) +1 Q 1 (n) + P 2(n) Q 2 (n) + + P k(n) Q k (n) + x n n 1+α, n n 0, unde P i, Q i sunt polinoame cu coeficienţi reali astfel încât: grad Q i grad P i = 1, i = 1, k, α (0, ) şi (x n ) IR este un şir mărginit. Notând cu b i respectiv c i, coeficientul dominant al polinomului P i respectiv al polinomului Q i, i = 1, k şi cu β = k i=1 pentru β > 1, seria converge, pentru β 1, seria diverge. b i c i, avem: Teorema 3.28. (Criteriul lui Dirichlet) Fie seria b n (n 0 IN) care verifică condiţiile: i) seria are şirul sumelor parţiale (s n ) mărginit (adică există α 0 astfel încât s n α, n n 0 ), ii) (b n ) este un şir descrescător cu lim b n = 0. Atunci seria b n este convergentă. Teorema 3.29. (Criteriul lui Abel) Fie b n o serie pentru care au loc afirmaţiile: i) seria este convergentă, ii) (b n ) este un şir monoton şi mărginit. Atunci seria b n este convergentă. Definiţia 3.30. O serie numerică alternată dacă +1 < 0, n n 0. (n 0 IN) se numeşte serie În acest caz, se mai scrie în forma = ( 1) n b n pentru orice n n 0 sau = ( 1) n+1 b n pentru orice n n 0, unde b n > 0 pentru orice n n 0 (se observă că b n = pentru orice n n 0 ).

Teorema 3.31. (Criteriul lui Leibniz) Fie ( 1) n b n (n 0 IN) o serie alternată (b n > 0, n n 0 ) astfel încât şirul (b n ) este descrescător şi lim b n = 0. Atunci seria ( 1) n b n este convergentă. Definiţia 3.32. a) O serie se numeşte absolut convergentă dacă seria este convergentă. b) Seria se numeşte semiconvergentă (sau condiţionat convergentă) dacă seria este convergentă, iar seria este divergentă. Teorema 3.33. Dacă o serie este absolut convergentă, atunci seria an este convergentă. Observaţia 3.34. a) Reciproca teoremei 3.33 nu este adevărată (vezi problema 3.1-10). b) Dacă se aplică criteriul raportului sau cel al rădăcinii pentru seria an şi aceasta este divergentă, atunci şi seria este divergentă (vezi problema 3.5). Teorema 3.35. (Produs cu un scalar) Fie seria (n 0 IN) şi λ IR. Dacă λ 0, atunci (λ ) şi în caz de convergenţă avem (λ ) = λ. Teorema 3.36. (Suma a două serii) Fie seriile şi b n (n 0 IN). i) Dacă ambele serii sunt convergente, atunci şi seria ( + b n ) este convergentă şi ( + b n ) = + b n. ii) Dacă seria converge şi seria b n diverge (sau invers), atunci seria ( + b n ) diverge. Definiţia 3.37. (Produsul Cauchy al două serii) Fie seriile, b n şi fie (c n ) şirul definit prin: c 0 = a 0 b 0, c 1 = a 0 b 1 + a 1 b 0,

c 2 = a 0 b 2 + a 1 b 1 + a 2 b 0,..., c n = a 0 b n + a 1 b n 1 +... + b 0 = n a k b n k, n IN. Atunci seria c n se numeşte produs Cauchy al seriilor şi k=0 b n. Teorema 3.38. (Mertens) Fie şi b n serii convergente. Dacă cel puţin una dintre serii este absolut convergentă, atunci seria produs Cauchy, ( )( c n = b n ). Dacă = b n, n IN, atunci vom nota c n, este convergentă şi ( )( ) ( ) 2. b n prin A ridica seria la pătrat înseamnă a efectua produsul Cauchy al seriei cu ea însăşi. Corolar 3.39. (Teorema lui Cauchy) Dacă două serii şi b n sunt absolut convergente, atunci seria produs ( )( Cauchy, c n, este absolut convergentă şi c n = b n ). Observaţia 3.40. (Calculul aproximativ al sumelor de serii) Fie o serie convergentă cu suma s. În acest caz, şirul sumelor parţiale s n = a 0 + a 1 + + converge la s iar restul de ordin n al seriei, r n = k=n+1 a k = s s n, converge la 0. Pentru determinarea cu aproximaţie a sumei s, se poate folosi formula de aproximare: s = s n, fiind necesară o evaluare a erorii absolute r n = s s n. De exemplu: a) Presupunem că există n 0 IN şi λ (0, 1) astfel încât +1 λ pentru orice n n 0. Atunci +1 λ, +2 λ +1 λ 2,

+3 λ 3,, +p λ p, p IN. Conform problemei 3.19, s s n = r n = a k a k λ k λ = k=n+1 k=n+1 k=1 1 λ. Deci λ s s n 1 λ, n n 0. Să presupunem că vrem să calculăm s cu o aproximaţie dată ε > 0. Pentru aceasta, vom determina N IN, N minim şi N n 0 astfel încât λ 1 λ ε pentru n N. Atunci s = s N. b) Fie ( ) un şir descrescător de numere pozitive, cu 0 astfel încât seria ( 1) n este convergentă şi are suma s. Să arătăm că r n +1, n IN. Fixând n IN, pentru orice k IN avem: +1 +2 +1 +2 + + ( 1) k+1 +k + ( 1) k+2 +k+1 +1. Trecând la limită pentru k se obţine +1 +2 ( 1) n+1 r n +1. Rezultă s s n = r n +1, n IN. Dacă vrem să calculăm s cu o aproximaţie dată ε > 0, atunci vom determina N IN, N minim astfel încât +1 ε pentru orice n N. Atunci s = s N.