Sistemi veštačke inteligencije primer 1

Σχετικά έγγραφα
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

SISTEMI NELINEARNIH JEDNAČINA

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Teorijske osnove informatike 1

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Elementi spektralne teorije matrica

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

Osnovne teoreme diferencijalnog računa

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

3.1 Granična vrednost funkcije u tački

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Računarska grafika. Rasterizacija linije

INTELIGENTNO UPRAVLJANJE

ELEKTROTEHNIČKI ODJEL

IZVODI ZADACI (I deo)

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Ispitivanje toka i skiciranje grafika funkcija

HY118- ιακριτά Μαθηµατικά

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός

Računarska grafika. Rasterizacija linije

5. Karakteristične funkcije

18. listopada listopada / 13

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

1.4 Tangenta i normala

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Zavrxni ispit iz Matematiqke analize 1

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

8 Predikatski račun kao deduktivni sistem

Termovizijski sistemi MS1TS

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Zadaci iz Osnova matematike

Linearna algebra 2 prvi kolokvij,

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

Φυλλάδια 2&3: Κατηγορηµατική Λογική

7 Algebarske jednadžbe

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Jednodimenzionalne slučajne promenljive

TRIGONOMETRIJA TROKUTA

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

41. Jednačine koje se svode na kvadratne

Program testirati pomoću podataka iz sledeće tabele:

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Funkcije dviju varjabli (zadaci za vježbu)

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

IZVODI ZADACI (I deo)

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

Matematka 1 Zadaci za drugi kolokvijum

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

1 Promjena baze vektora

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

( , 2. kolokvij)

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Mašinsko učenje. Regresija.

Algoritmi zadaci za kontrolni

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

Dvanaesti praktikum iz Analize 1

Diferencijabilnost funkcije više promenljivih

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Riješeni zadaci: Nizovi realnih brojeva

Matematička analiza 1 dodatni zadaci

Trigonometrijske nejednačine

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

Doc. dr. sc. Markus Schatten. Zbirka rješenih zadataka iz baza podataka

Zadaci iz trigonometrije za seminar

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

TABLICE AKTUARSKE MATEMATIKE

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

SKUPOVI I SKUPOVNE OPERACIJE

Operacije s matricama

APROKSIMACIJA FUNKCIJA

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

radni nerecenzirani materijal za predavanja

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Logika prvog reda. Zapisivanje rečenica.

Transcript:

Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati da postoji neko ko je umetnik. 2. Odrediti NOU za sledeće skupove literala a) {Q(g(Y), X, a), Q(g(a), f(y,z), a)} b) {P(a, g(y), X), P(X, Z, Y)} c) {S(X, g(z)), S(Y, Z)} Ovde su: X,Y,Z oznake promenljivih; a oznaka konstante; f,g oznake funkcija; Q, P, S oznake predikata. 3. Uz pomoć zaključivanja vođenog ciljem dokazati (nacrtati graf) da program terminira, stanje_programa(end), ako su data pravila i činjenice: Pravila: P1: veće(f,80) manje(g,20) jednako(c,100) P2: manje(d,0) manje(e,3) manje(b,50) P3: veće(h,200) veće(a,30) P4: manje(b,50) veće(a,30) jednako(c,100) stanje_programa(end) Činjenice: C1: veće(h,200) C2: manje(e,3) C3: manje(d,0) C4: manje(g,20) Cilj: stanje_programa(end) 4. Na programskom jeziku PROLOG formalizovati bazu znanja o vlasnicima stanova koja sadrži: naziv vlasnika, kvadraturu stana, cenu po kvadratnom metru, godinu izgradnje stana. Napisati pravilo koje izdvaja nazive vlasnika stanova koji su izgrađeni pre 1970 godine ili posle 2000 godine. Napisati pravilo koje izdvaja nazive vlasnika stanova koji su izgrađeni 1985 godina, a cena je veća od 50000. 5. Na programskom jeziku PROLOG napisati program koji odredjuje treći član rekurzivnog niza: g(0)=1, g(1)=1, g(n)=4*g(n-1)+g(n-2), za n>1. Postaviti test pitanje. 1

REŠENJA primer 1 1. 1. slikar(milos) 2. not(slikar(sava)) 3. ( X)(slikar(X) umetnik(x)) 4 ( X)(umetnik(X)) Tvrđenje 1. slikar(milos) 2. not(slikar(sava)) 3. slikar(x) umetnik(x) 4. umetnik(x) Negacija tvrđenja 5. slikar(x) R:3,4 6. R:1,5 {milos/x} 2. a) A = {Q(g(Y), X, a), Q(g(a), f(y,z), a)} B 0 = {Y, a} θ 1 = θ 0 {a/y} = {a/y} Aθ 1 = {Q(g(a), X, a), Q(g(a), f(a,z), a)} B 1 = {X, f(a,z)} θ 2 = θ 1 {f(a,z)/x} = {a/y, f(a,z)/x} Aθ 2 = {Q(g(a), f(a,z), a), Q(g(a), f(a,z), a)} = {Q(g(a), f(a,z), a)} NOU = θ 2 = {a/y, f(a,z)/x)} b) A = {P(a, g(y), X), P(X, Z, Y)} B 0 = {a, X} θ 1 = θ 0 {a/x} = {a/x} Aθ 1 = {P(a, g(y), a), P(a, Z, Y)} B 1 = {g(y), Z} θ 2 = θ 1 {g(y)/z} = {a/x, g(y)/z} Aθ 2 = {P(a, g(y), a), P(a, g(y), Y)} B 2 = {a,y} k = 3 θ 3 = θ 2 {a/y} = {a/x, g(a)/z, a/y} Aθ 3 = {P(a, g(a), a), P(a, g(a), a)} = {P(a, g(a), a)} NOU = θ 3 = {a/x, g(a)/z, a/y} c) A = {S(X, g(z)), S(Y, Z)} B 0 = {X, Y} θ 1 = θ 0 {X/Y} Aθ 1 = {S(X, g(z)), S(X, Z)} B 1 = {g(z), Z} NOU ne postoji jer funkcija g zavisi od promenljive Z. 2

3. 4. stan( Simic Milos, 58, 1200, 1987). stan( Markovic Ljiljana, 83, 1700, 1992). stan( Milosev Branka, 98, 2100, 1995). izdvoj1(x):-stan(x, _, _, Y), (Y<1970; Y>2000). izdvoj2(x):-stan(x, Y, Z, 1985), C is Y*Z, C>50000. 5. g(0,1). g(1,1). g(n, Rez):- N>1, N1 is N-1, N2 is N-2, g(n2, Rez2), g(n1, Rez1), Rez is 4*Rez1+Rez2.?-g(3, X). 3

Sistemi veštačke inteligencije primer 2 1. Na jeziku predikatskog računa I reda formalizovati rečenice: 1. Dedal je muško. 2. Ikar je Dedalovo dete. 3. Za sve osobe važi da ako je osoba X dete osobe Y i osoba Y je muškog roda, tada je osoba Y otac osobe X. Uz pomoć metode rezolucije dokazati tvrđenje: Dedal je Ikarov otac. 2. Odrediti NOU za sledeće skupove literala: a) {R(f(g(X), X), g(y), f(b,g(a))), R(f(g(b), b), Z, f(x,z))} b) {P(Y, a, h(g(b)),g(a)), P(X, a, h(z), Z)} c) {Q(X, g(y), b, f(g(a), X)), Q(c, Z, b, f(g(a), U))} Ovde su: X,Y,Z,U oznake promenljivih; f,g,h oznake funkcija; a,b,c oznake konstanti i R,P,Q oznake predikata. 3. Uz pomoć zaključivanja vođenog ciljem dokazati (nacrtati graf) da je preduzeće «MegaTrade» u dobitku ako je dato: Baza znanja: P1: ima_sirovina(x) mašine_ispravne(x) ima_radnika(x) u_dobitku(x) P2: obezbedjen_serviser(x) garancija_na_mašine(x) mašine_ispravne(x) P3:obezbedjen_prevoznik(X) obezbedjen_nabavljač(x) ima_sirovina(x) P4:poseduje_sopstveni_prevoz(X) ugovor_sa_transportnim_preduzećem(x) obezbedjen_prevoznik(x) Činjenice: C1: garancija_na_mašine(megatrade) C2: ima_radnika(megatrade) C3: poseduje_sopstveni_prevoz(megatrade) C4: obezbedjen_nabavljač(megatrade) Cilj: u_dobitku(megatrade) 4. Na programskom jeziku Prolog napisati program koji određuje: a) da li su elementi celobrojne liste u opadajućem poretku, b) koja je dužina liste. 5. Na programskom jeziku Prolog napisati program za određivanje proizvoda prvih n prirodnih brojeva. 4

REŠENJA primer 2 1. 1. musko(dedal) 2. dete(ikar,dedal) 3. ( X)( Y) ((dete(x,y) musko(y)) otac(y,x)) 4.otac(dedal,ikar) Tvrđenje 1. musko(dedal) 2. dete(ikar,dedal) 3. (dete(x,y) musko(y)) otac(y,x)) 4. otac(dedal,ikar) Negacija tvrđenja 1. musko(dedal) 2. dete(ikar,dedal) 3. dete(x,y) musko(y) otac(y,x) 4. otac(dedal,ikar) Negacija tvrđenja 5. dete(ikar,dedal) musko(dedal) R:(3,4) {dedal/y, ikar/x} 6. dete(ikar,dedal) R:(1,5) 7. R:(2,6) 2. a) A = {R(f(g(X), X), g(y), f(b,g(a))), R(f(g(b), b), Z, f(x,z))} B 0 = {b, X} θ 1 = θ 0 {b/x} = {b/x} Aθ 1 = {R(f(g(b), b), g(y), f(b,g(a))), R(f(g(b), b), Z, f(b, Z))} B 1 = {g(y), Z} θ 2 = θ 1 {g(y)/z } = {b/x, g(y)/z} Aθ 2 = {R(f(g(b), b), g(y), f(b,g(a))), R(f(g(b), b), g(y), f(b, g(y)))} B 2 = {a, Y} k = 3 θ 3 = θ 2 {a/y} = {b/x, g(a)/z, a/y} Aθ 3 = {R(f(g(b), b), g(a), f(b,g(a))), R(f(g(b), b), g(a), f(b, g(a)))} Aθ 3 = {R(f(g(b), b), g(a), f(b,g(a)))} NOU = θ 3 = {b/x, g(a)/z, a/y} b) A = {P(Y, a, h(g(b)),g(a)), P(X, a, h(z), Z)} B 0 = {X, Y} θ 1 = θ 0 {X/Y} = {X/Y} Aθ 1 = {P(X, a, h(g(b)),g(a)), P(X, a, h(z), Z)} B 1 = {g(b), Z} θ 2 = θ 1 {g(b)/z } = {X/Y, g(b)/z} Aθ 2 = {P(X, a, h(g(b)), g(a)), P(X, a, h(g(b)), g(b))} B 2 = {a, b} NOU ne postoji jer su a i b dve različite konstante. 5

c) A = {Q(X, g(y), b, f(g(a), X)), Q(c, Z, b, f(g(a), U))} B 0 = {c, X} θ 1 = θ 0 {c/x} = {c/x} Aθ 1 = {Q(c, g(y), b, f(g(a), c)), Q(c, Z, b, f(g(a), U))} B 1 = {g(y), Z} θ 2 = θ 1 {g(y)/z} = {c/x, g(y)/z} Aθ 2 = {Q(c, g(y), b, f(g(a), c)), Q(c, g(y), b, f(g(a), U))} B 2 = {c, U} k = 3 θ 3 = θ 2 {c/u} = {c/x, g(y)/z, c/u} Aθ 3 = {Q(c, g(y), b, f(g(a), c)), Q(c, g(y), b, f(g(a), c))} = {Q(c, g(y), b, f(g(a), c))} NOU = θ 3 = {c/x, g(y)/z, c/u} 3. u_dobitku(megatrade) P1 ima_sirovina(megatrade) mašine_ispravne(megatrade) ima_radnika(megatrade) C2, TACNO P3 obezbedjen_prevoznik(megatrade) obezbedjen_nabavljac(megatrade) P2 P4 C4, TACNO poseduje_sopstveni_prevoz(megatrade) obezbedjen_serviser(megatrade) C3, TACNO ugovor_sa_transportnim_preduzecem(megatrade) garancija_na_mašine(megatrade) C1, TACNO 4. 5. poredak([_]). poredak([x,y O]):-X>=Y, poredak([y ]O). duzina([],0). duzina([_ Ost], N):-duzina(Ost, M), N is M+1. proizvod(1,1). proizvod(n,r):-n>1, N1 is N-1, proizvod(n1,r1), R is N*R1. 6