Diferencijabilnost funkcije više promenljivih
|
|
- Κηφεύς Ζερβός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Matematiči faultet Beograd novembar 005 godine Diferencijabilnost funcije više promenljivih 1 Osnovne definicije i teoreme, primeri Diferencijabilnost je jedan od centralnih pojmova u matematičoj analizi Nea je X R n i nea x X X Stavimo A x = {h R n (x + h) X}; sup A x je neprazan i 0 A Definicija 1 Funcija f : X R m se naziva diferencijabilnom u tači x X X ao postoje linearno presliavanje L x : R n R m i presliavanje α x : A x R m tava da važi (1) ( h A x ) f(x + h) f = L x (h) + α x (h), pri čemu se pretpostavlja i da je α x (h) = o(h) ada h 0 Ao je presliavanje f diferencijabilno u svaoj tači x X onda se f naziva diferencijabilnim presliavanjem na supu X Definicija Linearni operator L x iz definicije (1) naziva se izvodom funcije f u tači x X i označava sa f Vetor x(h) = (h + x) x = h se naziva priraštajem nezavisno promenljive, a vetor f(x; h) = f(x + h) f priraštajem funcije f oji odgovara priraštaju h nezavisno promenljive Vetor f (x; h) = L x (h) se naziva diferencijalom funcije f u tači x, oji odgovara priraštaju h nezavisno promenljive Može se doazati da važi tvrdjenje: Ao je presliavanje f diferencijabilno u tači x, onda postoji samo jedan linearni operator L x taav da važi (1) Presliavanja L x : R n R m i α x : A x R m iz definicije (1) odredjena su svojim oordinatnim funcijama L xj : R n R m i α xj : A x R m, (1 j m): ( h R n ) L x (h) = (L x,1 (h),, L x,m (h)), ( h A x ) α x (h) = (α x,1 (h),, α x,m (h)) Ao se jednaost (1) napiše u oordinatnom obliu onda se vidi da je ta jednaost evivalentna sistemu jednaosti: () f j (x + h) f j = L x,j (h) + α x,j (h), (1 j m) gde su f j oordinatne funcije presliavanja f S obzirom da su funcije L x,j linearne i da važi jednaost: odatle zaljučujemo da važi sledeće tvrdjenje: ( j {1,, m}) α x,j (h) = o(h), h 0 Domaći zadata studenata II godine u oviru ursa Analize II 1
2 Teorema 1 Funcija f : X R m je diferencijabilna u tači x X X ao i samo ao su u toj tači diferencijabilne sve oordinatne funcije f j Pri tome je f j = L x,j gde su L x,j, (1 j m) oordinatne funcije izvoda L x funcije f u tači x Definicija 3 Nea je funcija f : X R definisana na supu X R n i nea je x X X Limes f(x 1, x i 1, x i + h i, x i+1,, x n ) f(x 1,, x i 1, x i, x i+1,, x n ), h i o h i ao pos toji naziva se parcijalnim izvodom funcije f po promenljivoj x i u tači x i označava se jednim od simbola: i, i f, f x i Teorema Ao je funcija f : X R definisana na supu X R n i diferencijabilna u unutrašnjoj tači x tog supa onda f u tači x ima parcijalne izvode po svim promenljivim x 1 do x n Pri tome važe jednaosti ( h = (h 1,, h n ) R n ) f h = 1 h n h n Primer 1 Posmatrajmo realnu funciju f(x 1, x, x 3 ) = x 1 + x e x1 + x 1 x x 3 definisanu na prostoru R 3 Ona je diferencijabilna ao ompozicija elementarnih funcija, pa u svaoj tači x = (x 1, x, x 3 ) postoje parcijalni izvodi te funcije i važe jednaosti: 1 (x 1, x, x 3 ) = x 1 + x e x 1 + x x 3, (x 1, x, x 3 ) = 4x e x1 + x 1 x 3, 3 (x 1, x, x 3 ) = x 1 x Odredimo matricu oja predstavlja izvod f presliavanja f : X R m, diferencijabilnog u unutrašnjoj tači x supa X R n Nea su f j : X R, (1 j m) oordinatne funcije presliavanja f Iz teoreme (1) slede jednaosti: ( h R n ) f h = f 1h f mh, a odatle sledi Dale, ( h R n ) f h = f = n i=1 n i=1 1 i h i m i h i 1 = 1 m m 1 n m n 1 n m n h 1 h m
3 Primer Naći (x, 1) za funciju f(x, y) = x + (y 1) arcsin x y Saglasno definiciji parcijalnog izvoda, važi: f(x + h, 1) f(x, 1) x + h x h (x, 1) h 0 h h 0 h h 0 h = 1 Definicija 4 Matrica (1) se naziva Jaobijevom matricom presliavanja f u tači x X Ao je n = m onda se determinanta te matrice naziva jaobijanom presliavanja f u tači x Teorema 3 Nea je funcija f : U(x 0 ) R definisana u neoj oolini U(x 0 ) tače x 0 R n i nea postoje parcijalni izvodi 1 f,, n f u svaoj tači x U(x 0 ) Ao su sve funcije i f : U(x 0 ) R,(1 j n) nepreidne u tači x 0, onda je funcija f diferencijabilna u toj tači Odnos izmedju diferencijabilnosti, nepreidnosti i parcijalnih izvoda Odnos izmedju nepreidnosti i diferencijabilnosti je isti ao u jednodimenzionom prostoru Iz diferencijabilnosti sledi nepreidnost, ali obrnuto ne mora da važi U slučaju funcije f : X R gde je X R n, a diferencijabilnost funcije u tači x X obezbedjuje egzistenciju svih parcijalnih izvoda u toj tači Obratno ne važi: Iz egzistencije parcijalnih izvoda po svim promenljivim u neoj tači ne sledi diferencijabilnost funcije u toj tači Primer 3 Nea je data funcija f(x, y) = { xy x +y, (x, y) (0, 0) 0, (x, y) = (0, 0) Ispitati njenu diferencijabilnost f(h, 0) f(0, 0) (0, 0) = 0, h 0 h f(0, ) f(0, 0) (0, 0) = 0 Funcija f je diferencijabilna na R \ {(0, 0)} ao ompozicija elementarnih funcija U tači (0,0) zaljučujemo da postoje njeni parcijalni izvodi, ali ona u toj tači nije diferencijabilna jer nije nepreidna u toj tači 3 Osnovna pravila diferencijabilnosti Teorema 4 Ao su presliavanja f : X R m i g : X R m diferencijabilna u tači x X R n onda je presliavanje (αf + βg) : X R m, (α, β R) diferencijabilno u tači x i vači jednaost: (αf + βg) = αf + βg 3
4 Teorema 5 Ao su funcije f : X R i g : X R diferencijabilne u tači x X R n onda je: (a) funcija (fg) : X R u tači x i važi jednaost (fg) = gf + fg ; (b) funcija f g : X R diferencijabilna u tači x ao je g 0 na supu X i važi jednaost 4 Parcijalni izvodi višeg reda ( f g ) = gf fg g Definicija 5 Funcija j ( i f) : B R, (broj j ( i f)) naziva se parcijalnim izvodom drugog reda funcije f po promenljivim x i, x j na supu B X (u tači x A), i označava se jednim od simbola: ji f,, x j jx i ( ) f ji f,, x i j jx i i Primer 4 f(x, y, z) = x 5 y z 3 + 4yz + y e yz + 3xz Ova realna funcija ima u svaoj tači (x, y, z) R 3 sve parcijalne izvode, što sledi iz njene diferencijabilnosti u svaoj tači (x, y, z) R 3 : (x, y, z) = 10x4 y z 3 + 3z, z (x, y, z) = 6x5 y z + 4y + y 3 e yz + 3x, (x, y, z) = 0x4 yz 3, (x, y, z) = 4x5 yz 3 + 4z + ye yz + y e yz z, (x, y, z) = 40x 3 y z 3, z (x, y, z) = 30x4 y z + 3, 3 f z (x, y, z) = 60x 4 y z, 3 f 3 (x, y, z) = 10x y z 3 Redosled promenljivih po ojima se vrši diferenciranje ne utiče na vrednost parcijalnog izvoda u opštem slučaju Teorema 6 Ao f C () (X), onda vrednost parcijalnog izvoda f i i1 ne zavisi od poreta promenljivih x i1,, x i po ojima se vrši diferenciranje, tj ista je za svau permutaciju indesa i 1,, i (1 i 1,, i n) Primer 5 Ispitati diferencijabilnost funcije f(x, y) = 3 xy u tači (0, 0) f(h, 0) f(0, 0) (0, 0) h 0 h h 0 f(0, ) f(0, 0) (0, 0) 0 3 h 0 0 = 0, h = 0 4
5 Medjutim, funcija nije diferencijabilna u tači (0, 0) jer u toj tači nije ispunjen neophodan uslov diferencijabilnosti: f(x + h, y + ) f(x, y) (x, y) h (x, y) + h 0 Primer 6 Ispitati diferencijabilnost funcije f(x, y) = 3 x 3 + y 3 u tači (0, 0) Nalazimo parcijalne izvode: Proveravamo osnovni uslov diferencijabilnosti: f(h, 0) f(0, 0) h (0, 0) h 0 h h 0 h = 1, f(0, ) f(0, 0) (0, 0) 0 = 1 3 h h 1 + h 3 h3 + 3 h h + Kao je (za npr pravac h = = t) ovaj es različit od nule, funcija nije diferencijabilna u datoj tači Primer 7 Ispitati diferencijabilnost funcije: { f(x, y) = e 1 x +y, (x, y) (0, 0) 0, (x, y) = (0, 0) Za (x, y) (0, 0) funcija je diferencijabilna ao superpozicija diferencijabilnih funcija Ispitajmo diferencijabilnost u tači (0,0): f(h, 0) f(0, 0) 1 (0, 0) h 0 h h 0 h 1 e h = 0, f(0, ) f(0, 0) 1 (0, 0) 0 1 e = 0; f(h, ) f(0, 0) (0, 0) h (0, 0) = h + e 1 h h 0 = 0 h + Odatle sledi da je funcija diferencijabilna u tači (0, 0) Primer 8 Da li je funcija f(x, y) = 3 x + y diferencijabilna na R? Za x + y 0, funcija f je diferencijabilna ao ompozicija diferencijabilnih funcija U (0, 0) funcija f nije diferencijabilna jer ne postoje parcijalni izvodi: f(h, 0) f(0, 0) h 3 h 0± h h 0± h = ±, 5
6 f(0, ) f(0, 0) 3 0± 0± = ± Primer 9 Ispitati diferencijabilnost sledeće funcije: f(x 1, x ) = { (x 1 + x ) sin(x 1 + x ) 1, (x 1, x ) (0, 0) 0, (x 1, x ) = (0, 0) Funcija je diferencijabilna u svaoj tači (x 1, x (0, 0)) ao ompozicija elementarnih funcija = x 1 sin(x 1 + x ) 1 x 1 cos(x 1 + x ) 1 1 (x 1 + x ), = x sin(x 1 + x ) 1 x cos(x 1 + x ) 1 (x 1 + x ), f(0 + h, 0) f(0, 0) h sin 1 h (0, 0) 1 h 0 h h 0 h f(, 0) f(0, 0) sin 1 (0, 0) 0 0 = 0 Ao su ovi parcijalni izvodi nepreidni u nuli, funcija će biti diferencijabilna (x sin 1 (x,y) (0,0) x + y x x + y cos 1 x + y ) 0 Iz ovog izraza sledi da parcijalni izvodi nisu nepreidni u (0, 0) Medjutim, to još uve ne znači da funcija nije diferencijabilna u toj tači Ispitajmo dovoljan uslov diferencijabilnosti: = 0, f(h, ) f(0, 0) (0, 0)h (0, 0) = 0 h + Leva strana ove jednaosti jednaa je sledećim izrazima: (h + 1 ) sin h h 0 h + sin h + 1 h + = 0 Kao možemo da zaljučimo da je ispunjen dovoljan uslov diferencijabilnosti u tači (0, 0), poazali smo da je funcija diferencijabilna u toj tači Primer 10 Ispitati diferencijabilnost funcije { e y sin x y f(x, y) = x, x 0 0, x = 0 U tačama (x, y),x 0, funcija f je diferencijabilna ao ompozicija diferencijabilnih funcija: f(h, y) f(0, y) e y sin h y (0, y) h 0 h h 0 h y ey sin h y h 0 h = y e y, y (0, 0) = 0, 6
7 Funcija f je diferencijabilna ao važi: Doažimo da je ta jednaost tačna Proverimo: e y+ sin h (y+) h f(0, y + ) f(0, y) (0, y) = = 0 f(0 + h, y + ) f(0, y) (0, y) h (0, y) = 0 + h 0 y e y h h + ( e y+ sin h (y + ) h h + ( sin h (y + ) ey h h + y h ) e y (y y) = 0 h + jednaost je tačna pa zaljučujemo da je funcija f diferencijabilna na R Primer 11 Postoji li Ao je (x, y) (0, 0) imamo: Polazeći od definicije izvoda, dobijamo: (0, 0) ao je: { xy f(x, y) = x +y, (x, y) (0, 0) 0, (x, y) = (0, 0)? (x, y) = y(y x ) (x + y ) f(h, 0) f(0, 0) 0 (0, 0) h 0 h h 0 h = 0 y h ) ey = h + Kao es ne postoji, stoga izvod f 0 (0, ) (0, 0) 0 u (0, 0) taodje ne postoji 3 4 7
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
4 Izvodi i diferencijali
4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
FUNKCIJE VIŠE REALNIH PROMENLJIVIH
I G L A V A FUNKCIJE VIŠE REALNIH PROMENLJIVIH U nauci i praksi često se javljaju situacije u kojima postoji zavisnost izmedju nekoliko realnih veličina a, b, c,, h pri čemu je jedna od njih potpuno odredjena
8 Funkcije više promenljivih
8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1
Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)
Izvodi Definicija. Neka je funkcija f definisana i neprekidna u okolini tačke a. Prvi izvod funkcije f u tački a je Prvi izvod funkcije f u tački : f f fa a lim. a a f lim 0 Izvodi višeg reda funkcije
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
1. Funkcije više promenljivih
1. Funkcije više promenljivih 1. Granične vrednosti funkcija više promenljivih Definicija 1. Funkcija f : D( R n R ima graničnu vrednost u tački (x 0 1, x 0 2,..., x 0 n D i jednaka je broju α R ako važi
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
DELJIVOST CELIH BROJEVA
DELJIVOST CELIH BROJEVA 1 Osnovne osobine Definicija 1.1 Nea su a 0 i b celi brojevi. Ao postoji ceo broj m taav da je b = ma, onda ažemo da je a delitelj ili fator broja b, b je sadržalac, višeratni ili
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa
Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:
POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
dr L. Stefanović, mr B. Rand elović, mr M. Matejić TEORIJA REDOVA ZA STUDENTE TEHNIČKIH FAKULTETA SKC Niš, 2006.
dr L. Stefanović, mr B. Rand elović, mr M. Matejić TEORIJA REDOVA ZA STUDENTE TEHNIČKIH FAKULTETA SKC Niš, 6. dr Lidija Stefanović, mr Branislav Rand elović, mr Marjan Matejić TEORIJA REDOVA ZA STUDENTE
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
f n z n, (2) F (z) = pri čemu se pretpostavlja da red u (2) konvergira bar za jednu konačnu vrednost kompleksne promenljive Z(f n ) = F (z).
Z-TRANSFORMACIJA Laplaceova transformacija je primer integralne transformacije koja se primenjuje na funkcije - originale. Ova transformacija se primenjuje u linearnim sistemima koji su opisani diferencijalnim
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Jednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
1 Pojam funkcije. f(x)
Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije
I N Ž E N J E R S K A M A T E M A T I K A 2. P r e d a v a n j a z a d r u g u s e d m i c u n a s t a v e (u akademskoj 2008/2009.
I N Ž E N J E R S K A M A T E M A T I K A 2 P r e d a v a n j a z a d r u g u s e d m i c u n a s t a v e (u akademskoj 2008/2009. godini) Budite zahvalni na savjetima, a ne na pohvalama..2.2. Neka svojstva
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
DISKRETNA MATEMATIKA KOMBINATORIKA, TEORIJA GRAFOVA I ALGORITMI. Dragan Stevanović Prirodno-matematički fakultet, Univerzitet u Nišu
DISKRETNA MATEMATIKA KOMBINATORIKA, TEORIJA GRAFOVA I ALGORITMI Dragan Stevanović Prirodno-matematiči faultet, Univerzitet u Nišu February 17, 2003 2 Sadržaj 1 Uvod 7 1.1 Supovi................................
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012
MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x
= 10, a u drugom slučaju je broj mogućnosti ( ( 2! = 15. Prema tome krajnji rezultat je S5 3 = ( (
REŠENJA ZADATAKA SA PRIJEMNOG ISPITA IZ MATEMATIKE ZA ELEKTROTEHNIKU, RAČUNARSTVO, ANIMACIJU U INŽENJERSTVU I MEHATRONIKU, FTN NOVI SAD 0070 Na hipotenuzi AB pravouglog trougla ABC date su tače D i E,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
PRVI IZVOD. f x0 x f x0. y x. ) lim lim ( ) ( ) x. Neka je y f(x) funkcija definisana na intervalu [a,b], x 0
. y PRVI IZVOD Neka je y f() funkcija definisana na intervalu [a,b], 0 unutrašnja tačka tog intervala, Δ ( 0) priraštaj argumenta i Δy odgovarajući priraštaj funkcije. Ako postoji granična vrijednost količnika
ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
4 Numeričko diferenciranje
4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Granične vrednosti realnih funkcija i neprekidnost
Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Primena izvoda funkcije
Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.rs/mii Математика и информатика 3(1) (2015), 17-40 Primena izvoda funkcije Mirjana Dimitrijević student prve godine na Departmanu
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
1 Funkcije više promenljivih: uvodni pojmovi
i Sadržaj 1 Funkcije više promenljivih: uvodni pojmovi 1 1.1 Prostor R n................................. 1. Realna funkcija više realnih promenljivih................ 5 1..1 Površ u R 3.............................
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Na grafiku bi to značilo :
. Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama